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Abstract: Cucurbit[7]uril (CB[7]) is a molecular container that may form host–guest complexes with
platinum(II) anticancer drugs and modulate their efficacy and safety. In this paper, we report our
studies of the effect of CB[7]–oxaliplatin complex and the mixture of CB[7] and carboplatin (1:1) on
viability and proliferation of a primary cell culture (peripheral blood mononuclear cells), two tumor
cell lines (B16 and K562) and their activity in the animal model of melanoma. At the same time,
we studied the impact of platinum (II) drugs with CB[7] on T cells and B cells in vitro. Although
the stable CB[7]–carboplatin complex was not formed, the presence of cucurbit[7]uril affected the
biological properties of carboplatin. In vivo, CB[7] increased the antitumor effect of carboplatin, but,
at the same time, increased its acute toxicity. Compared to free oxaliplatin, its complex with CB[7]
shows a greater cytotoxic effect on tumor cell lines B16 and K562, while in vivo, the effects of the free
drug and encapsulated drug were comparable. However, in vivo studies also demonstrated that the
encapsulation of oxaliplatin in CB[7] lowered the toxicity of the drug.

Keywords: cucurbit[7]uril; carboplatin; oxaliplatin; supramolecular complex; cell viability

1. Introduction

Cucurbit[n]urils (CB[n]s) are barrel-shaped macrocycles that may form host–guest
complexes with drugs and, thus, may be used as nanosized vehicles for drug delivery.
To date, CB[n]s have been reported to form complexes with a variety of pharmaceuti-
cals, including prilocain [1], isoniazid [2], sanguinarine [3], berberine [4], pilocarpine [5],
tuftsin [6], mitoxantrone [7], methotrexate [8] and other peptides or proteins [9]. The effect
of complexation with CB[n] on the biological properties of encapsulated drugs was also
studied and discussed [10]. A particular research interest is focused on complexes of CB[n]
with anticancer drugs based on metal complexes, primarily platinum (II). It is known that
CB[7] forms complexes with various platinum compounds, and complexation can enhance
the antitumor effect of the drug and reduce side effects [11].The most studied system of this
type is the complex of CB[7] (Figure 1) with cisplatin [12]. In vivo studies have shown that
the complexation with CB[n] reduces the toxic side effects of cisplatin [13,14]. In most cases,
complexation with CB[7] does not lead to a decrease in the cytotoxic activity of cisplatin.
Moreover, the complexation with CB[7] overcomes the specific cisplatin resistance in the
cisplatin-resistant A2780/cp70 cell line [15–17]. Plumb et al. show that the cisplatin–CB[7]
complex was as effective against a cisplatin-resistant tumor formed by A2780 cells as free
cisplatin [15]. In a case of cisplatin-resistant A2780/CP70 xenografts, the complex reduced
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tumor growth 1.6-fold compared to free cisplatin. The ability of the cisplatin–CB[7] complex
to overcome resistance in vivo apparently results from the pharmacokinetic effect.
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Figure 1. Molecular structures of CB[7], oxaliplatin and carboplatin.

The effect of encapsulation in CB[n] on the chemical and biological properties of
other widely used platinum drugs, such as oxaliplatin and carboplatin (Figure 1), are yet
insufficiently studied. The encapsulation of oxaliplatin in CB[7] (Figure S2 in Supplemen-
tary) greatly increased the stability of the complex and reduced some side effects, but also
reduced the antitumor activity of the drug (A549 human non-small cell lung, SKOV-3
human ovarian, SKMEL-2 human melanoma, XF-498 human CNS and HCT-15 human
colon cell lines were tested [18]). However, more recent research on HCT116 and HT29
colorectal tumor cell lines [19] showed that the CB[7]–oxaliplatin complex demonstrated
an enhancement of antitumor activity compared to free oxaliplatin and free CB[7], which
appeared to have its own slight antitumor activity towards these cell lines, associated
with CB[7]’s ability to bind spermine, which is essential for tumor growth. Therefore, it is
important to test the antitumor activity of the CB[7]–oxaliplatin complex towards other
cancer cell lines, to search for similar effects.

