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ABSTRACT Dietary composition and antibiotic use have major impacts on the
structure and function of the gut microbiome, often resulting in dysbiosis. Despite
this, little research has been done to explore the role of host diet as a determinant
of antibiotic-induced microbiome disruption. Here, we utilize a multi-omic approach
to characterize the impact of Western-style diet consumption on ciprofloxacin-
induced changes to gut microbiome structure and transcriptional activity. We found
that Western diet consumption dramatically increased Bacteroides abundances and
shifted the community toward the metabolism of simple sugars and mucus glyco-
proteins. Mice consuming a Western-style diet experienced a greater expansion of
Firmicutes following ciprofloxacin treatment than those eating a control diet. Tran-
scriptionally, we found that ciprofloxacin reduced the abundance of tricarboxylic
acid (TCA) cycle transcripts on both diets, suggesting that carbon metabolism plays
a key role in the response of the gut microbiome to this antibiotic. Despite this, we
observed extensive diet-dependent differences in the impact of ciprofloxacin on mi-
crobiota function. In particular, at the whole-community level we detected an in-
crease in starch degradation, glycolysis, and pyruvate fermentation following antibi-
otic treatment in mice on the Western diet, which we did not observe in mice on
the control diet. Similarly, we observed diet-specific changes in the transcriptional
activity of two important commensal bacteria, Akkermansia muciniphila and Bacte-
roides thetaiotaomicron, involving diverse cellular processes such as nutrient acquisi-
tion, stress responses, and capsular polysaccharide (CPS) biosynthesis. These findings
demonstrate that host diet plays a role in determining the impacts of ciprofloxacin
on microbiome composition and microbiome function.

IMPORTANCE Due to the growing incidence of disorders related to antibiotic-
induced dysbiosis, it is essential to determine how our “Western”-style diet impacts
the response of the microbiome to antibiotics. While diet and antibiotics have
profound impacts on gut microbiome composition, little work has been done to ex-
amine their combined effects. Previous work has shown that nutrient availability, in-
fluenced by diet, plays an important role in determining the extent of antibiotic-
induced disruption to the gut microbiome. Thus, we hypothesize that the Western
diet will shift microbiota metabolism toward simple sugar and mucus degradation
and away from polysaccharide utilization. Because of bacterial metabolism’s critical
role in antibiotic susceptibility, this change in baseline metabolism will impact how
the structure and function of the microbiome are impacted by ciprofloxacin expo-
sure. Understanding how diet modulates antibiotic-induced microbiome disruption
will allow for the development of dietary interventions that can alleviate many of
the microbiome-dependent complications of antibiotic treatment.
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The gut microbiome includes the trillions of largely commensal bacteria, archaea,
and fungi that inhabit the gastrointestinal tract (1–3). These communities play an

important role in numerous biological processes such as digestion, neurological devel-
opment, colonization resistance, and immune function (4–17). Consequently, it is
unsurprising that disruption of microbial homeostasis, termed dysbiosis, has numerous
harmful impacts to the host. The gut microbiome is highly sensitive to perturbations
such as broad-spectrum antibiotic usage. Within hours of treatment, antibiotics induce
dramatic reductions in both bacterial load and diversity within the microbiome, both of
which are common indicators of dysbiosis (18, 19).

While compositional changes are typically transient and recover following the
cessation of a perturbation, oftentimes the structure and diversity of the microbiota
never return to their original levels. The resulting dysbiosis often has numerous acute
and chronic impacts on host health. In the case of antibiotic usage, this may increase
the risk of infection with opportunistic fungal and bacterial pathogens by reducing
colonization resistance (1, 4, 5, 17, 20–24). Most notably, broad-spectrum antibiotic
treatment is a major risk factor in Clostridioides difficile infection (20, 22, 25, 26).
Persistent dysbiosis is correlated with many chronic conditions with considerable
morbidity and mortality, such as asthma, obesity, and inflammatory bowel disease (6–9,
11, 13, 14, 17, 26).

Interestingly, antibiotic-induced disruption of the microbiome may be influenced by
the metabolic environment of the gut. A large body of in vitro data indicates that the
rate of metabolic activity for bacteria correlates positively with antimicrobial suscepti-
bility, such that metabolically active, ATP-producing processes such as respiration
promote toxicity, whereas less efficient or quiescent metabolism induces tolerance
(27–29). A similar trend is observed in the context of bacteria responding to antibiotics
in the gut microbiome, where nutrient availability and bacterial metabolism are closely
linked to host diet. Recent work has demonstrated that antibiotic exposure changes
both the composition of the gut microbiome and its metabolic capacity, such that the
surviving microbiome is overall less metabolically active (19). Further, amoxicillin
treatment was shown to increase the expression of polysaccharide utilization genes,
while simultaneously decreasing the abundance of transcripts involved in simple sugar
utilization (19). Reflecting these changes, amoxicillin also decreased the total concen-
tration of glucose within the ceca of mice (19). These transcriptional changes have
significant impacts on the response of specific bacteria to the treatment. In the case of
Bacteroides thetaiotaomicron, polysaccharide utilization promoted tolerance to amoxi-
cillin, and simple sugar utilization increased toxicity. Accordingly, the response of the
microbiota to antibiotics can be impacted by dietary nutrient modulation (30). For
example, Cabral et al. found that glucose supplementation impacts the response of the
total community and reduces the absolute abundance of bacteria, particularly B.
thetaiotaomicron, following amoxicillin treatment in mice (19). Together these findings
suggest that dietary composition may act as an additional perturbation that drives the
severity of the microbiome’s response to antibiotic treatment.

Dietary composition is known to have a profound impact on microbiome diversity
and overall gut health (31–37). Diets high in fat and simple sugars, typically referred to
as “Western” diets, have been associated with a number of negative health states
including obesity, diabetes mellitus, allergies, and inflammatory bowel disease (36–46).
Such diets have very low levels of microbiota-accessible carbohydrates (MACs), which
are typically found in complex plant polysaccharides and are indigestible and unab-
sorbable by the host (40, 44, 47–49). MACs are typically fermented by the colonic
microbiota to produce short-chain fatty acids (SCFAs), which play important roles in
regulating energy homeostasis and inflammation within the host (40, 45, 50–55).
High-MAC diets have also been shown to increase microbial diversity, a classic bench-
mark for gut microbiota health. Conversely, low-MAC diets are known to reduce both
microbiome diversity and SCFA production (44, 46, 49, 56). MAC starvation enriches for
muciniphilic microbes that are capable of degrading the mucosal lining of the gut, such
as Akkermansia muciniphila (40, 42, 48, 57). Degradation of the mucosal layer over time
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may result in compromised gut barrier function and lead to increased inflammation,
colitis, and susceptibility to infection by enteric pathogens (57).

