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ABSTRACT
Background  Hepatocellular carcinoma (HCC) remains 
a leading cause of cancer-related mortality worldwide, 
with early detection playing a crucial role in improving 
survival rates. Artificial intelligence (AI), particularly in 
medical image analysis, has emerged as a potential 
tool for HCC diagnosis and surveillance. Recent 
advancements in deep learning-driven medical imaging 
have demonstrated significant potential in enhancing 
early HCC detection, particularly in ultrasound (US)-based 
surveillance.
Method  This review provides a comprehensive analysis 
of the current landscape, challenges, and future directions 
of AI in HCC surveillance, with a specific focus on the 
application in US imaging. Additionally, it explores AI’s 
transformative potential in clinical practice and its 
implications for improving patient outcomes.
Results  We examine various AI models developed for 
HCC diagnosis, highlighting their strengths and limitations, 
with a particular emphasis on deep learning approaches. 
Among these, convolutional neural networks have shown 
notable success in detecting and characterising different 
focal liver lesions on B-mode US often outperforming 
conventional radiological assessments. Despite these 
advancements, several challenges hinder AI integration 
into clinical practice, including data heterogeneity, a 
lack of standardisation, concerns regarding model 
interpretability, regulatory constraints, and barriers to 
real-world clinical adoption. Addressing these issues 
necessitates the development of large, diverse, and 
high-quality data sets to enhance the robustness and 
generalisability of AI models.
Conclusions  Emerging trends in AI for HCC surveillance, 
such as multimodal integration, explainable AI, and real-
time diagnostics, offer promising advancements. These 
innovations have the potential to significantly improve the 
accuracy, efficiency, and clinical applicability of AI-driven 
HCC surveillance, ultimately contributing to enhanced 
patient outcomes.

INTRODUCTION
Hepatocellular carcinoma (HCC) is a 
major global health concern, being the 
most common primary liver cancer and the 
second leading cause of liver-related deaths 
worldwide.1 In 2015, the Asia-Pacific region 
accounted for 72.7% of HCC-related deaths,2 
followed by 67% of new cases in 20193 and 
63% of global cases in 2021.1 Key risk factors 
include chronic hepatitis B virus (HBV) and 
hepatitis C virus (HCV) infections, excessive 
alcohol use, metabolic dysfunction-associated 
steatotic liver disease (MASLD), and aflatoxin 
B1 exposure.4 These vary geographically. In 
Western nations, the HCC aetiological land-
scape is shifting, with alcohol-associated liver 
disease projected to become the leading 
cause, and MASLD surpassing HCV.5

SUMMARY BOX
	⇒ Conventional ultrasound-based hepatocellular car-
cinoma (HCC) surveillance has limited sensitivity, 
particularly for early-stage tumors, and remains 
highly operator-dependent, leading to variability in 
detection accuracy.

	⇒ Artificial intelligence (AI), especially deep learning 
models, enhances the detection and characteriza-
tion of HCC through imaging techniques, such as 
ultrasound, CT, and MRI.

	⇒ AI-driven systems integrate imaging data with 
clinical and laboratory findings, enabling a more 
comprehensive risk assessment and personalized 
surveillance strategies.

	⇒ Despite its promise, the adoption of AI in HCC 
surveillance faces challenges, including data het-
erogeneity, algorithm standardization, and ethical 
considerations, necessitating further validation in 
real-world settings.
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Surveillance is crucial for early HCC detection, 
improving curative treatment chances and long-term 
survival.6 International liver societies recommend 
surveillance for patients with cirrhosis and those at risk 
of non-cirrhotic chronic HBV infection.7–11 Abdominal 
ultrasound (US) is the preferred surveillance tool due to 
its affordability and non-invasive nature,12 13 though its 
accuracy declines in patients with obesity or MASLD.

Artificial intelligence (AI) is revolutionising HCC 
surveillance by improving imaging-based detection. 
Deep learning (DL) models, especially convolutional 
neural networks (CNNs), excel at analysing US, CT, and 
MRI scans for early lesion identification.14 AI reduces 
variability and improves sensitivity and specificity, thereby 
enhancing early detection. It can integrate multimodal 
data—including imaging, clinical history, and laboratory 
results—for comprehensive risk stratification in patients 
at high HCC risk. Given these advancements, this review 
provides an overview of AI’s role in enhancing HCC 
surveillance.