The inclusion complex of CB[7] with carboplatin has not yet been obtained. DFT
calculations showed that such a complex could hypothetically exist, but the series of CB[n]–
carboplatin complexes would be the least stable among the systems considered in that
study [20]. DFT calculations show that the formation of such a complex is less energetically
advantageous compared to CB[7] complexes with other Pt complexes. Moreover, experi-
mentally, the carboplatin–CB[7] complex has not yet been obtained, despite some recurring
research efforts. However, interaction of CB[7] with carboplatin provokes aquation of the
latter, and one of the products of this process forms a complex with CB[7]. As we found
earlier, CB[7] induces the aquation of carboplatin with the formation of CB[7] inclusion
complex with one of the aquation products [21–23]. This process differs in PBS buffer solu-
tion and RPMI-1640 medium, because CB[7] could bind to some components of the media,
such as amino acids or proteins. However, in all cases, CB[7] had a certain impact on the
carboplatin aquation rate. Thus, we may expect CB[7] to change the biological properties of
carboplatin, even without the formation of a stable CB[7]–carboplatin inclusion complex.

The biological effect of platinum(II) anticancer compounds is not limited to their
ability to inhibit cell proliferation; they also have an immunomodulatory effect [24]. For
instance, cisplatin significantly inhibited the production of IL-2 by PBMCs in vitro [25].
However, effects of other platinum(II) drugs and, moreover, their complexes with CB[7] on
immune cells are not entirely clear. In this study, we investigated the effect of platinum
compounds with CB[7] on the primary culture of immunocompetent cells, PBMCs.

In this paper, we report our studies of the cytotoxic and cytostatic effects of the CB[7]–
oxaliplatin complex and the 1:1 mixture of carboplatin with CB[7] (we selected this ratio
because the complex of carboplatin aquation product with CB[7] was formed in a 1:1
ratio [21]) on the primary cell culture (mononuclear cells of the peripheral blood) and
tumor cell lines B16 and K562, as well as in vivo studies of the CB[7]–oxaliplatin complex
and the 1:1 CB[7] with carboplatin mixture antitumor activity and acute toxicity.
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2. Results and Discussion
2.1. In Vitro Cytotoxicity and Immunomodulating Properties

Oxaliplatin and the CB[7]–oxaliplatin complex exerted a cytotoxic effect on B16 cells
at a concentration of 2.5 µM and above (Figure 2A). At all concentrations, the CB[7]–
oxaliplatin complex reduced the viability of B16 myeloma cells more than free oxaliplatin.
Both oxaliplatin and the CB[7]–oxaliplatin complex suppressed the K562 cells’ viability
at concentrations above 0.001 mM (Figure 2B). At the same time, the CB[7]–oxaliplatin
complex significantly reduced the viability of K562 cells in comparison with free oxaliplatin
in high concentration (0.1 mM). The complexation of oxaliplatin with CB[7] did not lead to
a higher suppression of proliferation (Figure 3).
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Figure 2. Effects of the CB[7] and platinum drugs on cell viability of different cell line. (A) Effects of the oxaliplatin–CB[7]
complex on B16 cells’ viability. (B) Effects of the oxaliplatin–CB[7] complex on K562 cells’ viability. (C) Effects of the mixture
of CB7 and carboplatin (1:1) on viability of B16 cells. (D) Effects of the mixture of CB7 and carboplatin (1:1) on viability
of K562 cells. Data are expressed as the median with interquartile range. * Indicates a significant difference (p < 0.05) vs.
carboplatin. # Indicates a significant difference (p < 0.05) vs. oxaliplatin.