Individually, antibiotic usage and the consumption of Western-style diets are known
to negatively impact the microbiota, impacting host health. Despite this, little work has
explored the impact of diet on the response of the microbiota to antibiotics. Previous
work has suggested that dietary composition may play an important role in determin-
ing the extent of antibiotic-induced microbiome disruption (19). Thus, we hypothesize
that the consumption of a Western-style diet will significantly modify the metabolic
activity of the microbiome toward simple sugar and mucus glycoprotein degradation
rather than dietary polysaccharide utilization. This will be characterized by differential
utilization of carbohydrate-active enzymes (CAZymes) along with changes in respira-
tory activity and central carbon metabolism. Given that respiratory activity plays a key
role in drug susceptibility in vitro, when this community is treated with a bactericidal
antibiotic like ciprofloxacin, its compositional and functional responses to the drug
would be different due to the altered metabolic state. Overall, we anticipate that the
diet-related metabolic state of the microbiome before treatment will have a larger
impact on drug disruption than the metabolic changes that are induced during the
drug exposure. In this study, we use a combined metagenomic and metatranscriptomic
approach to characterize the impact of a Western-style diet on the taxonomic and
functional disruption of the microbiome during ciprofloxacin treatment. Using shotgun
metagenomics, we found that ciprofloxacin elicited differential impacts on community
composition in mice at both the phylum and species level in a diet-dependent manner.
Using metatranscriptomics, we observed that consumption of a Western diet induced
profound transcriptional changes within the gut microbiomes of mice. Furthermore,
consumption of this diet modulated the transcriptional response of these communities
to antibiotic treatment. Specifically, dietary composition had a major impact on the
abundance of transcripts containing key metabolic genes. Lastly, we were able to
detect unique species-specific transcriptional changes in response to both diet and
ciprofloxacin treatment in two important commensal bacteria, A. muciniphila and B.
thetaiotaomicron.

RESULTS

To determine the impact of dietary composition and antibiotic exposure on the
structure and function of the murine gut microbiome, female C57BL/6J mice were
randomly assigned to either a high-fat, high-sugar “Western”-style (Western) diet or a
low-fat control diet for 7 days in multiple cages. At this point, mice from each diet were
again randomly split between ciprofloxacin and vehicle control groups and treated for
24 h in multiple cages (n � 8 to 12 per group). Previously it has been shown that 24 h
of ciprofloxacin treatment was sufficient to induce changes in community structure and
transcriptional activity (19). This time frame also allowed for profiling the acute re-
sponse of the microbiota to ciprofloxacin exposure, rather than characterizing a
post-antibiotic state of equilibrium. Following treatment, the mice were sacrificed to
harvest their cecal contents for taxonomic profiling and transcriptional analysis
(Fig. 1A). Overall, we found that diet and ciprofloxacin treatment had a significant
impact on gut microbiome structure (Fig. 1B to D; see also Fig. S1 in the supplemental
material).

We first assessed the effects that diet and ciprofloxacin have on the diversity of the
gut microbiome using 16S rRNA sequencing. Mice consuming the Western diet had
significantly less diverse gut microbiomes than those fed the control diet (Fig. S1A).
Interestingly, we also observed that the Western diet was associated with a reduction
in alpha diversity during ciprofloxacin treatment (Fig. S1A). Next, we performed Prin-
cipal Coordinate Analysis (PCoA) using Bray-Curtis dissimilarity paired with permuta-
tional multivariate analysis of variance (PERMANOVA) to profile the degree of dissim-
ilarity between our samples and the significance of this distance. Our samples formed
four distinct clusters driven by both diet and ciprofloxacin treatment (Fig. 1B).

Due to the limited phylogenetic resolution provided by 16S rRNA sequencing and
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inability to provide functional information about sequenced communities, we opted to
perform shotgun metagenomic and metatranscriptomic analyses on a subset of our
samples, representing mice from multiple cages (n � 4 per treatment group) (19,
58–61). Interestingly, we observed that Western diet consumption reduced community
diversity while ciprofloxacin did not have a statistically significant impact on the alpha
diversity of the community (Fig. 1C). However, the metagenomic data exhibited a
similar trend in unique taxonomic structures being associated with each treatment
group, supporting a model wherein diet and antibiotic treatment are distinct pertur-
bations (Fig. 1D). However, to evaluate if diet modifies the response to ciprofloxacin, we
had to untangle diet-induced changes from antibiotic-induced changes. First, we
characterized the impact of the Western diet consumption.

FIG 1 Impact of diet and ciprofloxacin administration on murine gut microbiome composition. (A) Experimental workflow used in this study. Figure was created
with BioRender.com (BioRender, Toronto, Canada). (B) Principal Coordinate Analysis of experimental groups as measured by Bray-Curtis dissimilarity of 16S rRNA
amplicons. (**, P � 0.01; ***, P � 0.001, permutational ANOVA). (C) Alpha diversity of experimental groups as measured by the Shannon diversity index. Data
are represented as mean � standard error of the mean (SEM) (**, P � 0.01, Welch ANOVA with Dunnett T3 test for multiple hypothesis testing). (D) Stacked
bar plot of the five most abundant bacterial phyla in our data set. Data are represented as mean � SEM for each phylum. For 16S rRNA amplicons, n � 8 to
12. For metagenomics, n � 4.
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Consumption of a Western diet modifies the metabolic activity of the micro-
biome. Mice fed a Western diet displayed elevated levels of the phyla Verrucomicrobia

and Bacteroidetes and a reduction of Firmicutes (Fig. 1D). At the species level, these
shifts appear to be largely driven by an expansion of members of the Bacteroides genus
(Fig. 2A, Fig. S1B, and Data Set S1). Additionally, the Western diet-fed mice displayed an
elevated abundance of several species from the Proteobacteria phylum, suggestive of
dysbiosis (62). Two important bacterial species found in the gut microbiomes of both
mice and humans, B. thetaiotaomicron and A. muciniphila, were observed at signifi-
cantly elevated levels in the mice fed a Western diet (Fig. 2A and Fig. S1B). Notably,
both species are known to utilize host-produced mucins; thus, this observation is
consistent with earlier studies suggesting that the consumption of a low-MAC Western
diet enriches for muciniphilic bacteria (40, 42, 48).

