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Neural network interpolation of 
exchange-correlation functional
Alexander Ryabov1,2, Iskander Akhatov1 & Petr Zhilyaev1 ✉

Density functional theory (DFT) is one of the most widely used tools to solve the many-body 
Schrodinger equation. The core uncertainty inside DFT theory is the exchange-correlation (XC) 
functional, the exact form of which is still unknown. Therefore, the essential part of DFT success is based 
on the progress in the development of XC approximations. Traditionally, they are built upon analytic 
solutions in low- and high-density limits and result from quantum Monte Carlo numerical calculations. 
However, there is no consistent and general scheme of XC interpolation and functional representation. 
Many different developed parametrizations mainly utilize a number of phenomenological rules to 
construct a specific XC functional. In contrast, the neural network (NN) approach can provide a general 
way to parametrize an XC functional without any a priori knowledge of its functional form. In this work, 
we develop NN XC functionals and prove their applicability to 3-dimensional physical systems. We 
show that both the local density approximation (LDA) and generalized gradient approximation (GGA) 
are well reproduced by the NN approach. It is demonstrated that the local environment can be easily 
considered by changing only the number of neurons in the first layer of the NN. The developed NN XC 
functionals show good results when applied to systems that are not presented in the training/test data. 
The generalizability of the formulated NN XC framework leads us to believe that it could give superior 
results in comparison with traditional XC schemes provided training data from high-level theories such 
as the quantum Monte Carlo and post-Hartree-Fock methods.

Since its initial formulation, density functional theory (DFT)1,2 has become one of the main methods to solve 
the many-body Schrodinger equation. The source of the major ambiguity in DFT theory is the lack of a universal 
form of the exchange-correlation (XC) functional. Therefore, the success of DFT is mostly determined by the 
improvement of XC representations. The seminal Monte Carlo (MC) simulations of Ceperley and Adler3 have 
resulted in a number of practical local density approximations (LDAs)4–6. The next major progress was produced 
by the introduction of the generalized gradient approximation (GGA), which takes into account local gradients 
of electron density7–9. This greatly enhanced the ability of DFT to describe systems with inhomogeneous elec-
tron densities, such as molecules and surfaces. A number of other functionals have been suggested with various 
degrees of complexity, extending DFT to a broad class of material properties10. The seeking for better functionals 
is still a very active area of research11–14.

Despite the obvious success of the LDA and GGA, their construction is a highly complicated process that 
includes many heuristics steps. Even the XC functional form itself is based on some assumptions about the local 
nature of XC interactions. A large number of analytical conditions to fulfill9 and a commitment to the local func-
tional form make it difficult to incorporate new numerical results from high-level quantum mechanics theories. 
For example, only numerical data from MC simulations of homogeneous electron gas are used to produce LDA6 
and GGA9 functionals. Therefore, much of the progress in quantum MC15,16 and post-Hartree-Fock17 methods 
is not adopted by XC approximations. One possible solution to overcome this problem is to use neural networks 
(NNs) for the interpolation of XC functionals. The NN provides a general way to represent any functional rela-
tionship18 and a highly flexible framework to embody both analytical and numerical training data.

There have been a number of studies in which NNs have been used to describe the potential energy surface 
to speed up electronic structure calculations19–26, while fewer studies have been devoted to developing NN XC 
functionals27–30. NN was firstly utilized to approximate XC potential by Tozer et al.31. This study showed that NN 
approach is flexible and principally applicable to generate XC potentials to be used in the real physical systems 
DFT calculations.
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In this work, we focus on constructing NN XC functionals for 3D systems without any feature engineering. 
We show that even rather simple NN architectures reproduce LDA and GGA XC potentials with satisfactory 
accuracy. To construct the LDA, potential point-to-point mapping is used due to the local idea behind the LDA 
itself. GGA potential region-to-point mapping is achieved by increasing the number of input neurons to take into 
account the local environment.

This paper is outlined as follows: In methods section, we describe the data generation process, NN topologies 
and hyperparameters. In results section, we show that the constructed NN XC potentials have the capability to 
reproduce LDA and GGA results for real physical systems. In conclusion section, we summarize our results and 
consider future research that could be done with the proposed framework, with a particular emphasis on incor-
porating data from high-level methods such as quantum Monte Carlo and post-Hartree-Fock.