CURRENT TOOLS AND BENEFITS OF HCC SURVEILLANCE
HCC surveillance enables early detection of liver lesions, 
facilitating timely treatment and improved outcomes. 
Imaging modalities, such as US, CT, and MRI, are crucial 
for HCC surveillance,15 16 particularly for individuals at 
high risk, including those with cirrhosis, chronic HBV, 
HCV, or other underlying liver diseases.12 17 18

Ultrasound as a primary tool
B-mode US remains the primary imaging modality 
for HCC surveillance due to its cost-effectiveness, non-
invasiveness, and ability to provide real-time diagnostic 
information.5 It is typically used to continuously monitor 
at-risk patients to detect the emergence or progression 
of liver lesions. US is recommended by leading liver soci-
eties, including the American Association for the Study 
of Liver Diseases (AASLD)18 and the European Associa-
tion for the Study of the Liver (EASL),19 for surveillance 
in high-risk populations. Major guidelines recommend 
US-based surveillance every 6 months in these individ-
uals. However, the effectiveness of US can be influenced 
by several factors, including equipment quality, operator 
skill, and patient characteristics. For instance, obesity or 
advanced cirrhosis may limit the visualisation of hepatic 
lesions, reducing diagnostic accuracy. In cases where 
US findings are inconclusive or require a more detailed 
assessment, CT and MRI are preferred due to their higher 
sensitivity in detecting small lesions.12 17 18

In addition to conventional B-mode imaging, contrast-
enhanced US (CEUS) expands diagnostic effectiveness 
further by using microbubble-based contrast agents. 
They are typically composed of low-solubility gases, such 
as sulfur hexafluoride or perfluorocarbons surrounded 
by a shell.20 Intravenous injection increases the visuali-
sation of blood circulation and enhances the signal-to-
noise ratio of B-mode images. CEUS also uses non-linear 

oscillations at harmonic frequencies, with significantly 
improved contrast-to-tissue ratio and dynamic imaging 
by arterial, portal venous, and late phases.21 Hypoen-
hancement at this stage can image malignant lesions due 
to reduced Kupffer cell density, representing a valuable 
tool in discriminating between benign and metastatic 
liver lesions. CEUS is thus a valuable and now generally 
accepted modality in the diagnosis of focal liver lesions 
(FLLs) and is particularly valuable when conventional US 
yields suboptimal images. However, CEUS is not currently 
recommended as a routine surveillance of HCC due to 
limited generalisability, need for special contrast agents, 
and its dependence on skilled radiologists.22

CT and MRI for detailed assessment
CT and MRI are valuable tools for detailed assessment of 
liver lesions suspected to be HCC. These modalities offer 
superior contrast and spatial resolution compared with 
US, allowing for better differentiation between benign 
and malignant growths.13 They are particularly useful for 
identifying small tumours and distinguishing HCC from 
other types of liver nodules. CT can visualise both the 
arterial and venous phases of liver perfusion, providing 
critical insights into hepatic blood flow and abnormalities 
associated with HCC. Meanwhile, MRI, particularly with 
contrast agents, exhibits enhanced sensitivity in detecting 
small lesions.17 Additionally, MRI is often preferred over 
CT in certain cases as it does not involve radiation expo-
sure.23

Challenges in imaging interpretation
Interpreting imaging results poses significant challenges 
due to variations in lesion appearance and the presence of 
underlying liver conditions, such as cirrhosis or steatosis, 
which can obscure malignant features.24 These under-
lying conditions can significantly alter the liver architec-
ture, making it difficult to differentiate between malig-
nant and benign lesions. The accuracy of surveillance 
imaging relies heavily on the experience and expertise of 
the radiologist, particularly when dealing with complex 
cases or patients with underlying liver conditions.25 Small 
HCCs are especially difficult to detect, particularly in 
cirrhotic livers, where fibrosis and regenerative nodules 
can obscure tumour visualisation. US, in particular, may 
be unable to detect liver nodules <1 cm in size. While 
MRI offers high sensitivity for detecting small HCCs, it 
carries the risk of false positives, particularly in cirrhotic 
livers, where non-malignant lesions can mimic HCC.26