Given this expansion, we anticipated that the transcriptional activity of these
communities would exhibit an increased capacity for mucus degradation and simple
sugar utilization. Due to the potential limitations of using a single pipeline, we analyzed
our metatranscriptomic data set with SAMSA2 in parallel with HUMAnN2 (63, 64). The
SAMSA2 pipeline generates unnormalized transcript abundances and thus is represen-
tative of overall transcript levels (63). SAMSA2 is advantageous in its capacity for
annotation against multiple databases and enables differential abundance testing of
individual transcripts in addition to pathway- and subsystem-level analysis (63). Con-
versely, the HUMAnN2 pipeline normalizes the abundance of RNA transcripts against
their corresponding gene abundance in the metagenomic data set, thus normalizing
for differences in community composition between experimental groups and facilitat-
ing comparisons of metabolic pathway expression at the whole-community level (64).
When paired, these pipelines facilitate a more robust examination of microbiome
transcriptional activity.

We observed an increased abundance of transcripts related to respiration at the
SEED subsystem level in the microbiota of the mice consuming the Western diet, which
was mirrored in our HUMAnN2 data set as increased tricarboxylic acid (TCA) cycle
expression (Fig. 2B, Fig. S2A, and Data Sets S2 and S3). The Western diet-fed mouse
microbiota also displayed increased abundance of transcripts involving fatty acid
metabolism and terpenoid biosynthesis, likely reflecting altered nutrient availability
and increased respiratory activity, respectively (Fig. 2B and Data Set S3) (65, 66).
Interestingly, we also detected large increases in the abundance of two different
sialidase transcripts, which play a key role in the utilization of host-produced mucins
(Fig. S2B and Data Set S4) (67). While other studies have shown that the consumption
of a Western diet enriches for muciniphilic taxa, this observation suggests that this diet
also increases transcriptional activity related to mucin degradation within the micro-
biome (40, 42).

Additionally, the Western diet-fed mouse microbiota had reduced expression of
nucleotide biosynthesis, glycolysis, gluconeogenesis, starch degradation, and pyruvate
fermentation compared to control diet-fed mice (Fig. S2A and Data Set S2). We also
observed relative reduction in the expression of the Bifidobacterium shunt, which is
known to play a role in SCFA production and may provide mechanistic insight into the
reduced SCFA levels observed on the Western diet in other studies (Fig. S2A and Data
Set S2) (40, 51).

Examination of CAZyme activity provided further evidence of significant transcrip-
tional reprogramming in response to diet. Specifically, we observed that Western diet
consumption decreased transcript abundances of multiple enzymes involved in poly-
saccharide breakdown (Fig. 2C and Data Set S5) (68–71). Simultaneously, there was a
significant increase in �-amylases, lysozyme C, and �-lactalbumin breakdown (Fig. 2C
and Data Set S5) (72, 73). Given the content of the Western diet, a shift toward
utilization of these carbon sources was not unexpected. However, the robust loss of
complex polysaccharide breakdown was surprising and complements the SEED and
HUMAnN2 data sets. Together these data suggest that Western diet alone is sufficient
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FIG 2 Consumption of a Western diet induces broad taxonomic and transcriptional changes at the community
level. (A) Differentially abundant (Benjamini-Hochberg-adjusted P value � 0.05) bacterial species (within the 45
most abundant taxa) as detected in mice consuming the Western diet. Data are represented as log2 fold change
relative to control diet � standard error. Bar color and top legend denote phylum-level taxonomic classification
(yellow, Verrucomicrobia; green, Firmicutes; teal, Bacteroidetes; blue, Proteobacteria; navy, Actinobacteria). See Data
Set S1 for full results. (B) Differentially expressed (Benjamini-Hochberg-adjusted P value � 0.05) level 1 SEED
subsystems in the murine cecal metatranscriptome of mice consuming the Western diet. Data are represented as
log2 fold change relative to control diet � standard error. Only features with a base mean of �100 were plotted.
See Data Set S3 for full results. (C) Differentially expressed (Benjamini-Hochberg-adjusted P value � 0.05) CAZyme
transcripts in the murine cecal metatranscriptome in mice consuming the Western diet. Data are represented as
log2 fold change relative to control diet � standard error. CAZyme class (yellow, glycoside hydrolase; lime,
glycosyltransferase; green, polysaccharide lyase; teal, carbohydrate binding modules; blue, carbohydrate esterase;
purple, auxiliary activity), source of the target substrate (blue, plant derived; magenta, animal derived; peach,
microbially derived), and linkages targeted by the CAZyme (dark gray, alpha; light gray, beta) are listed below the
data and color coded. White values represent either a lack of singular substrate/linkage or a lack of enough
information available to make a definitive call. See Data Set S5 for full results. For all analyses, n � 4.
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to restructure the metabolic activity of the gut microbiome, due to significant changes
in nutrient availability.

Ciprofloxacin elicits unique shifts in gene expression on Western and control
diets. Given the significant body of literature that links microbial metabolism with
antimicrobial susceptibility both in vitro and within the microbiome, we hypothesized
that the metabolic restructuring induced by the Western diet would result in differen-
tial susceptibility to ciprofloxacin (19, 27–29). Although ciprofloxacin did not induce a
significant reduction in alpha diversity in the time frame tested, we found that diet
drove differential community composition following antibiotic exposure (Fig. 1C and
D). At the phylum level, we observed a significant expansion in the relative abundance
of Firmicutes following ciprofloxacin treatment on the Western diet (adjusted P
value � 0.0388) but not on the control diet (adjusted P value � 0.8718) (Fig. 1D and
Fig. S1B). To determine which species displayed a differential response to ciprofloxacin
on the Western and control diets, we utilized DESeq2 to analyze the interaction
between diet and antibiotic treatment to determine which species displayed differen-
tial responses to ciprofloxacin between the diets (74). While most species responded
similarly to ciprofloxacin therapy on both diets, there were several notable exceptions.
For example, the expansion of several Clostridium species (such as Clostridium saccha-
rolyticum, Clostridium sphenoides, and Clostridium scindens) following ciprofloxacin was
higher on the Western diet than the control (positive interaction values, Fig. 3A and
Data Set S1). Conversely, the reduction of several Bacteroides species following antibi-
otic treatment tended to be exacerbated on the Western diet (negative interaction
values, Fig. 3A and Data Set S1).