The mixture of CB[7] and carboplatin (1:1) had an enhanced cytotoxic effect on cultures
of murine B16 melanoma in comparison with carboplatin. Thus, carboplatin led to a
decrease in the viability of B16 culture cells at concentrations of 0.2 and 0.3 mM, while
adding CB[7] with carboplatin in a 1:1 ratio caused a decrease in viability at concentrations
of 0.1, 0.2 and 0.3 mM. When cells were cultivated with CB[7] and carboplatin (1:1) at
a concentration of 0.3 mM, the viability of B16 cells was significantly lower than in the
presence of carboplatin at the same concentration (Figure 2C). Additionally, the addition
of CB[7] enhances the cytostatic effect of carboplatin on cells of murine B16 melanoma
(Figure 2A).
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Figure 3. Effects of the CB[7] and platinum drugs on proliferation activity of different cell line. (A) Effects of the oxaliplatin–
CB[7] complex and the mixture of CB7 and carboplatin (1:1) on proliferation of B16 cells. * Indicates a significant difference
(p < 0.05) vs. carboplatin. (B) Effects of the oxaliplatin–CB[7] complex and the mixture of CB7 and carboplatin (1:1) on
proliferation of K562 cells. Abbreviations: carb—carboplatin; ox—oxaliplatin. Data are expressed as the median with
interquartile range.

The presence of carboplatin or its mixture with CB[7] (1:1) suppresses cell viability
of K562 cells at concentrations of 0.1, 0.2 and 0.3 mM (Figure 2D). Significant differences
between the effect of carboplatin and carboplatin with CB[7] at concentrations of 0.1 and
0.3 mM were not observed. However, at a concentration of 0.2 mM, carboplatin with CB[7]
had a lower effect on cell viability than carboplatin only. Carboplatin in mixture with
CB[7] (1:1) inhibited cell proliferation of the K562 line; there were no significant differences
between the effect of carboplatin with CB[7] in a 1:1 ratio and free carboplatin (Figure 3B).
Different effects on B16 and K562 cells also confirmed our hypothesis that CB[7] does not
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enhance the effect of carboplatin on cells that derived from hematopoietic stem cells. It
is known that encapsulation of oxaliplatin in CB[7] can affect the antitumor effect [17,18],
which may depend on the cell lines.

In the study of the cytotoxic effect of the oxaliplatin complex with CB[7] on the
primary culture of PBMCs, it was shown that the complex and free oxaliplatin suppressed
the viability of these cells at concentrations of 0.005 mM and above (Figure 4B). Significant
differences between the effects of oxaliplatin and the complex of oxaliplatin with CB[7]
were not found. Carboplatin and the CB7–carboplatin mixture (1:1) decreased viability
of PBMCs at concentrations of 0.1, 0.2 and 0.3 mM (Figure 4A). Significant differences
between the cytotoxic effect of carboplatin and carboplatin with CB[7] (1:1) on PBMCs were
not observed. Thus, the complexation of platinum compounds with CB[7] did not enhance
the cytotoxic effect on PBMCs. According to the literature, oxaliplatin has quite high
cytotoxicity compared to normal colorectal cells, while oxaliplatin–CB[7] has significantly
lower cytotoxicity [18]. Therefore, the cytotoxicity of oxaliplatin for non-cancer cells was
not enhanced by encapsulating it with CB[7], thus improving the biosafety of oxaliplatin
during the delivery process.
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Based on the effect of carboplatin with CB[7] on PBMCs and K562, we suggested
that adding CB[7] did not enhance the cytotoxic effect of carboplatin on cells that derived
from hematopoietic stem cells. To confirm this hypothesis, we used PBMCs obtained
from patients with B-cell lymphomas; most of the cells (60.3 ± 5.11% of PBMCs) in the



Int. J. Mol. Sci. 2021, 22, 7337 6 of 12

primary culture were tumor cells (Figure 5). It was found that carboplatin with CB[7] (1:1)
slightly reduced the viability of PBMCs from patients than carboplatin alone. Therefore, it
seems that CB[7] reduces the toxic effect of carboplatin on healthy immune cells, as well
as on tumor cells developed from immunocompetent cells; the mechanism of such action
requires further study.
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Oxaliplatin and oxaliplatin–CB[7] complex, as well as carboplatin and mixture of
carboplatin with CB[7] (1: 1), did not affect the spontaneous proliferative activity of the
PBMCs, but at the same time, they suppressed the anti-CD3-induced proliferative response,
indicating an immunosuppressive effect on activated lymphocytes (Tables 1 and 2).

Table 1. The relative number and level of spontaneous proliferation of various subpopulations of PBMCs.