OVERVIEW OF AI IN HEALTHCARE
AI is revolutionising healthcare by enhancing medical 
diagnoses, improving treatment strategies, and opti-
mising clinical workflows.27–29 AI algorithms can process 
and learn from vast amounts of complex data, leading 
to more accurate diagnoses, precise measurements, and 
improved predictions of disease progression and treat-
ment outcomes.27
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AI terminology
AI is a multidisciplinary field dedicated to developing 
computational systems capable of performing tasks that 
traditionally require human cognitive functions, such as 
learning, reasoning, and problem-solving.27–29 As illus-
trated in figure 1, machine learning (ML) is a subset of 
AI that involves algorithms learning patterns from data to 
make data-driven decisions. An important subset of ML is 
neural networks (NNs), which are computational models 
inspired by the biological structure and function of the 
human brain. As NNs increase in complexity, they form 
the foundation of deep learning, which uses a multilay-
ered architecture to autonomously extract hierarchical 
features from data.30 Among DL techniques, CNNs have 
proven to be particularly efficient in processing visual 
data. CNNs are widely used in medical imaging, where 
they perform important tasks, such as classification 
(distinguishing tissue types or lesion features), detection 

(localising anomalies in images), and segmentation 
(delineating structures such as lesions or organs).

Recent advances include multi-modal systems that 
integrate diverse data sources, such as imaging, clinical 
records, genomics, and laboratory results, to create a 
unified diagnostic perspective tailored to individual risk 
profiles.31 The next frontier is the incorporation of foun-
dation models and large language models, pretrained 
on extensive multimodal data sets to offer even deeper 
insights, thereby enabling personalised healthcare 
delivery by analysing and synthesising complex informa-
tion into targeted clinical recommendations.32

Benefits of AI for HCC surveillance
DL models, particularly CNNs, have shown consider-
able promise in analysing medical images and detecting 
abnormalities in modalities such as X-rays, US, CT and 
MRI.28 30 These models increasingly support clinicians in 

Figure 1  Overview of the hierarchical relationship among key concepts in artificial intelligence (AI). The outermost circle 
represents AI, encompassing all methodologies that enable machines to imitate human intelligence. Machine learning (ML), 
a subarea of AI, focuses on algorithms that learn patterns from data without explicit programming. Deep learning (DL), a 
specialised part of ML, leverages multilayer neural networks such as convolutional neural networks (CNNs) to extract complex 
details from high-dimensional data, including medical images. Generative AI and large language models (LLMs) extend 
these capabilities by generating new data and understanding structured and unstructured data, including text and images 
(multimodal processing). The right side of the diagram illustrates different neural networks, from simple to complex systems 
that process multiple types of data and LLMs designed for advanced multimodal applications.
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decision-making, thereby improving diagnostic accuracy 
and efficiency.28–30 Beyond diagnostics, AI techniques 
improve image quality, reduce noise, and reconstruct 
images from lower-dose scans or different imaging modal-
ities. Additionally, AI facilitates precise measurements 
and quantitative assessments of anatomical structures or 
lesions, aiding in tumour size tracking and volume esti-
mation over time.33 This enables more accurate disease 
staging and better treatment planning. Furthermore, 
AI models integrate imaging with clinical variables to 
predict disease progression and treatment outcomes.

In diagnosing liver diseases, AI can be used to detect 
liver fibrosis, differentiate FLLs, predict the prognosis of 
chronic liver diseases, and diagnose MASLD.34–36 AI can 
assist in assessing the severity of liver fibrosis in chronic 
liver diseases, including viral hepatitis, using US, thereby 
identifying patients at a higher risk of disease progres-
sion and prioritising those requiring closer monitoring 
or more aggressive treatment.34 36 Additionally, AI can 
locate and classify liver lesions as benign or malignant 
using CEUS and other imaging techniques. These 
insights help guide biopsy indications, inform interven-
tional planning, and improve diagnostic accuracy in HCC 
cases.35–37 Therefore, AI plays a crucial role in diagnosing 
and assessing MASLD, which is essential for early detec-
tion and timely treatment to prevent the progression of 
severe liver disease.36 38

