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ABSTRACT

Background Hepatocellular carcinoma (HCC) remains
a leading cause of cancer-related mortality worldwide,
with early detection playing a crucial role in improving
survival rates. Artificial intelligence (Al), particularly in
medical image analysis, has emerged as a potential

tool for HCC diagnosis and surveillance. Recent
advancements in deep learning-driven medical imaging
have demonstrated significant potential in enhancing
early HCC detection, particularly in ultrasound (US)-based
surveillance.

Method This review provides a comprehensive analysis
of the current landscape, challenges, and future directions
of Al'in HCC surveillance, with a specific focus on the
application in US imaging. Additionally, it explores Al's
transformative potential in clinical practice and its
implications for improving patient outcomes.

Results We examine various Al models developed for
HCC diagnosis, highlighting their strengths and limitations,
with a particular emphasis on deep learning approaches.
Among these, convolutional neural networks have shown
notable success in detecting and characterising different
focal liver lesions on B-mode US often outperforming
conventional radiological assessments. Despite these
advancements, several challenges hinder Al integration
into clinical practice, including data heterogeneity, a

lack of standardisation, concerns regarding model
interpretability, regulatory constraints, and barriers to
real-world clinical adoption. Addressing these issues
necessitates the development of large, diverse, and
high-quality data sets to enhance the robustness and
generalisability of Al models.

Conclusions Emerging trends in Al for HCC surveillance,
such as multimodal integration, explainable Al, and real-
time diagnostics, offer promising advancements. These
innovations have the potential to significantly improve the
accuracy, efficiency, and clinical applicability of Al-driven
HCC surveillance, ultimately contributing to enhanced
patient outcomes.

SUMMARY BOX

= Conventional ultrasound-based hepatocellular car-
cinoma (HCC) surveillance has limited sensitivity,
particularly for early-stage tumors, and remains
highly operator-dependent, leading to variability in
detection accuracy.

= Artificial intelligence (Al), especially deep learning
models, enhances the detection and characteriza-
tion of HCC through imaging techniques, such as
ultrasound, CT, and MRI.

= Al-driven systems integrate imaging data with
clinical and laboratory findings, enabling a more
comprehensive risk assessment and personalized
surveillance strategies.

= Despite its promise, the adoption of Al in HCC
surveillance faces challenges, including data het-
erogeneity, algorithm standardization, and ethical
considerations, necessitating further validation in
real-world settings.

INTRODUCTION

Hepatocellular carcinoma (HCC) is a
major global health concern, being the
most common primary liver cancer and the
second leading cause of liverrelated deaths
worldwide.! In 2015, the Asia-Pacific region
accounted for 72.7% of HCC-related deaths,’
followed by 67% of new cases in 2019 and
63% of global cases in 2021." Key risk factors
include chronic hepatitis B virus (HBV) and
hepatitis C virus (HCV) infections, excessive
alcohol use, metabolic dysfunction-associated
steatotic liver disease (MASLD), and aflatoxin
Bl exposure.4 These vary geographically. In
Western nations, the HCC aetiological land-
scape is shifting, with alcohol-associated liver
disease projected to become the leading
cause, and MASLD surpassing HCV.?
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Surveillance is crucial for early HCC detection,
improving curative treatment chances and long-term
survival.” International liver societies recommend
surveillance for patients with cirrhosis and those at risk
of non-cirrhotic chronic HBV infection.”™"" Abdominal
ultrasound (US) is the preferred surveillance tool due to
its affordability and non-invasive nature,'? ' though its
accuracy declines in patients with obesity or MASLD.

Artificial intelligence (AI) is revolutionising HCC
surveillance by improving imaging-based detection.
Deep learning (DL) models, especially convolutional
neural networks (CNNs), excel at analysing US, CT, and
MRI scans for early lesion identification.'* AI reduces
variability and improves sensitivity and specificity, thereby
enhancing early detection. It can integrate multimodal
data—including imaging, clinical history, and laboratory
results—for comprehensive risk stratification in patients
at high HCC risk. Given these advancements, this review
provides an overview of Al's role in enhancing HCC
surveillance.