Methods
To obtain the training data needed to build the NN XC potential, we carry out calculations of three-dimensional 
(3D) electron gases in a framework of the Kohn-Sham formalism1,2 for potentials of a simple harmonic oscillator 
(SHO). This potential takes the form:

∑=V k xr( ) 1
2 (1)ext
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2

where ki is the spring constant and r = (x1, x2, x3) is the radius vector. Parameter ki pertains to a simple harmonic 
oscillator randomly sampled from intervals 0.01 ≤ ki ≤ 0.9 Ha/a0

2, where a0 is 1 Bohr radius.
The XC potential is evaluated on a 40 × 40 × 40 a0 parallelepiped with 32 × 32 × 32 mesh, which corresponds 

to a spacing of 1.25 a0. Three electrons are placed in this 3D space. For each chosen parameter, DFT calculations 
in real space were performed using the Octopus code32–34. The parametrizations of the LDA exchange-correlation 
functional used include the Slater exchange35,36 and Perdew-Zunger (modified) correlation part5. The GGA 
parameters used include the exchange and correlation parts from9,37. The total number of DFT calculations per-
formed is 150 for each XC parametrization. The ranges of electron density represented by the Wigner-Seitz radius 
rs are [1; 5 × 106] and [1; 108] for LDA and GGA, respectively. One calculation then provides a 32 × 32 × 32 data-
set size for LDA and a 28 × 28 × 28 size for GGA. These yield overall dataset sizes of approximately 5.0 million 
and 3.3 million for LDA and GGA, respectively, but only 3.3 million samples are used for both functionals. 15% 
of all datasets are used for the test set.

The composition of Tensorflow38 and TFLearn39 is utilized for training the NN. The Adam algorithm with 
a learning rate of 0.001 is used for training, with MSE loss. The neural architecture used for the LDA is a fully 
connected network with one input neuron, one linear output neuron and two ReLU40 hidden layers with 1000 
and 500 neurons (see Fig. 1). The only difference in the GGA case is that it takes into account the contribution 
of the local environment, which corresponds to an increase in the number of neurons in the first layer to 125 
(5 × 5 × 5 cube). It should be noted that in principle the local environment could be taken into account explic-
itly by passing gradient and higher order derivatives of electron density. We delegate a computation of electron 
density derivatives to NN itself, making preprocessing step easy and convenient. Considered 5 × 5 × 5 input cube 
gives information to calculate gradient and Jacobian matrix with O(Δr2) and O(Δr) precision correspondingly, 
where Δr is mesh spacing.

Results and Discussion
Multiple neural architectures, including different activation functions, numbers of layers and numbers of neurons, are 
tested. We choose robust and rather simple architectures, namely, the point-to-point and region-to-point architectures 
described above. We also test NNs with only one hidden layer with 1000 neurons, which have poor generalizability and 
result in a larger loss in comparison with the topology used. It should be noted that the topology chosen is heuristics, 
and it is possible that another number of hidden layers and neurons could give better results than those provided in this 
study. The search for the optimal NN topology is a large task that needs to be carried out in future studies.

Figure 1.  Topology of the developed neural network. Two hidden layers are used, with 1000 and 500 neurons, 
respectively. A base 10 logarithm is applied to the input data (electron density). This helps to scale the input data 
to the range that the neural network is most sensitive to.
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Because the density range contains mostly small values, base-10 logarithmic transformation is chosen for 
preprocessing the dataset. This scaling greatly improves the convergence speed of the backpropagation algorithm 
during the NN training cycle. No other preprocessing techniques and feature engineering are applied to the input 
data.

Training of the LDA NN is stopped after 1300 epochs. The NN LDA mean absolute error (MAE) is 0.03 
mHa × Bohr3. The mean minimum and maximum values of Vxc averaged over all configurations used for the LDA 
NN construction are 0.73 and 510 mHa × Bohr3, respectively. Training of the GGA NN is terminated after 320 
epochs. The NN GGA mean absolute error (MAE) is 0.156 mHa × Bohr3. The mean minimum and maximum 
values of Vxc averaged over all configurations used for the GGA NN construction are 0 and 553 mHa × Bohr3, 
respectively. The results of the training for both the LDA and GGA NNs are summarized in Table 1.