Several studies have shown that AI systems outperform 
clinicians in interpreting imaging data.14 33 35 37 39 40 One 
of AI’s major advantages in healthcare is its ability to 
minimise diagnostic variability.37 41 Human interpretation 
of medical images is influenced by various factors, such 
as clinician experience and patient-specific variables. AI 
enables consistent and objective analysis of imaging data, 
contributing to more reliable diagnoses.34

AI algorithms have been explored for HCC detec-
tion using various imaging modalities, including US, 
CT, and MRI.35 38 Each modality is suited to different 
clinical scenarios.17 CT and MRI generally offer higher 
sensitivity and specificity for detecting HCC than 
US.12 13 35 US is often the first-line imaging modality due to 
its cost-effectiveness and real-time diagnostic capabilities. 
However, detecting HCC via US can be challenging, espe-
cially in the presence of cirrhosis or other liver diseases 
that alter the liver structure. Additionally, obesity and 
technical limitations—such as US equipment quality and 
operator experience—can affect US sensitivity.42 Studies 
have shown that AI algorithms improve the detection of 
HCC in US images, which is a key factor in early cancer 
diagnosis and improved patient outcomes.14 35 37 41 42 CT 
scans provide detailed cross-sectional images of the liver, 
allowing for better visualisation of the fine details of liver 
anatomy and pathology than US.35 Research has shown 
that AI can detect HCC on CT scans with high accuracy, 
even in early stages, facilitating timely interventions and 
potentially curative treatments.14 35 43 MRI, known for 
its superior soft-tissue contrast, is particularly beneficial 
for characterising liver lesions.35 39 AI models applied 

to MRI data can detect and differentiate complex liver 
lesions—including HCC, cysts, and metastatic tumours—
improving diagnostic accuracy, particularly in patients 
with cirrhosis or steatosis.38

AI algorithms can analyse electronic health record 
data to identify individuals at high risk of HCC, thereby 
enhancing surveillance strategies.44 These algorithms 
can be trained to recognise specific risk factors associated 
with HCC by analysing historical trends compared with 
clinical guidelines.14 In patients with chronic HBV infec-
tion, AI models can predict the risk of developing HCC by 
integrating specific-related patient characteristics, anti-
viral treatment data, and imaging features.14 This allows 
healthcare providers to detect HCC at an earlier, more 
treatable stage, ultimately improving patient outcomes.

AI is a supportive tool that aids clinicians in making 
accurate and timely decisions. For example, AI enhances 
the diagnostic accuracy of radiologists by highlighting 
potential abnormalities and providing quantitative assess-
ments, ultimately leading to more informed diagnoses.35

Applications of AI in the diagnosis of HCC
US is a standard imaging modality for HCC surveillance, 
as recommended by both the AASLD and EASL. Several 
studies have highlighted the potential of AI models in 
detecting and classifying FLLs, including HCC. Although 
these studies employed different data sets and evaluation 
protocols—making direct comparisons challenging—
their consistent performance underscores the potential 
of AI in clinical practice. The integration of AI into clin-
ical workflows could significantly enhance early detec-
tion, inform treatment decisions, and improve overall 
patient outcomes (see online supplemental figure 1 in 
Additional file 1).14 39

Benign and malignant classification
AI models have demonstrated significant potential in 
differentiating benign from malignant liver tumours. 
Online supplemental table 1 (Additional file 1) summa-
rises key studies investigating this classification. Several 
studies have specifically focused on this challenge. Xi et 
al45 developed a DL model to distinguish benign from 
malignant tumour lesions using a data set of 596 patients, 
which included 911 images (535 malignant and 376 
benign). Their algorithm analysed the region of interest 
(ROI) of FLLs—manually cropped by radiologists—and 
classified them into two categories: benign and malig-
nant. Using ResNet50, the model achieved an area under 
the curve (AUC) of 83%, a sensitivity of 87% (95% CI: 
74% to 94%), and a specificity of 78% (95% CI: 61% to 
89%). The model’s performance was comparable to that 
of expert radiologists. Mao et al46 investigated the use of 
US radiomics to differentiate primary from metastatic 
liver cancers in a data set of 114 patients. The ROIs of 
the liver lesions were delineated by expert radiologists, 
and the algorithm extracted 1409 radiomics features 
from each image. Using logistic regression, the algorithm 

https://dx.doi.org/10.1136/bmjgast-2025-001832
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achieved an AUC of 81.6%, a sensitivity of 76.8%, and a 
specificity of 88.0%.