We detected clear differences in ciprofloxacin susceptibility between the two diets
and hypothesized that diet-induced differences in metabolism would both alter sus-
ceptibility and be reflected in unique transcriptional signatures. An all-by-all compari-
son of experimental groups demonstrated that the microbiota of Western diet-
consuming mice displayed elevated expression of TCA cycle and fatty acid degradation
pathways in both vehicle and ciprofloxacin treatments, likely reflective of the increased
fat and sugar content of this diet (Fig. 3B and Data Set S2). Additionally, we found
elevated expression of glycogen degradation genes that was specific to Western
diet-fed mice receiving ciprofloxacin (Fig. 3B and Data Set S2). Conversely, the micro-
biota of control diet-consuming mice had elevated expression of amino acid biosyn-
thesis pathways (isoleucine, aspartate, asparagine, lysine, and histidine) regardless of
antibiotic treatment (Fig. 3B and Data Set S2). We also observed elevated levels of
several different nucleotide biosynthesis pathways in the vehicle-treated control diet
mice while the Western diet mice displayed elevated levels of adenosine and guanosine
nucleotide degradation (Fig. 3B and Data Set S2). Overall, these data support that our
experimental groups could be characterized by unique transcriptional signatures.

We found key differences in the overall transcriptional profiles in response to
ciprofloxacin on each diet. On the Western diet, ciprofloxacin treatment was associated
with an increased abundance of transcripts from glycogen and starch degradation,
glycolysis, and pyruvate fermentation (Fig. S3C and Data Set S2). Notably, the expres-
sion of glycogen degradation was elevated in vehicle-treated samples on the control
diet, suggesting that the utilization of this pathway during ciprofloxacin treatment is
diet dependent (Fig. S3C and Data Set S2). We observed that TCA cycle expression was
reduced in ciprofloxacin-treated mice compared to the vehicle treatment—the lone
commonality between diets (Fig. S3C and Data Set 2). Previous work has demonstrated
that TCA cycle elevation increases sensitivity to bactericidal antibiotics (27–29, 75).
Thus, this result suggests that TCA cycle activity may play a key role in the response of
the microbiota to ciprofloxacin treatment in vivo, though more work is required to
understand its impact.

Interestingly, comparatively few subsystems were changed following ciprofloxacin
treatment on either diet (Fig. 3C and D and Data Set S3), suggesting that the pretreat-
ment metabolic state affects the antibiotic response more than the drug-induced
transcriptional changes. Most notably, we observed a decrease in transcripts related to
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FIG 3 Ciprofloxacin elicits unique shifts in gene expression on Western and control diets at the community level. (A) Heatmap of the change in abundance
of the top 45 bacterial species in response to ciprofloxacin on control and Western diets. The Interact column represents the interaction term generated

(Continued on next page)
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dormancy and sporulation in response to ciprofloxacin on both diets (Fig. 3C and D and
Data Set S3). A similar finding was observed in a recent study, suggesting that these
transcripts may play a key role in the response of the microbiota to this antibiotic (19).
Furthermore, ciprofloxacin increased the abundance of sialidase transcripts in mice on
the control diet, suggesting that this effect may be exacerbated by antibiotic treatment
(Fig. S3A and Data Set S4). Reflecting the overall reduction in sporulation seen at the
subsystem level, we found that several sporulation-related transcripts were reduced on
the control diet following ciprofloxacin treatment (Fig. S3A and Data Set S4).

We also examined the interaction of diet and antibiotic treatment on transcript
abundance within the microbiome. Notably, we found that several sporulation genes
were significantly higher on the Western diet than the control following ciprofloxacin
treatment (Data Set S4), which was reflected in the SEED subsystem level (Fig. 3C and
D). Additionally, transcripts encoding phosphotransferase system (PTS) transporters of
various substrates were also found to be higher on the Western diet following cipro-
floxacin treatment (Data Set S4). Conversely, Western diet consumption significantly
reduced the change in transcript abundance of both pectate lyase and a hemin
receptor following ciprofloxacin therapy. Together, these findings demonstrate that
dietary composition significantly impacts the transcriptional response of the micro-
biome to ciprofloxacin.

Recent studies have shown CAZyme activity to be a significant component of the
microbiome’s response to antibiotic stress (19). In our study, over 75 CAZymes exhib-
ited differential abundance during ciprofloxacin treatment (Data Set S5). Interestingly,
these changes were exclusive to the control diet-fed microbiota, as the Western
diet-fed communities displayed no significant difference in CAZyme abundance (Data
Set S5). The microbiota of mice on the control diet exhibited increases in CAZymes
involved in starch, glycogen, xylose, pectin, rhamnogalacturonan, and arabinofuranose
degradation (Data Set S5) (76, 77). Additionally, these communities exhibited a signif-
icant increase in trehalose phosphorylase and synthase activity, both of which have
been associated with transient antibiotic tolerance in pathogenic species (Data Set S5)
(78, 79). Loss of these CAZyme shifts may be directly involved in the increased toxicity
of ciprofloxacin on the Western diet; however, more work is required to elucidate the
mechanism. These data, in conjunction with our SEED and HUMAnN2 data sets, provide
evidence for unique transcriptional signatures during ciprofloxacin challenge that are
diet dependent. Overall, this supports a model in which diet-driven differences in
baseline metabolism directly impact taxonomic and functional responses to ciprofloxa-
cin treatment.

Diet and ciprofloxacin alter gene expression within B. thetaiotaomicron and A.
muciniphila. Next, we sought to profile how diet and drug treatment impacted the
transcriptional response of individual species within the microbiota. In order to have
sufficient genome coverage and sequencing depth, we ranked all taxa that were
differentially abundant in the Western diet by average RNA reads, further analyzing
only those with 500,000 or greater (Data Set S6). With this criterion, we used a
previously published pipeline to interrogate the impact of diet and antibiotic treatment
on three individual species: B. thetaiotaomicron, A. muciniphila, and C. scindens (19, 80).