CURRENT TOOLS AND BENEFITS OF HCC SURVEILLANCE
HCC surveillance enables early detection of liver lesions,
facilitating timely treatment and improved outcomes.
Imaging modalities, such as US, CT, and MRI, are crucial
for HCC surveillance,"” '® particularly for individuals at
high risk, including those with cirrhosis, chronic HBV,
HCYV, or other underlying liver diseases.'” 1718

Ultrasound as a primary tool
B-mode US remains the primary imaging modality
for HCC surveillance due to its cost-effectiveness, non-
invasiveness, and ability to provide real-time diagnostic
information.” It is typically used to continuously monitor
atrisk patients to detect the emergence or progression
of liver lesions. US is recommended by leading liver soci-
eties, including the American Association for the Study
of Liver Diseases (AASLD)'® and the European Associa-
tion for the Study of the Liver (EASL) Y for surveillance
in high-risk populations. Major guidelines recommend
US-based surveillance every 6 months in these individ-
uals. However, the effectiveness of US can be influenced
by several factors, including equipment quality, operator
skill, and patient characteristics. For instance, obesity or
advanced cirrhosis may limit the visualisation of hepatic
lesions, reducing diagnostic accuracy. In cases where
US findings are inconclusive or require a more detailed
assessment, CT and MRI are preferred due to their higher
sensitivity in detecting small lesions.'?'7 '8

In addition to conventional B-mode imaging, contrast-
enhanced US (CEUS) expands diagnostic effectiveness
further by using microbubble-based contrast agents.
They are typically composed of low-solubility gases, such
as sulfur hexafluoride or perfluorocarbons surrounded
by a shell.* Intravenous injection increases the visuali-
sation of blood circulation and enhances the signal-to-
noise ratio of B-mode images. CEUS also uses non-linear

oscillations at harmonic frequencies, with significantly
improved contrast-to-tissue ratio and dynamic imaging
by arterial, portal venous, and late phases.”’ Hypoen-
hancement at this stage can image malignant lesions due
to reduced Kupffer cell density, representing a valuable
tool in discriminating between benign and metastatic
liver lesions. CEUS is thus a valuable and now generally
accepted modality in the diagnosis of focal liver lesions
(FLLs) and is particularly valuable when conventional US
yields suboptimal images. However, CEUS is not currently
recommended as a routine surveillance of HCC due to
limited generalisability, need for special contrast agents,
and its dependence on skilled radiologists.*

CT and MRI for detailed assessment

CT and MRI are valuable tools for detailed assessment of
liver lesions suspected to be HCC. These modalities offer
superior contrast and spatial resolution compared with
US, allowing for better differentiation between benign
and malignant growths."” They are particularly useful for
identifying small tumours and distinguishing HCC from
other types of liver nodules. CT can visualise both the
arterial and venous phases of liver perfusion, providing
critical insights into hepatic blood flow and abnormalities
associated with HCC. Meanwhile, MRI, particularly with
contrast agents, exhibits enhanced sensitivity in detecting
small lesions.'” Additionally, MRI is often preferred over
CT in certain cases as it does not involve radiation expo-

sure.B

Challenges in imaging interpretation

Interpreting imaging results poses significant challenges
due to variations in lesion appearance and the presence of
underlying liver conditions, such as cirrhosis or steatosis,
which can obscure malignant features.** These under-
lying conditions can significantly alter the liver architec-
ture, making it difficult to differentiate between malig-
nant and benign lesions. The accuracy of surveillance
imaging relies heavily on the experience and expertise of
the radiologist, particularly when dealing with complex
cases or patients with underlying liver conditions.*” Small
HCCs are especially difficult to detect, particularly in
cirrhotic livers, where fibrosis and regenerative nodules
can obscure tumour visualisation. US, in particular, may
be unable to detect liver nodules <1 cm in size. While
MRI offers high sensitivity for detecting small HCGs, it
carries the risk of false positives, particularly in cirrhotic
livers, where non-malignant lesions can mimic HCC.*’