Several studies have also examined the role of AI-as-
sisted CEUS, reporting AUC values ranging from 0.74 
to 0.957, sensitivity between 74% and 94%, specificity 
from 63.3% to 100%, and accuracy between 82% and 
98.9%.47–54 These findings suggest that CEUS, when 
combined with AI techniques, offers promising diag-
nostic performance for distinguishing benign and malig-
nant liver lesions.

Tumour subtype classification
Several studies have expanded beyond the binary clas-
sification of benign and malignant tumours by further 
differentiating tumour subtypes. Table  1 summarises 
studies investigating tumour subtype classification, with a 
focus on HCC outcomes. Schmauch et al55 developed an 
AI algorithm to identify FLLs in full-frame still US images 
and classified them as angiomas, cysts, metastases, HCC, 
or focal nodular hyperplasia (FNH). The model was 
trained on a data set of 367 liver samples and tested on a 
separate data set of 177 patients. The algorithm achieved 
an AUC of 89.1% for classifying FLLs into subtypes and 
an AUC of 93.1% specifically for classifying HCC. Chen 
et al56 developed a DL model to preoperatively differen-
tiate among three types of liver cancer: HCC, intrahe-
patic cholangiocarcinoma (ICC), and combined HCC-
ICC. This study used full-field B-mode US images from 
465 patients with primary liver cancer. Overall, the model 
achieved an AUC of 92.4% (95% CI: 86.3% to 98.4%), 
an accuracy of 84.6%, a sensitivity of 78.3%, and a speci-
ficity of 92.7%. For HCC, the model achieved an AUC of 
93.7% (95% CI: 84.0% to 99.0%). These findings demon-
strate that AI can effectively distinguish between primary 
liver cancer subtypes. Tangruangkiat et al57 investigated a 
pretrained DL model for classifying the ROI of FLLs in 
US images as non-FLL, cyst, focal fat sparing, haeman-
gioma, or HCC. The model was developed and validated 
using a data set comprising 581 US images. Overall, it 
achieved an accuracy of 87.0%, a sensitivity of 81.0%, 
and a specificity of 89.0%. For HCC, the model attained 
an accuracy of 87.2%, a sensitivity of 80.7%, and a speci-
ficity of 81.2%. Nishida et al40 trained an AI model to clas-
sify the ROI of liver tumours into four categories—cyst, 
haemangioma, HCC, and metastasis—using a large data 
set of over 70 950 images. The overall diagnostic accuracy 
across all tumour types was 91.1%. When comparing the 
accuracy of AI models to that of physicians, the correct 
diagnosis rate for AI was 89.1%. The authors observed 
that model performance improved with increasing data 
set size, with AI models outperforming expert physi-
cians. Nakata and Siina58 investigated the effectiveness of 
ensemble techniques in improving the AI accuracy for 
classifying the ROI of hepatic masses in US images into 
four categories: benign liver tumours, liver cysts, meta-
static liver cancer, and primary liver cancer. The study 
observed that ensemble learning consistently improved 
classification accuracy, with the weighted average voting 

method achieving the highest performance, yielding a 
sensitivity of 78.3%, a specificity of 92.8%, and an accu-
racy of 78.3%. These findings underscore the robustness 
of ensemble learning approaches in liver tumour classi-
fication.