CD3+CD4+ CD3+CD4− CD19+

Frequency (%) Dividing Cells (%) Frequency (%) Dividing Cells (%) Frequency (%) Dividing Cells (%)

control 49.8 (47.3–59.0) 1.8 (0.9–2.4) 25.3 (19.1–31.7) 3.1 (0.9–3.9) 7.0 (3.5–7.6) 2.4 (1.2–3.4)
CB[7]
0.3 M 53.7 (45.3–62.7) 2.3 (1.0–2.4) 26.6 (20.0–32.0) 3.3 (1.1–4.1) 4.7 (2.7–6.3) 2.7 (0.9–4.0)
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carboplatin:CB[7] 1:1
0.3M 60.3(52.8–66.6) *# 2.5 (1.4–3.7) 27.6 (22.1–33.1) 4.3 (1.6–4.7) 5.9 (1.7–7.8) 3.1 (0.6–3.5)

CB[7]
0.1 M 52.7 (42.9–55.5) 2.4 (1.2–3.0) 27.4 (25.7–31.2) 4.0 (1.1–7.0) 5.6 (2.6–6.5) 2.8 (1.9–3.5)

oxaliplatin (0.1 M) 71.6 (63.5–76.6) * 2.5 (1.1–3.9) 21.4 (21.1–22.9) * 4.6 (1.9–8.8) 1.2 (0.9–4.1) * 1.4 (0.6–2.1) *
CB[7]–oxaliplatin 0.1 M 73.4 (69.1–77.2) * 2.4 (1.1–4.1) 21.6 (17.9–23.2) * 5.1 (1.6–6.6) 1.8 (1.2–2.8) * 2.0 (1.0–2.5)

* Indicates a significant difference (p < 0.05) vs. control; # Indicates a significant difference (p < 0.05) vs. carboplatin.

Table 2. The relative number and level of anti-CD3 stimulated proliferation of various subpopulations of PBMCs.

CD3+CD4+ CD3+CD4− CD19+

Frequency (%) Dividing Cells (%) Frequency (%) Dividing Cells (%) Frequency (%) Dividing Cells (%)

control 51.3 (41.2–59.2) 28.7 (19.0–37.3) 29.9 (23.8–45.4) 30.6 (27.2–32.6) 5.4 (2.0–6.2) 5.3 (4.1–14.9)
CB[7]
0.3 M 51.5 (41.1–59.9) 27.4 (12.6–29.8) 30.2 (23.2–50.5) 28.9 (22.8–30.1) 4.2 (1.7–5.9) 5.3 (3.2–9.6)

carboplatin
0.3 M 48.7 (36.8–50.8) 2.7 (2.4–5.1) * 24.3 (20.2–27.9) 4.2 (3.6–7.8) * 4.9 (1.9–10.1) 2.8 (1.1–4.0) *

carboplatin:CB[7] 1:1
0.3M 50.4 (40.5–65.8) # 2.5 (1.5–4.8) * 22.1 (19.4–28.6) * 4.8 (3.1–6.7) * 3.1 (1.5–9.1) 1.7 (1.1–2.5) *

CB[7]
0.1 M 46.3 (41.9–55.5) 21.1 (17.1–30.1) 32.0 (29.6–45.0) 30.0 (27.4–30.6) 4.0 (2.3–6.9) 4.9 (4.0–6.4)

oxaliplatin 0.1 M 63.8 (60.9–69.7) * 2.8 (1.4–3.9) * 19.8 (16.4–21.4) * 5.5 (2.4–9.4) * 1.5 (1.1–3.7) * 2.8 (1.4–3.7)
CB[7]–oxaliplatin 0.1 M 65.0 (62.4–71.6) * 2.8 (1.6–4.6) * 19.9 (17.8–27.5) * 5.7 (2.4–7.2) * 1.9 (0.9–2.2) * 3.6 (2.7–4.3) †