FIG 3 Legend (Continued)
by DESeq2, denoting the impact of diet on the change in abundance of each species to ciprofloxacin compared to vehicle control. Cell color denotes log2

fold change of a particular species in response to ciprofloxacin (white represents failure to meet statistical significance: Benjamini-Hochberg-adjusted P
value � 0.05). Heatmap rows were sorted by interaction term value from highest to lowest, and taxa with no differential abundance (failure to meet statistical
significance) in either group were removed. See Data Set S1 for full DESeq2 results. (B) Linear discriminant analysis (LDA) of MetaCyc pathways that were
differentially associated with each experimental group. Bar size indicates LDA score, and color indicates the experimental group that a MetaCyc pathway
was significantly associated with. All LDA scores were generated using LEfSe on unstratified pathway outputs from HUMAnN2. For full pathway names and
statistics, see Data Set S2. (C) Differentially expressed (Benjamini-Hochberg-adjusted P value � 0.05) level 1 SEED subsystems in the murine cecal
metatranscriptome after ciprofloxacin treatment in mice consuming the control diet. Data are represented as log2 fold change relative to vehicle controls �
standard error. Only features with a base mean of �100 were plotted. See Data Set S3 for full results. (D) Differentially expressed (Benjamini-Hochberg-
adjusted P value � 0.05) level 1 SEED subsystems in the murine cecal metatranscriptome after ciprofloxacin treatment in mice consuming the Western diet.
Data are represented as log2 fold change relative to vehicle controls � standard error. Only features with a base mean of �100 were plotted. See Data Set
S3 for full results. For all analyses, n � 4.
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We focused on these bacteria because they are known human gut commensals, were
found at relatively high levels in all samples analyzed, and were differentially abundant
in a diet-dependent manner. Unfortunately, C. scindens had relatively few transcrip-
tional changes across all comparisons, and those genes that were differentially regu-
lated were almost exclusively hypothetical proteins (Data Set S6).

The Western diet significantly elevated the relative abundance of A. muciniphila
(Fig. 4A). Interestingly, on this diet A. muciniphila displayed increased expression of
several known stress response genes: catalase HPII, ATP-dependent chaperone ClpB, a
universal stress protein, superoxide dismutase, and a UvrB/UvrC protein (Fig. 4B and
Data Set S7). Additionally, we observed numerous changes in respiration and central
carbon metabolism, including increased terminal oxidases, TCA cycle, glycolysis, and
pyruvate metabolism, suggesting broad metabolic changes in response to the Western
diet (Fig. 4B and Data Set 7). No CAZymes were differentially expressed on this diet,
suggesting that the changes in A. muciniphila that facilitate its expansion are not driven
by CAZyme activity (Data Set S7).

Ciprofloxacin treatment had a relatively minor impact on A. muciniphila gene
expression (Data Set S7), likely due to the relatively low impact on the relative
abundance of A. muciniphila (Fig. 4A). In total, ciprofloxacin significantly altered the
expression of 2 and 17 genes on the control and Western diets, respectively (Data Set
S7). On the control diet, A. muciniphila increased the expression of the molecular
chaperone protein DnaK, which is known to play a role in stress responses (81–84). On
the Western diet, several genes related to tryptophan biosynthesis and metabolism
were elevated following ciprofloxacin treatment; however, their biological significance
is unclear at this time (Data Set S7). Additionally, ciprofloxacin induced the differential
expression of a sole chitin or lysozyme glycoside hydrolase, and only on the control diet
(Fig. S3F and Data Set S7). Lastly, an examination of the interaction between diet and
ciprofloxacin treatment indicated that only three genes were significantly altered.
Overall, these data suggest that diet does not have a major impact on the response of
this bacterium to ciprofloxacin within the microbiome (Data Set 7).

In contrast to A. muciniphila, diet had a relatively minor impact on B. thetaiotaomi-
cron gene expression while ciprofloxacin induced extensive changes. Of note, B.
thetaiotaomicron bloomed in response to the Western diet and was significantly
perturbed by ciprofloxacin on this diet but not on the control (Fig. 4C). In total, 42
genes were altered in B. thetaiotaomicron in response to Western diet consumption
(Data Set S7). Of note, this diet increased the expression of an aminoglycoside efflux
pump and a hemin receptor. However, more than half of the genes (52.4%) that
changed in response to diet are of unknown function and are classified as “hypothetical
proteins;” making interpretation difficult. Interestingly, B. thetaiotaomicron did not
exhibit robust changes in CAZyme transcription in response to the Western diet. Like
A. muciniphila, B. thetaiotaomicron did not exhibit any differentially abundant CAZymes,
suggesting that carbohydrate utilization does not drive the diet-induced changes in B.
thetaiotaomicron abundance (Data Set S7). Ultimately, a description of this change will
be dependent on improved functional annotations going forward.

On the control diet, we observed an increased abundance of transcripts encoding
proteins involved in capsular polysaccharide (CPS) biosynthesis and export (Fig. 4D and
Data Set S7). Within B. thetaiotaomicron, CPS production is encoded by a total of 182
genes distributed among eight loci (typically termed cps1 to -8) (85, 86). It is hypoth-
esized that an individual bacterium expresses one of these CPS configurations at any
given time and that these structures play key roles in processes such as nutrient
acquisition and immune evasion (86). Additionally, the two genes with the greatest
increase in expression during ciprofloxacin treatment encoded UDP-glucose
6-dehydrogenase, which plays a key role in the biosynthesis of glycan precursors that
are essential for capsule production in other bacteria (87–89). Together, these findings
may suggest a role for CPS state as a determinant of ciprofloxacin susceptibility in vivo.

On the Western diet, ciprofloxacin elicited profound changes in transcriptional
activity, altering the expression of 278 different genes (Fig. 4E and Data Set S7), and this
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FIG 4 Diet and ciprofloxacin alter gene expression within B. thetaiotaomicron and A. muciniphila. (A) Normalized counts of A. muciniphila in each
experimental group. Data are represented as mean � SEM. Normalized counts were generated with DESeq2 and subsequently used to perform differential

(Continued on next page)
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robust response may be related to the reduction in B. thetaiotaomicron under this
condition (Fig. 4C). Interestingly, expression of many genes involved in the utilization
of host-derived carbohydrates (sialic acid-specific 9-O-acetylesterase, endo-beta-N-
acetylglucosaminidase F1, beta-hexosaminidase) and stress responses (universal stress
protein UspA, thioredoxin) was reduced, mirroring changes seen at the whole-
community level (Fig. 4E and Data Set S7) in response to ciprofloxacin. Conversely, we
observed increased expression of several genes that encode molecular chaperones or
are involved in DNA replication or damage repair (Fig. 4E and Data Set S7). Ciprofloxa-
cin triggers DNA damage via inhibition of DNA gyrase and topoisomerase IV. Thus,
these changes in gene expression may be reflective of the primary mechanism of action
of this antibiotic, are consistent with previously published data, and serve as a valida-
tion for our analysis (19).