The results of applying an NN to the electron density from the test set are presented in Fig. 2. Both XC poten-
tials provided by the LDA and GGA NNs are in good agreement with the numerical calculations made by 
Octopus. The special features of the Vxc form, for example, the “two humps”, are also well reproduced by them. For 
LDA it is also possible to provide comparison between V r( )xc

NN
s  and analytical reference function Vxc(rs). Plotted 

curves are indistinguishable in the range of rs from 1 to 15, the absolute maximum difference is 1.7 mHa × Bohr3 
(see Fig. S1 of supplementary materials).

To test the NN XCs for real physical systems, we consider Si in a diamond structure with 8 basis atoms in 
a cubic cell (lattice constant: 10.2 a0). The numerical calculation is performed on a 10.2 × 10.2 × 10.2 a0 par-
allelepiped with a 14 × 14 × 14 mesh, which corresponds to a spacing of 0.729 a0. The NN LDA and NN GGA 
MAEs are 0.6 and 18.1 mHa × Bohr3, respectively. The NN LDA results are in excellent agreement with the ref-
erence data obtained from Octopus. The NN GGA describes Vxc reasonably well, except for regions with high 

NN LDA NN GGA

Num. of inputs 1 125

Dataset size, 106 3.3 3.3

rs range, Bohr [1; 5 × 106] [1; 1 × 108]

Training/test split (%) 85:15 85:15

Table 1.  General information about NN XC functionals training process.

Figure 2.  The results of applying NN XC functionals to the self-consistent electron density obtained from 
solving the Schrodinger equation in the framework of DFT for 3 electrons in a simple harmonic potential. LDA 
and GGA “true” Vxc results are produced by the Octopus package. All presented images are slices of 3D data in 
the z = 0 plane; (a) - the slice of the electron density obtained in the DFT calculation using LDA XC funtional, 
(b) - the slice of the XC potential obtained in the same as (a) DFT calculation using LDA XC functional, (c) - 
the slice of the NN XC potential obtained from the (a) electron density, (d) - the slice of the electron density 
obtained in the DFT calculation using GGA XC funtional, (e) - the slice of the XC potential obtained in the 
same as (d) DFT calculation using GGA XC functional, (f) - the slice of the NN XC potential obtained from the 
(d) electron density.
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density variations (see Fig. 3). We believe that this is because of the different spacings of the training/test data, 
which lead to the change in electron density gradients perceived by the NN XC.

The NN XC potentials are also tested on slices of 3D data in the plane of the benzene molecule. The numerical 
calculation is performed on a 14 × 14 × 14 a0 parallelepiped with a 44 × 44 × 44 mesh, which corresponds to a 
spacing of 0.318 a0. The NN LDA and NN GGA MAEs are 1.36 and 18.3 mHa × Bohr3, respectively. The overall 
form of the XC potential obtained by Octopus is similar to the form produced by both NNs. In the case of ben-
zene, the MAE is substantially larger than the MAE obtained during the training/test procedure. This is due to the 
high electron density values obtained for benzene, which are not presented in the training/test dataset. Moreover, 
the mesh spacing in the benzene calculation is smaller than that in the dataset, which is important for NN GGA 
potential evaluation. Despite the lack of appropriate input data, both NN XC potentials show an impressive ability 
to generalize the XC functional (see Fig. 4).

The results obtained from the developed NN XC potentials show that NN LDA works well, provided that the 
electron density values are presented in the training/test dataset. Based on Table 2, the NN LDA MAE is rather 
small for silicon and becomes larger for benzene, in which the electron density contains values that are outside the 
training/test density range. It is not surprising that the NN GGA (see Table 3) demonstrates a large MAE for both 
systems considered, as the mesh spacing is not presented in the training procedure. Electron density spatial infor-
mation not included explicitly in the training set leads to the fact that neural networks can take gradients into 
account in a way that cannot be properly generalized. Changing the mesh corrupts the learned representations 
and makes it not quite correct to apply the NN GGA to systems on meshes other than the one learned.

To construct mesh-independent nonlocal functionals such as the GGA, it is necessary to use the coordinates 
of mesh points at which the electron density is defined. This additional information will help the NN evaluate 
mesh-independent gradients or other higher-order variations of electron density and include them in the process 
of the interpolation of the exchange-correlation potential. The type of local coordinate system to use remains the 
subject of further research.