* Indicates a significant difference (p < 0.05) vs. control; # Indicates a significant difference (p < 0.05) vs. carboplatin; † Indicates a significant
difference (p < 0.05) vs. oxaliplatin.
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Interestingly, the presence of carboplatin with CB[7] increased the relative number
of CD3+CD4+ lymphocytes (T helpers) in both non-activated and activated cultures. At
the same time, the number of cytotoxic T lymphocytes decreased proportionally in the
activated culture. In addition, addition of oxaliplatin or oxaliplatin–CB[7] complex affected
the subpopulation of PBMCs, causing an increase in the relative number of T-helper cells
and reducing the number of killer T cells, both without activation and with activation by
anti-CD3 antibodies. No significant differences were found in T cells after treatment of
PBMCs with oxaliplatin and the oxaliplatin–CB[7]complex. These results indicate that
CB[7] does not affect the immunosuppressive properties of platinum drugs.

2.2. In Vivo Antitumor Activity and Side-Effect Evaluation

No statistically significant differences were observed between the survival rates of the
groups that were treated by platinum drugs with or without CB[7] (Figure 6). It should be
noted that in the first days after the administration of carboplatin with CB[7], the death
rate of mice was associated not with the size of the tumor, but with the acute toxic effects,
and therefore the survival curve does not reflect only the antitumor properties of these
substances. Moreover, a similar toxic effect was not observed in groups of mice that received
injections of only carboplatin or CB[7], which means that this effect can be explained by
the synergistic effect of the components. Perhaps the synergistic effect is caused by higher
toxicity of CB[7] complexes with products of the aquation of carboplatin, which are formed
in vivo. During aquation, carboplatin decomposes into 1,1-cyclobutanedicarboxylic acid
and cis-PtL2(NH3)2 (L = H2O or OH−), so it loses the leaving group and forms an inclusion
complex with CB[7] [23]. Loss of the leaving group can increase the reactivity rate of
products of the aquation of carboplatin with nucleophiles. Additionally, CB[7] significantly
increased the survival rate compared to the control group treated with PBS only. At the
same time, there was a significant decrease in tumor size in the group after administration
of carboplatin with CB[7] compared to mice treated with carboplatin alone (Figure 7A).
Therefore, the addition of CB[7] to carboplatin can lead to both an increase in acute toxicity
and an increase in the antitumor effect of the drug, which requires further study when
using lower doses.

The complex of oxaliplatin with CB7 did not demonstrate acute toxicity during the
treatment of mice. Significant differences between the tumor size in the group of mice
receiving injections of oxaliplatin and the group with the CB[7]–oxaliplatin treatment
were not observed (Figure 7B). The comparable effect of oxaliplatin with CB[7] and free
oxaliplatin is consistent with published data, which demonstrated that the complex of
platinum preparations with CB[7] had a similar antitumor effect compared to the free
drug [15,17].
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Platinum drugs are known to have many side effects, including weight loss. It was
shown that the CB[7]–oxaliplatin complex caused significantly lower weight loss in mice
compared to free oxaliplatin on day 4 after treatment (Figure 8B), which indicates a decrease
in side effects. It is known that oxaliplatin-treated mice displayed reduced weight gain,
which was associated with myotoxicity [26]. Additionally, oxaliplatin-treated mice had
a significant decrease in body weight compared to the naïve mice [27]. According to
published data, a similar effect was already observed in studies of antitumor properties
of the CB[7]–oxaliplatin complex in the HCT116 xenograft tumor model [28]. The higher
safety is probably caused by the host–guest interaction between oxaliplatin and CB[7]. For
carboplatin with CB[7], on the contrary, there was a tendency to decrease the mouse’s body
weight compared to carboplatin on the day after the administration of drugs (Figure 8A);
however, later the difference was leveled. Perhaps this effect is associated with increased
toxicity of CB[7] with carboplatin.
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Thus, the presence of CB[7] has different effects on different platinum drugs. For
carboplatin, addition of CB[7] increased the antitumor effect, but also increased the toxicity
of the drug. For oxaliplatin, CB[7] did not enhance the antitumor effect of the drug, but at
the same time, it can reduce the side effects of oxaliplatin.
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3. Materials and Methods
3.1. Materials

CB[7] was synthesized according to the standard protocol described in [29]. Carbo-
platin was purchased from Tokyo Chemical Industry Co., (Tokyo, Japan), and oxaliplatin
was purchased from Biomol (Hamburg, Germany). RPMI-1640 medium and phosphate-
buffered saline (PBS) and L-glutamine were obtained from Biolot (Saint Petersburg, Russia).
HyClone fetal calf serum was obtained from GE Healthcare (Chicago, IL, USA).