Diet appears to have a significant impact on ciprofloxacin-induced transcriptional
changes in B. thetaiotaomicron, modulating the response of 71 genes (Data Set S7). Of
note, Western diet consumption in the context of ciprofloxacin treatment had a
negative impact on several genes involved in the acquisition of nutrients, such as
vitamin B12 and hemin receptors, and transporters of glucose/galactose, hexuronate,
arabinose, and Na� (Data Set S7). Thus, it is likely that the availability of nutrients within
the gut plays a role in the response of these bacteria to antibiotics. Lastly, we examined
the impact that nutrient availability has on the response of B. thetaiotaomicron CAZyme
abundance to ciprofloxacin. We observed notable differences in CAZyme levels be-
tween the diets as well as differences in substrate targets (Fig. S3D and E and Data Set
S7). On the control diet, B. thetaiotaomicron exhibits an increase in polysaccharide
CAZymes, including those targeting pectin, rhamnogalacturonan, �-glucans, and hemi-
celluloses, with a simultaneous decrease in �-fucosidases (Fig. S3D and Data Set S7). On
the Western diet, B. thetaiotaomicron exhibits an increase in lipopolysaccharide (LPS)
biosynthesis and heparan degradation (Fig. S3E and Data Set S7). While interesting,
more work will be required to elucidate mechanisms driving these phenotypes.

DISCUSSION

Previous work has demonstrated that host diet, particularly with respect to sugar
and fiber content, plays a major role in antibiotic-induced microbiome disruption (19,
30). In Western societies, many people consume a diet high in added sugars and fat but
low in host-indigestible fiber. Such a composition is thought to promote the develop-
ment of metabolic syndrome, heart disease, diabetes, and a number of other chronic
conditions (36–46). Furthermore, broad-spectrum antibiotic use and resulting micro-
biome dysbiosis have been associated with a number of similar comorbidities along
with increased susceptibility to opportunistic infections (1, 4, 5, 17, 20–22, 24, 25).
Despite this connection, little work has been done examining how host dietary com-
position impacts the response of the microbiota to antibiotic perturbation. Nutrient
availability and metabolic state are known to be major determinants of antibiotic
susceptibility of bacteria in vitro (19, 27–29, 75, 90–95). Thus, modulating diet and
subsequently nutrient availability to the microbiota would likely alter the sensitivity of
bacteria in these communities to antibiotic therapy.

Using a combined metagenomic and metatranscriptomic approach, we demon-
strate that diet composition has a major impact on the response of the murine gut

FIG 4 Legend (Continued)
abundance testing. (*, P � 0.05; ****, P � 0.0001; Wald test with Benjamini and Hochberg correction). See Data Set S1 for full results. (B) Select differentially
expressed (Benjamini-Hochberg-adjusted P value � 0.05) genes of interest in A. muciniphila within the cecum of vehicle-treated mice consuming the
Western diet. Data are represented as log2 fold change relative to control diet � standard error. See Data Set S7 for full results. (C) Normalized counts of
B. thetaiotaomicron in each experimental group. Data are represented as mean � SEM. Normalized counts were generated with DESeq2 and subsequently
used to perform differential abundance testing. (*, P � 0.05; ****, P � 0.0001; Wald test with Benjamini and Hochberg correction). See Data Set S1 for full
results. (D) Select differentially expressed (Benjamini-Hochberg-adjusted P value � 0.05) genes of interest in B. thetaiotaomicron within the cecum of
ciprofloxacin-treated mice consuming the control diet. Data are represented as log2 fold change relative to vehicle-treated controls � standard error. See
Data Set S7 for full results. (E) Select differentially expressed (Benjamini-Hochberg-adjusted P value � 0.05) genes of interest in B. thetaiotaomicron within
the cecum of ciprofloxacin-treated mice consuming the Western diet. Data are represented as log2 fold change relative to vehicle-treated controls �
standard error. See Data Set S7 for full results. For all analyses, n � 4. ns, not significant.
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microbiome to ciprofloxacin therapy. By utilizing these tools in parallel, we are able to
link transcriptional changes to observed shifts in community structure on each diet.
Using metagenomics, we observed that ciprofloxacin had a differential impact on
community composition in a diet-dependent manner. Specifically, we observed a
significant expansion of the Firmicutes phylum following ciprofloxacin treatment only
on the Western diet. Metatranscriptomic data showed decreased abundance of tran-
scripts from the TCA cycle after antibiotic treatment in both diets, suggesting that this
response is diet independent, which is consistent with previous in vitro findings that
demonstrate a key role for bacterial respiration as a determinant of fluoroquinolone
susceptibility (27, 28, 77, 94, 96–98). Conversely, the impact of ciprofloxacin on the
abundance of various iron and mucin utilization transcripts differed between diets.
Lastly, we detected species-specific transcriptional changes in two important commen-
sal bacteria, B. thetaiotaomicron and A. muciniphila. In addition to detecting changes in
transcript levels that were reflective of stress responses, we also observed differential
expression in transcripts involved in diverse cellular processes such as nutrient acqui-
sition, carbon metabolism, and capsular polysaccharide (CPS) biosynthesis. Together,
our findings supported our hypothesis that the Western diet would modify the meta-
bolic capacity of the gut microbiome and that this change would directly translate to
differential activity in response to ciprofloxacin treatment.