Certain recent research has explored AI-aided CEUS 
models for tumour subtype classification and indicated 
favourable diagnostic performance. Urhut et al evaluated 
a DL model with CEUS data of 59 FLLs and achieved an 
accuracy of 69.9%, sensitivity of 86.9%, and specificity of 
56.2%.54 Li et al applied the classic ML models—gradient-
boosted decision trees, random forest, and generalised 
linear models—to a large CEUS data set of 3210 patients 
and achieved an accuracy of 83%, sensitivity of 77.3%, 
and specificity of 88.6%.59 Feng et al used a DL approach 
with 1,241 CEUS video frames and achieved an AUC of 
89% and sensitivity, specificity, and accuracy of 83%, 82%, 
and 83%, respectively.60 Wan et al used a DL network 
trained with 174 CEUS cases and achieved an AUC of 
87.9%, accuracy of 88.4%, sensitivity of 86.2%, and spec-
ificity of 90.1%.61 Recently, Ding et al also achieved one 
of the highest performances with DL on a CEUS data-
base of 3725 FLLs with 1250 HCC lesions (training) and 
685 lesions (test), where they achieved test set AUCs of 
87–91%, accuracy of 91–96%, and specificity of 96–98%.62 
These findings demonstrate the value of CEUS with AI 
models in enhancing tumour subtype discrimination and 
offer a solid foundation for future integration of CEUS-
based algorithms in clinical applications.

Tumour detection and segmentation
Further studies have investigated the localisation of 
FLLs in US images through detection or segmentation 
techniques. Table 2 summarises research on the localisa-
tion of FLLs, particularly in relation to HCC outcomes. 
Tiyarattanachai et al63 developed a model that achieved 
an overall detection rate of 75% (95% CI: 71.7% to 
78.3%), a sensitivity of 84.9% (95% CI: 81.6% to 88.2%), 
and a specificity of 97.1% (95% CI: 96.5% to 97.6%) 
when tested on an external data set. The model demon-
strated strong diagnostic performance for HCC, though 
it exhibited limitations in detecting smaller lesions or 
those with atypical features. Ryu et al64 developed a system 
capable of simultaneously segmenting liver lesion bound-
aries in US images and classifying lesions into four types: 
cyst, haemangioma, metastasis, or HCC. The system was 
trained and validated using a US data set of 3873 patients. 
For segmenting liver lesions, the model achieved an 
intersection-over-union (IoU) score of 68.5%. In differ-
entiating benign from malignant lesions, the model 
achieved an AUC of 97%, a sensitivity of 86%, and a 
specificity of 95%. For classifying the four hepatic lesion 
types, the model attained an AUC of 94.7%, a sensitivity 
of 86.7%, and a specificity of 89.7%. The authors demon-
strated that their approach outperformed traditional 
segmentation and classification systems. Dadoun et al65 
investigated the effectiveness of different DL models in 
the detection, localisation, and classification of FLLs. 
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Using a large multicentre data set comprising US images 
from 1025 patients, their system first detected FLLs in a 
US image before classifying them into two broad cate-
gories—benign and malignant—further subclassifying 
benign lesions as cyst, angioma, FNH, and adenoma, 
and malignant lesions as metastasis and HCC. To localise 
FLLs, the model achieved an IoU score of 69.0%±12.0. In 
classifying FLLs as benign or malignant, the best model 
achieved an accuracy of 81% (95% CI: 68.0% to 94.0%), a 
sensitivity of 82% (95% CI: 62.0% to 100.0%) and a speci-
ficity of 81% (95% CI: 67.0% to 91.0%). When classifying 
FLLs into six categories, the highest-performing model 
achieved an accuracy of 76% (95% CI: 62.0% to 91.0%), 
a sensitivity of 65% (95% CI: 50.0% to 80.0%), and a spec-
ificity of 94% (95% CI: 90.0% to 98.0%). Tangruangkiat 
et al66 proposed a two-stage method for HCC screening 
using B-mode US images, comprising an object detector 
for FLL localisation and a classifier for differentiating 
among three distinct FLL types. The study was developed 
and validated using a data set of 2208 US images. Overall, 
object detection achieved a mean average precision of 
76%. The two-stage method demonstrated an accuracy 
of 86%, a precision of 88%, and a recall of 84% in identi-
fying suspicious FLLs. Chaiteerakij et al67 developed and 
evaluated an AI-assisted US system for FLL detection and 
classification. Using a data set of 5444 patients to classify 
seven FLL types, the model achieved an overall detection 
rate of 84.8%, with an HCC detection rate of 82.3% (95% 
CI: 77.1% to 87.5%). Additionally, the model differenti-
ated malignant from benign FLLs with both a sensitivity 
and specificity of 97.0%.