OVERVIEW OF Al IN HEALTHCARE

Al is revolutionising healthcare by enhancing medical
diagnoses, improving treatment strategies, and opti-
mising clinical workflows.?”*’ AT algorithms can process
and learn from vast amounts of complex data, leading
to more accurate diagnoses, precise measurements, and
improved predictions of disease progression and treat-
ment outcomes.”’
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Figure 1 Overview of the hierarchical relationship among key concepts in artificial intelligence (Al). The outermost circle
represents Al, encompassing all methodologies that enable machines to imitate human intelligence. Machine learning (ML),
a subarea of Al, focuses on algorithms that learn patterns from data without explicit programming. Deep learning (DL), a

specialised part of ML, leverages multilayer neural networks such as convolutional neural networks (CNNs) to extract complex

details from high-dimensional data, including medical images. Generative Al and large language models (LLMs) extend

these capabilities by generating new data and understanding structured and unstructured data, including text and images
(multimodal processing). The right side of the diagram illustrates different neural networks, from simple to complex systems
that process multiple types of data and LLMs designed for advanced multimodal applications.

Al terminology

Al is a multidisciplinary field dedicated to developing
computational systems capable of performing tasks that
traditionally require human cognitive functions, such as
learning, reasoning, and problem-solving.”” " As illus-
trated in figure 1, machine learning (ML) is a subset of
Al that involves algorithms learning patterns from data to
make data-driven decisions. An important subset of ML is
neural networks (NNs), which are computational models
inspired by the biological structure and function of the
human brain. As NNs increase in complexity, they form
the foundation of deep learning, which uses a multilay-
ered architecture to autonomously extract hierarchical
features from data.”” Among DL techniques, CNNs have
proven to be particularly efficient in processing visual
data. CNNs are widely used in medical imaging, where
they perform important tasks, such as classification
(distinguishing tissue types or lesion features), detection

(localising anomalies in images), and segmentation
(delineating structures such as lesions or organs).

Recent advances include multi-modal systems that
integrate diverse data sources, such as imaging, clinical
records, genomics, and laboratory results, to create a
unified diagnostic perspective tailored to individual risk
profiles.” The next frontier is the incorporation of foun-
dation models and large language models, pretrained
on extensive multimodal data sets to offer even deeper
insights, thereby enabling personalised healthcare
delivery by analysing and synthesising complex informa-
tion into targeted clinical recommendations.*

Benefits of Al for HCC surveillance

DL models, particularly CNNs, have shown consider-
able promise in analysing medical images and detecting
abnormalities in modalities such as X-rays, US, CT and
MRI.*** These models increasingly support clinicians in
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decision-making, thereby improving diagnostic accuracy
and efficiency.” Beyond diagnostics, Al techniques
improve image quality, reduce noise, and reconstruct
images from lower-dose scans or differentimaging modal-
ities. Additionally, Al facilitates precise measurements
and quantitative assessments of anatomical structures or
lesions, aiding in tumour size tracking and volume esti-
mation over time.” This enables more accurate disease
staging and better treatment planning. Furthermore,
Al models integrate imaging with clinical variables to
predict disease progression and treatment outcomes.

In diagnosing liver diseases, Al can be used to detect
liver fibrosis, differentiate FLLs, predict the prognosis of
chronic liver diseases, and diagnose MASLD.”*™® AI can
assist in assessing the severity of liver fibrosis in chronic
liver diseases, including viral hepatitis, using US, thereby
identifying patients at a higher risk of disease progres-
sion and prioritising those requiring closer monitoring
or more aggressive treatment.”! ** Additionally, AI can
locate and classify liver lesions as benign or malignant
using CEUS and other imaging techniques. These
insights help guide biopsy indications, inform interven-
tional planning, and improve diagnostic accuracy in HCC
cases.” ™ Therefore, Al plays a crucial role in diagnosing
and assessing MASLD, which is essential for early detec-
tion and timely treatment to prevent the progression of
severe liver disease.”