The inclusion complex of CB[7] and oxaliplatin was synthesized according to the
protocol in [17], with some modifications. Although in [18] it was suggested that the
mixture of oxaliplatin and CB[7] should be heated at 100 ◦C for one day, we have found
that such a long heating may lead to partial decomposition of the initial reagents. Therefore,
we stopped the heating after 6 h and obtained the water solution of the oxaliplatin–CB[7]
complex. The formation of the complex and the absence of impurities in the solution
were confirmed with 1H NMR spectroscopy (Figure S3 in Supplementary). The diffusion-
ordered 2D NMR spectra were also registered to confirm the formation of the complex
(Figure S5 in Supplementary). The diffusion rate is ~2 × 10−12 which is much lower
than the diffusion rate of free CB[7] [30], meaning that the complex is bigger and heavier
than free CB[7]. All NMR experiments were performed on a Bruker Avance III 500 MHz
spectrometer at room temperature (25 ◦C). Behavior and stability of the CB[7]–oxaliplatin
complex in RPMI-1640 was thoroughly studied in [31].

3.2. Cell Cultures

Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples using
a standard Ficoll-Urografin density gradient method (d = 1.077 g/cm3) [32]. Blood samples
were obtained from 21 healthy individuals (mean age: 36.0 ± 2.48 years) and 10 patients
with B-cell lymphomas, including 6 patients with chronic lymphocytic leukemia and 4
patients with mantle cell lymphoma (mean age: 63.1 ± 2, 14 years). Informed written
consent was obtained from all subjects. This study was approved by the Ethics Committee
of RIFCI.

The chronic myelogenous leukemia K562 cell line was obtained from N.N. Blokhin
NMRCO (Moscow, Russia). The murine melanoma cell line B16 was kindly provided by
Dr. G.V. Seledtsova (Laboratory of Cellular Biotechnologies RIFCI, Novosibirsk, Russia).
Cells were cultured in RPMI-1640 medium with 10% FBS in 25 cm2 flasks at 37 ◦C under
5% CO2 in air with high humidity.

Cells were cultured at 37 ◦C in a 5% CO2 humidified atmosphere for 2 days (B16 and
K562 cells) or 3 days (PBMC). The cultures were performed in the presence of the CB[7]–
oxaliplatin complex or carboplatin in mixture with CB[7] (1:1) in different concentrations. As a
control, we used non-treated PBMCs, PBMCs cultured with oxaliplatin, carboplatin or CB[7].

3.3. Cell Viability Assay

The cytotoxic effect was evaluated in cultures after 48 (B16, K562) or 72 h (PBMC)
using the MTT assay for adherent cell lines and WST-1 assay for suspension cultures. B16
and K562 cells (104 cells/well) and PBMCs (105 cells/well) were cultured in a 96-well plate
(Costar, UK). As a positive control, 10% DMSO was used.

3.4. Cell Proliferation Assay

B16 and K562 cells were seeded at 1.5 × 105 cells/well into a flat-bottomed 24-well
plate (Costar, UK). PBMCs (1 × 106/mL) were cultured using 48 flat-bottom culture plates
(Costar, UK); anti-CD3 antibodies (1 µg/mL) and recombinant human IL-2 (100 units/mL)
were added for the PBMCs’ activation. To evaluate cell proliferation, cells were labeled
with 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) (0.004 mM) (Invitrogen,
Eugene, OR, USA) before cultivating. Then, cells were harvested and washed in 1 mL of
phosphate-buffered saline containing 0.5% FBS. In addition, to evaluate the proliferation of
lymphocyte subsets, PBMCs were stained with monoclonal anti-human antibodies (CD45-
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PE/Cy7, CD3-APC, CD4-PerCP/Cy5.5, CD19-PE, all from BioLegend, (San Diego, CA,
USA)). Analyses were performed using a FACSCantoII (Becton Dickinson, NJ, USA) and
FACSDiva software (Becton Dickinson, NJ, USA).