Integration with clinical data
Several studies have examined the integration of imaging 
features with clinical data to enhance the diagnostic 
accuracy of AI models (table 3). Yang et al68 developed 
an AI model to classify the ROI of FLLs in US images 
as benign or malignant. The model initially segmented 
the liver and FLL within a US image. Incorporating 
clinical data, the model then classified these features as 
benign or malignant, achieving an AUC of 92.4% on an 
external validation data set. Compared with radiologists 
possessing ≥15 years of experience, the model demon-
strated better diagnostic accuracy, sensitivity, and spec-
ificity. Zhao et al69 developed USC-ENet, an AI model 
leveraging EfficientNet to extract imaging features from 
an FLL ROI in US images and integrate them with clin-
ical data for enhanced classification of benign versus 
malignant liver lesions. This study analysed data from 542 
patients with liver tumours, improving sensitivity, speci-
ficity, and AUC from 81.8% to 91.5%, 80.3% to 88.0%, 
and 82.5% to 95.6%, respectively. Xu et al70 developed 
a DL pipeline that incorporated a mass-guided strategy 
and clinical factors to segment and classify liver malig-
nancies. The model, trained and validated on a data set 
of 11 468 patients, was evaluated using two external data 
sets. In the first data set, it detected liver metastases with 
an AUC of 94.5%, a sensitivity of 86.7%, and a specificity Ta
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of 92.7%. It also classified liver masses as malignant or 
benign with an AUC of 92.8%, a sensitivity of 82.7%, and 
a specificity of 92.7%. In the second data set, the model 
classified liver masses as malignant or benign, with an 
AUC of 88.5%, a sensitivity of 85.4%, and a specificity of 
77.8%. For subtype classification, the model differenti-
ated HCC from other subtypes with an AUC of 69.2%. 
Its sensitivity was comparable to that of mid-level radiol-
ogists.

A clear trend is emerging toward integrating imaging, 
clinical, laboratory, and genomic data to improve HCC 
risk prediction and early detection. Instead of relying 
solely on the US, newer AI models incorporate patient 
demographics, laboratory results (eg, liver function tests 
and viral load), and medical history alongside imaging.71 
Such multimodal systems offer comprehensive risk scores 
and diagnostic assessments.72 Although these multimodal 
AI systems remain in the prototype stage, initial applica-
tions in preliminary research indicate that they exhibit 
superior predictive power compared with single-modality 
algorithms.

BRIDGING RESEARCH TO CLINICAL PRACTICE
Several studies have examined the real-world applica-
bility of AI-assisted systems in clinical practice (online 
supplemental table 2). Tiyarattanachai et al73 investigated 
the feasibility of an AI-based US system to detect FLLs 
in US videos. The AI system was developed and trained 
using a two-stage process. The model was trained on 
US snapshots and further refined using difficult frames 

extracted from full-length US videos where the initial 
model struggled to recognise FLLs. This approach 
addresses the challenge of detecting FLLs, even in cases 
where they are difficult to visualise. Overall, the perfor-
mance of the AI system was compared with that of radi-
ologists and non-radiologist physicians, demonstrating 
significantly higher detection rates (89.8% vs 70.9% and 
29.1%, respectively). Notably, the AI system functions in 
real-time, underscoring its clinical practicality. Tiyarat-
tanachai et al74 conducted a randomised controlled trial 
(RCT) investigating an AI-assisted system for real-time 
FLL detection in 260 patients. This study compared the 
performance of expert and non-expert ultrasonogra-
phers with and without AI support. The AI system signif-
icantly improved FLL detection rates among non-expert 
ultrasonographers, demonstrating its potential utility in 
resource-limited settings where trained specialists are 
scarce.

AI models show strong potential in detecting and classi-
fying HCC and other liver lesions. However, variability in 
data sets and evaluation protocols limits direct compar-
isons. Nonetheless, the consistent performance of AI 
across different applications highlights its promise for 
clinical practice. Integrating AI into clinical workflows 
could significantly impact early detection, treatment 
decisions, and overall patient outcomes.