Despite the advantages of a multi-omic approach, there are several drawbacks to
these techniques that complicate interpretation of the results. First, our study was
performed only in female mice. It is now understood that sex-dependent differences
exist in diet metabolism, mucosal immunity, and gut microbiome antibiotic responses,
and as such our findings may not be generalizable to males (96, 99, 100). Another
critical drawback is that the analytical pipelines used to analyze microbiome data are
reliant on existing databases that are largely incomplete: approximately half of all
genes within the human gut microbiome are hypothesized to have no functional
annotation, limiting the ability to accurately profile the transcriptional activity of these
communities (101). Additionally, inferring biological significance of taxonomic changes
is often difficult in many microbiome analyses. 16S amplicon sequencing and shotgun
metagenomics are inherently limited to reporting relative abundances and thus may
fail to fully characterize changes in absolute abundance. Thus, we cannot comment on
how diet or antibiotics change the total number of bacteria found in the gut, nor can
we determine if the bloom in Firmicutes is a result of an increase in colony-forming units
or a reduction of other bacteria relative to Firmicutes. Due to the complex nature of
these communities, it is challenging to ascertain if the observed transcriptional changes
are the result of the direct action of the antibiotic or the indirect effect of changes in
host physiology, nutrient availability, or the disruption of ecological networks within
the microbiome. For example, our transcriptional analysis of B. thetaiotaomicron
showed that this bacterium differentially expressed receptors for both hemin and
vitamin B12, which may suggest that these nutrients play a role in ciprofloxacin toxicity.
Alternatively, it is possible that these transcriptional changes are reflective of increased
availability of these nutrients due to decreased competition from other members of the
microbiota. Further, dietary composition could play a significant role in antibiotic
absorption or sequestration in the gut, which in turn would impact the extent of the
damage caused to the microbiota.

This study builds on recent work that demonstrates that the availability of metab-
olites plays an important role in determining the extent of antibiotic-induced micro-
biome disruption (19). Taken together, these results demonstrate the need to consider
dietary composition in the design and interpretation of experiments focused on
understanding the impact of antibiotics on the microbiota. Previous studies have
demonstrated that dietary changes induce rapid shifts in gut microbiome composition
(32, 34, 43, 56, 97, 98, 102, 103). Therefore, in the long term, dietary modulation could
represent an attractive strategy to reduce the collateral damage to commensal bacteria
and the resulting complications from dysbiosis caused by clinical therapy. Despite these
promising applications, considerable work is required before these findings have direct
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clinical relevance. In particular, the considerable differences in physiology, microbiome
composition, and diet between humans and rodents complicate the direct clinical
relevance of these findings. Furthermore, it is unclear whether short-term dietary
modulation has any long-term consequences on either the host or the microbiome.
Thus, additional research is warranted to fully elucidate how host diet impacts
antibiotic-induced microbiome disruption in humans and how specific dietary formu-
lation will impact these disruptions.

MATERIALS AND METHODS
Animal procedures. All animal work was approved by Brown University’s Institutional Animal Care

and Use Committee (IACUC) under protocol number 1706000283. Four-week-old female C57BL/6J mice
were purchased from Jackson Laboratories (Bar Harbor, ME, USA) and given a 2-week habituation period
immediately following arrival at Brown University’s Animal Care Facility. After habituation, mice were
switched from standard chow (Laboratory Rodent Diet 5001; St. Louis, MO, USA) to either a Western diet
(D12079B; Research Diets Inc., New Brunswick, NJ, USA) or a macronutrient-defined control diet
(D12450B; Research Diets Inc., New Brunswick, NJ, USA) for 1 week (see Data Set S7, Sheet 41, in the
supplemental material). On the 8th day of dietary intervention, mice were given acidified ciprofloxacin
(12.5 mg/kg of body weight/day), or a pH-adjusted vehicle, via filter-sterilized drinking water ad libitum
for 24 h (n � 8 to 12 per treatment group). Water consumption was monitored to ensure equal
consumption across cages. Mice were then sacrificed and dissected in order to collect cecal contents.
Cecal contents were immediately transferred to ZymoBIOMICS DNA/RNA Miniprep kit (Zymo Research,
Irvine, CA, USA) collection tubes containing DNA/RNA Shield. Tubes were processed via vortexing at
maximum speed for 5 min to homogenize cecal contents and then placed on ice until permanent storage
at �80°C.

Nucleic acid extraction and purification. Total nucleic acids (DNA and RNA) were extracted from
samples using the ZymoBIOMICS DNA/RNA Miniprep kit from Zymo Research (R2002; Irvine, CA, USA)
using the parallel extraction protocol per the manufacturer’s instructions. Total RNA and DNA were
eluted in nuclease-free water and quantified using the dsDNA-HS and RNA-HS kits on a Qubit 3.0
fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) before use in library preparations.

16S rRNA amplicon preparation and sequencing. The 16S rRNA V4 hypervariable region was
amplified from total DNA using the barcoded 518F forward primer and the 816Rb reverse primers from
the Earth Microbiome Project (104). Amplicons were generated using 5� Phusion high-fidelity DNA
polymerase under the following cycling conditions: initial denaturation at 98°C for 30 s, followed by 25
cycles of 98°C for 10 s, 57°C for 30 s, and 72°C for 30 s, and then a final extension at 72°C for 5 min. After
amplification, samples were pooled in equimolar amounts and visualized via gel electrophoresis. The
pooled amplicon library was submitted to the Rhode Island Genomics and Sequencing Center at the
University of Rhode Island (Kingston, RI, USA) for sequencing on the Illumina MiSeq platform. Amplicons
were pair-end sequenced (2 � 250 bp) using the 500-cycle kit with standard protocols. We obtained an
average of 106,135 � 49,789 reads per sample.

Analysis of 16S rRNA sequencing reads. Raw 16S rRNA reads were subjected to quality filtering,
trimming, denoising, and merging using the DADA2 package (version 1.8.0) in R (version 3.5.0).
Ribosomal sequence variants were assigned taxonomy using the RDP Classifier algorithm with RDP
Training set 16 using the assignTaxonomy function in DADA2 (105). Alpha diversity (Shannon) and beta
diversity (Bray-Curtis dissimilarity) were calculated using the phyloseq package (version 1.24.2) in R
(version 3.5.0).

Metagenomic and metatranscriptomic library preparation. Metagenomic libraries were prepared
from DNA (100 ng) using the NEBNext Ultra II FS DNA library prep kit (New England BioLabs, Ipswich, MA,
USA) �100-ng input protocol per the manufacturer’s instructions. This yielded a pool of 200- to 1,000-bp
fragments where the average library was 250 to 500 bp. Metatranscriptomic libraries were prepared from
total RNA using the NEBNext Ultra II Directional RNA sequencing prep kit (New England BioLabs, Ipswich,
MA, USA) in conjunction with the NEBNext rRNA depletion kit for human/mouse/rat (New England
BioLabs, Ipswich, MA, USA) and the MICROBExpress kit (Invitrogen, Carlsbad, CA, USA). First, up to 1 �g
of total RNA was treated with recombinant DNase I (rDNase I) and subsequently depleted of bacterial
rRNAs using MICROBExpress per the manufacturer’s instructions. This depleted RNA was then used to
prepare libraries with the NEBNext Ultra II Directional RNA sequencing prep and rRNA depletion kits per
the manufacturer’s instructions. This yielded libraries that averaged between 200 and 450 bp. Once
library preparation was complete, both metagenomic and metatranscriptomic libraries were sequenced
as paired-end 150-bp reads on an Illumina HiSeq X Ten. We sequenced an average of 2,278,948,631
(�2,309,494,556) bases per metagenomic sample and 14,751,606,319 (�3,089,205,166) bases per metatran-
scriptomic sample. One metagenomic sample from the Western diet � vehicle group had an abnormally low
number of bases sequenced (165,000 bp) and was excluded from all subsequent analyses. Following the
removal of this sample, we obtained an average of 2,430,867,540 (�2,306,317,898) bases per metagenomic
sample.