3.5. In Vivo Studies

Antitumor effects of oxaliplatin and carboplatin with CB[7] in vivo were evaluated
in a murine B16 cell line-based melanoma model. Wild-type female C57BL/6 mice were
obtained from Goldberg Research Institute of Pharmacology and Regenerative Medicine
(Tomsk, Russia). The experiments were conducted according to the institutional ethi-
cal guidelines for animal experiments. The B16 cells were syngeneic with the C57BL/6
mice used for the vaccination. B16 cells were subcutaneously injected under the scruff of
C57BL/6 mice (105/mice) to allow tumor growth. Animals were randomly divided into
7 groups with 8-10 mice in each group, and treatment was started twelve days later. Mice
were treated with a single intraperitoneal injection of PBS (group 1); 3 mg/kg of oxaliplatin
in PBS (group 2); CB[7] in PBS in equivalent molar concentration to oxaliplatin (group
3); oxaliplatin-CB7 complex in equivalent molar concentration to oxaliplatin (group 4);
120 mg/kg of carboplatin in PBS (group 5); CB[7] in PBS in equimolar quantity of carbo-
platin (group 6), and CB7 with carboplatin (group 7). Mice were euthanized when the
tumor size reached >15 mm in mean diameter.

3.6. Statistical Analysis

All experimental data were expressed as means ± standard error of the mean (SEM)
or median (25th-75th percentile). Differences between groups were evaluated for statistical
significance using a Student’s t-test or Mann–Whitney test when the data were not normally
distributed. A p-value < 0.05 was regarded as the minimum criteria for statistical signifi-
cance. For in vivo studies, the Kaplan–Meier method and log-rank test using GraphPad
Prism software package version 5.0 (GraphPad Software, Inc., San Diego, CA, USA) were
used to compare the survival rates between groups. Differences were considered significant
if p < 0.05.

4. Conclusions

We studied the biological properties of the CB[7]–oxaliplatin inclusion complex and
carboplatin in mixture with CB[7] at a 1:1 ratio. In both cases, CB[7] did not enhance the
cytotoxic effect of the platinum(II) drugs on the primary cell culture (peripheral blood
mononuclear cells) in vitro. The CB[7]–oxaliplatin complex had a greater cytotoxic effect on
the tumor cell lines B16 and K562 in vitro, compared to free oxaliplatin. However, in vivo
studies did not show a significant difference between the CB[7]–oxaliplatin complex and
free oxaliplatin antitumor effects. At the same time, complexation with CB[7] reduced the
acute toxicity of the oxaliplatin in vivo.

Despite the fact that carboplatin does not form a stable inclusion complex with CB[7],
we found that the addition of this nanosized cavitand affects the biological properties
of carboplatin (Table 3). This fact could be related to the complexation of carboplatin
metabolites with CB[7] and an enhancement of their biological properties, to the previously
observed ability of CB[7] to induce carboplatin aquation [20] or, probably, to the encapsu-
lation of some medium components that may affect the carboplatin’s biological activity.
Thus, the mixture of carboplatin with CB[7] has a more pronounced antitumor effect on the
murine B16 melanoma cell line than free carboplatin. However, the tumor cells with a bone
marrow precursor origin (K562) may be more viable when cultivated with carboplatin in
mixture with CB[7]. In addition, CB[7] also significantly increased the acute toxicity of the
carboplatin in vivo.



Int. J. Mol. Sci. 2021, 22, 7337 11 of 12

Table 3. Effects of CB[7] on the biological properties of platinum drugs.

Carboplatin Oxaliplatin

Increased cytotoxicity for tumor cell lines + ++
Deceased cytotoxicity for non-tumor cells 0 0
Decreased immunosuppression in vitro 0 0

Increased antitumor activity in vivo + 0
Decreased side effects in vivo − +

++ (very beneficial, strong effects), + (moderate effects), 0 (no influence), − (not valuable, impairment of biological
effects).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22147337/s1.
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