We also implemented both NN LDA and NN GGA potentials in the OCTOPUS package. The xc-energy was 
taken from original LDA5,35,36 and GGA9,37 functionals. A behaviour during self-consistent cycle and an ability to 
perform geometry optimization were tested. Lattice constant of Si was scanned in range from 9.6 to 10.95 Bohr 
with a step 0.15 Bohr. Bond length of a benzene molecule was changed in range from 2.37 to 2.90 Bohr with a step 
0.053 Bohr. All performed self-consistent calculations converged with density tolerance 0.5 × 10−5 Bohr−3. In case 
of LDA dependencies of a total energy on a geometry parameter for both Si and the benzene molecule are in good 
agreement with results obtained for original xc-potentials (see Fig. 5). There is a notable shift to higher values 
for NN GGA dependencies of a total energy on a geometry parameter in comparison with one obtained from 

Figure 3.  The results of applying NN XC functionals to the self-consistent electron density obtained from 
solving the Schrodinger equation in the framework of DFT for a Si diamond structure with 8 basis atoms in a 
cubic cell. The LDA and GGA “true” Vxc results are produced by the Octopus package. All presented images are 
slices of 3D data in the (001) plane defined by the Miller indices; (a) - the slice of the electron density obtained 
in the DFT calculation using LDA XC funtional, (b) - the slice of the XC potential obtained in the same as (a) 
DFT calculation using LDA XC functional, (c) - the slice of the NN XC potential obtained from the (a) electron 
density, (d) - the slice of the electron density obtained in the DFT calculation using GGA XC funtional, (e) - the 
slice of the XC potential obtained in the same as (d) DFT calculation using GGA XC functional, (f) - the slice of 
the NN XC potential obtained from the (d) electron density.
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original GGA xc-potential. We attribute this differences to the fact that total xc-energy was not fully consistent 
with the NN xc-potential. In general, obtained results for self-consistent calculations show that NN xc-potentials 
are converged and can be used in geometry optimization problems.

Figure 4.  The results of applying NN XC functionals to the self-consistent electron density obtained from 
solving the Schrodinger equation in the framework of DFT for a benzene molecule. The LDA and GGA 
“true” Vxc results are procuced by the Octopus package. All presented images are slices of 3D data in the plane 
of the benzene molecule; (a) - the slice of the electron density obtained in the DFT calculation using LDA 
XC funtional, (b) - the slice of the XC potential obtained in the same as (a) DFT calculation using LDA XC 
functional, (c) - the slice of the NN XC potential obtained from the (a) electron density, (d) - the slice of the 
electron density obtained in the DFT calculation using GGA XC funtional, (e) - the slice of the XC potential 
obtained in the same as (d) DFT calculation using GGA XC functional, (f) - the slice of the NN XC potential 
obtained from the (d) electron density.

Figure 5.  The results of applying NN XC potentials in self-consistent cycle. The xc-energy is calculated from 
original functional that was used for training NN; (a) - Si dependence of total energy on lattice parameter 
for NN LDA, (b) - The benzene molecule dependence of total energy on bond length for NN LDA, (c) - Si 
dependence of total energy on lattice parameter for NN GGA, (d) - The benzene molecule dependence of total 
energy on bond length for NN GGA.
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Conclusions
In this work, we developed, verified and tested a neural-network approach to interpolating XC functionals. We 
show that the NN approach gives adequate results for both the LDA and GGA considered. When considering a 
model system based on three electrons placed in a parallelepiped box with an external potential of a 3D simple 
harmonic oscillator, the NN is in perfect agreement with numerical calculations from the test dataset. Moreover, 
the neural network shows a satisfactory error in real 3D physical systems not presented in the training/test data, 
such as silicon and benzene. Despite the lack of generalizability of the NN GGA for both systems, the analysis of 
those results led us to the idea of improving the NN approach by searching for a better type of coordinate system 
for proper representation of the input data. It is important to note that the neural network topology used in this 
work is very simple and has good potential for further improvements.

The main advantage of the NN approach in comparison with other interpolation techniques for XC function-
als is its flexibility to incorporate exchange-correlation data from different sources, such as post-Hartree-Fock and 
quantum Monte Carlo. It is possible that application of the NN to interpolate high-level XC quantum data could 
eliminate many heuristics used in the traditional construction of XC functionals.

Data availability
Optimized NN weights and code to use it are available at https://github.com/AlexanderFreeman/MLXC. 
Implementation of NN potentials into OCTOPUS package is available at https://github.com/AlexanderFreeman/
octopus_nn.
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