Processing of raw metagenomic and metatranscriptomic reads. Raw metagenomic reads were
trimmed and decontaminated using the kneaddata utility (version 0.6.1) (106). In brief, reads were first
trimmed to remove low-quality bases and Illumina TruSeq3 adapter sequences using Trimmomatic
(version 0.36) using a SLIDINGWINDOW value of 4:20 and an ILLUMINACLIP value of 2:20:10, respectively
(107). Trimmed reads shorter than 75 bases were discarded. Reads passing quality control were

Cabral et al.

July/August 2020 Volume 5 Issue 4 e00317-20 msystems.asm.org 14

https://msystems.asm.org


subsequently decontaminated by removing those that mapped to the genome of C57BL/6J mice using
bowtie2 (version 2.2) (108). Additionally, preliminary work by our group detected high levels of reads
mapping to two murine retroviruses found in our animal facility: murine mammary tumor virus (MMTV,
accession NC_001503) and murine osteosarcoma viruses (MOV, accession NC_001506.1) (19). Raw
metatranscriptomic reads were trimmed and decontaminated using the same parameters. However, in
addition to removing reads that mapped to the C57BL/6J, MMTV, and MOV genomes, we also decon-
taminated sequences that aligned to the SILVA 128 LSU and SSU Parc rRNA databases (109).

Taxonomic classification of metagenomic reads. Trimmed and decontaminated metagenomic
reads were taxonomically classified against a database containing all bacterial and archaeal genomes
found in NCBI RefSeq using Kraken2 (version 2.0.7-beta) with a default k-mer length of 35 (110). Phylum-
and species-level abundances were subsequently calculated from Kraken2 reports using Bracken (version
2.0.0) with default settings (111). The phyloseq package (version 1.28.0) in R (version 3.6.0) was used to
calculate alpha diversity using the Shannon diversity index (112). Metagenomic data were not sub-
sampled prior to analysis.

To perform differential abundance testing, species-level taxonomic output was first filtered to
remove taxa that were not observed in �1,000 reads (corresponding to approximately 0.1% of all reads)
in at least 20% of all samples using phyloseq in R. Differential abundance testing was subsequently
performed on filtered counts using the DESeq2 package (version 1.24.0) using default parameters (74).
All P values were corrected for multiple hypothesis testing using the Benjamini-Hochberg method (113).

Annotation of metatranscriptomic reads using SAMSA2. Trimmed and decontaminated meta-
transcriptomic reads were annotated using a modified version of the Simple Annotation of Metatran-
scriptomes by Sequence Analysis 2 (SAMSA2) pipeline as described previously (19, 63, 114). First, the
Paired-End Read Merger (PEAR) utility was used to merge forward and reverse reads (115). Merged reads
were then aligned to databases containing entries from the RefSeq, SEED Subsystems, and CAZyme
databases using DIAMOND (version 0.9.12) (116–118). The resulting alignment counts were subsequently
analyzed using DESeq2 (version 1.24.0) using the Benjamini-Hochberg method to perform multiple
hypothesis testing correction (19, 63, 113). Features with an adjusted P value of less than 0.05 were
considered to be statistically significant.

Metatranscriptomic analysis using HUMAnN2. To determine the impact of dietary modulation and
ciprofloxacin treatment on gene expression within the gut microbiome, we used the HMP Unified
Metabolic Analysis Network 2 (HUMAnN2, version 0.11.1) pipeline (64). First, metagenomic reads were
taxonomically annotated using MetaPhlan2 (version 2.6.0) and functionally annotated against the
UniRef90 database to generate gene family and MetaCyc pathway-level abundances. To ensure consis-
tent assignment between paired samples, the taxonomic profile generated from the metagenomic reads
was supplied to the HUMAnN2 algorithm during the analysis of the corresponding metatranscriptomic
reads. Metatranscriptomic reads were subsequently annotated as done for metagenomic reads. The
resulting gene family and pathway-level abundance data from the metatranscriptomic reads were
normalized against the metagenomic data from the corresponding sample and smoothed using the
Witten-Bell method (119). Lastly, the resulting RPKM (reads per kilobase per million) values were
unstratified to obtain whole-community level data, converted into relative abundances, and analyzed
using LEfSe (version 1) hosted on the Galaxy web server (120).

Transcriptional analysis of A. muciniphila and B. thetaiotaomicron. A modified version of a
previously published pipeline from Deng et al. was utilized to perform transcriptional analysis of
individual species within the murine microbiome during dietary modulation and antibiotic treatment (19,
80). First, Kraken2 (version 2.0.7-beta) was used to identify the 50 most prevalent bacterial species
present within the metatranscriptomic samples (110). Next, the BBSplit utility within the BBMap package
(version 37.96) was used to extract reads within our metatranscriptomic data set that mapped to these
50 most abundant species (121). Reads from B. thetaiotaomicron, A. muciniphila, and C. scindens were
subsequently aligned to their corresponding reference genomes using the BWA-MEM algorithm (version
0.7.15) (122). Lastly, the featureCounts command within the subread program (version 1.6.2) was used to
analyze the resulting alignment files to generate a count table for differential expression analysis with
DESeq2 (74). All P values were corrected for multiple hypothesis testing with the Benjamini-Hochberg
method (113). Features with an adjusted P value of less than 0.05 were considered to be statistically
significant.

Data availability. The data sets generated and analyzed during this study are available from the
NCBI Sequence Read Archive (SRA) under BioProject accession numbers PRJNA563913 (metagenomics
and metatranscriptomics) and PRJNA594642 (16S rRNA amplicon sequences). Any additional information
is available from the corresponding author upon request.
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