Recently, the US Food and Drug Administration 
approved numerous AI-enabled medical devices, though 
only a few are directly intended for HCC surveillance, 
and just three devices involve US.75 This indicates that 

Table 3  Performance comparison of studies integrating AI with clinical data

Study Clinical data Data set Model Target

Outcome

AUC
(%)

Sen
(%)

Spc
(%)

Yang et al68 7 clinical factors 
including age, 
gender, hepatitis 
history, and AFP

24 343 images 
from 2143 
patients

ResNet18 and 
LR

Malignancy 92.4
(88.9–95.9)

86.5 85.5

Zhao et al69 33 clinical variables 
including age, 
gender, family 
history, hepatitis 
history, history of 
alcoholism, AFP, 
lesion characteristics, 
and others

2168 images 
from 542 
patients

USC-ENet Malignancy 95.6 91.5 88.0

Xu et al70 12 clinical factors 
including age, sex, 
AFP, ALB, GGT, AST, 
HBsAg, ALP, ALT, 
CEA, TBIL, and DBIL.

43 746 images 
from 10 997 
patients

LMC-Net Malignancy 96.7
(95.5–97.9)

88.1 91.9

HCC 79.6
(76.3–82.8)

– –

AFP, alpha-fetoprotein; AI, artificial intelligence; ALB, albumin; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; AUC, area under the curve; CEA, carcinoembryonic antigen; DBIL, direct bilirubin; GGT, gamma-glutamyl transferase; 
HBsAg, hepatitis B surface antigen; HCC, hepatocellular carcinoma; LMC-Net, Liver Malignancy Classification Network; LR, logistic 
regression; ResNet18, Residual Neural Network 18; Sen, sensitivity; Spc, specificity; TBIL, total bilirubin; USC-ENet, Ultrasound 
Classification EfficientNet.

https://dx.doi.org/10.1136/bmjgast-2025-001832
https://dx.doi.org/10.1136/bmjgast-2025-001832
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US-based AI applications for HCC surveillance remain 
in the early stages of regulatory approval. Regulatory 
agencies are actively developing frameworks to ensure 
the safety and efficacy of AI-based technologies. In 
Europe, the Conformité Européenne (CE) marking is 
a mandatory requirement for clinical AI systems under 
medical device regulations. However, no CE-marked 
AI tools for HCC US screening have been formally 
recognised.76 Authorities in various countries are in the 
process of establishing guidelines that will shape the 
integration of AI in healthcare, which could influence 
the deployment of HCC surveillance protocols in these 
regions.

Major liver disease guidelines have begun to recog-
nise AI; however, none have formally incorporated it 
into standard HCC surveillance protocols. The Interna-
tional Liver Cancer Association and other bodies have 
published white papers calling for further research and 
the eventual integration of AI as the evidence matures.11 
Regulatory and policy bodies have also emphasised the 
need for standardisation (eg, common performance 
benchmarks) before AI can be fully used for HCC 
screening.

CONCLUSIONS
AI is reshaping HCC surveillance by enhancing diag-
nostic accuracy, risk stratification, and clinical decision-
making (figure 2). Recent progress—from accurate DL 
models and initial RCTs to evolving regulatory frame-
works—underscores the potential of AI to enhance 
image interpretation, enabling earlier detection and 
improved patient outcomes. However, challenges 
remain, including the need for standardised AI algo-
rithms, diverse and robust training data, real-world vali-
dation, and broader clinical adoption. Future research 
should address these limitations while exploring the 
AI’s potential role in real-time diagnostics and personal-
ised surveillance strategies. In the coming years, further 
results from clinical trials may pave the way for AI inte-
gration into standard HCC screening and treatment 
guidelines, thereby ushering in a new era of technology-
enabled surveillance. With continued innovation and 
integration into clinical workflows, AI could significantly 
improve detection, reduce mortality, and enhance 
healthcare efficiency.

Figure 2  Role of artificial intelligence (AI) in hepatocellular carcinoma (HCC) surveillance This diagram illustrates the various 
applications of artificial intelligence (AI) in HCC surveillance, including AI-driven risk stratification, automated lesion detection, 
AI-assisted lesion characterisation, prognostic modelling, personalised treatment guidance, and longitudinal monitoring.
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