Several studies have shown that Al systems outperform
clinicians in interpreting imaging data.'*** %% %40 Ope
of AI's major advantages in healthcare is its ability to
minimise diagnostic variability.”” * Human interpretation
of medical images is influenced by various factors, such
as clinician experience and patient-specific variables. Al
enables consistent and objective analysis of imaging data,
contributing to more reliable diagnoses.™

Al algorithms have been explored for HCC detec-
tion using various imaging modalities, including US,
CT, and MRIL* % Fach modality is suited to different
clinical scenarios.'” CT and MRI generally offer higher
sensitivity and specificity for detecting HCC than
US."? ¥ USis often the first-line imaging modality due to
its cost-effectiveness and real-time diagnostic capabilities.
However, detecting HCC via US can be challenging, espe-
cially in the presence of cirrhosis or other liver diseases
that alter the liver structure. Additionally, obesity and
technical limitations—such as US equipment quality and
operator experience—can affect US sensitivity.* Studies
have shown that Al algorithms improve the detection of
HCC in US images, which is a key factor in early cancer
diagnosis and improved patient outcomes.'* ¥ ¥ 14 ¢
scans provide detailed cross-sectional images of the liver,
allowing for better visualisation of the fine details of liver
anatomy and pathology than US.” Research has shown
that AI can detect HCC on CT scans with high accuracy,
even in early stages, facilitating timely interventions and
potentially curative treatments.* *® ** MRI, known for
its superior soft-tissue contrast, is particularly beneficial
for characterising liver lesions.” * AI models applied

to MRI data can detect and differentiate complex liver
lesions—including HCC, cysts, and metastatic tumours—
improving diagnostic accuracy, particularly in patients
with cirrhosis or steatosis.’

Al algorithms can analyse electronic health record
data to identify individuals at high risk of HCC, thereby
enhancing surveillance strategies." These algorithms
can be trained to recognise specific risk factors associated
with HCC by analysing historical trends compared with
clinical guidelines.'* In patients with chronic HBV infec-
tion, Al models can predict the risk of developing HCC by
integrating specific-related patient characteristics, anti-
viral treatment data, and imaging features.'* This allows
healthcare providers to detect HCC at an earlier, more
treatable stage, ultimately improving patient outcomes.

Al is a supportive tool that aids clinicians in making
accurate and timely decisions. For example, Al enhances
the diagnostic accuracy of radiologists by highlighting
potential abnormalities and providing quantitative assess-
ments, ultimately leading to more informed diagnoses.”

Applications of Al in the diagnosis of HCC

US is a standard imaging modality for HCC surveillance,
as recommended by both the AASLD and EASL. Several
studies have highlighted the potential of AI models in
detecting and classifying FLLs, including HCC. Although
these studies employed different data sets and evaluation
protocols—making direct comparisons challenging—
their consistent performance underscores the potential
of Al in clinical practice. The integration of Al into clin-
ical workflows could significantly enhance early detec-
tion, inform treatment decisions, and improve overall
patient outcomes (see online supplemental figure 1 in
Additional file 1).14%

Benign and malignant classification

Al models have demonstrated significant potential in
differentiating benign from malignant liver tumours.
Online supplemental table 1 (Additional file 1) summa-
rises key studies investigating this classification. Several
studies have specifically focused on this challenge. Xi et
al® developed a DL model to distinguish benign from
malignant tumour lesions using a data set of 596 patients,
which included 911 images (535 malignant and 376
benign). Their algorithm analysed the region of interest
(ROI) of FLLs—manually cropped by radiologists—and
classified them into two categories: benign and malig-
nant. Using ResNet50, the model achieved an area under
the curve (AUC) of 83%, a sensitivity of 87% (95% CI:
74% to 94%), and a specificity of 78% (95% CI: 61% to
89%). The model’s performance was comparable to that
of expert radiologists. Mao et al'® investigated the use of
US radiomics to differentiate primary from metastatic
liver cancers in a data set of 114 patients. The ROIs of
the liver lesions were delineated by expert radiologists,
and the algorithm extracted 1409 radiomics features
from each image. Using logistic regression, the algorithm
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achieved an AUC of 81.6%, a sensitivity of 76.8%, and a
specificity of 88.0%.

Several studies have also examined the role of Al-as-
sisted CEUS, reporting AUC values ranging from 0.74
to 0.957, sensitivity between 74% and 94%, specificity
from 63.3% to 100%, and accuracy between 82% and
98.9%."* These findings suggest that CEUS, when
combined with Al techniques, offers promising diag-
nostic performance for distinguishing benign and malig-
nant liver lesions.

Tumour subtype classification

Several studies have expanded beyond the binary clas-
sification of benign and malignant tumours by further
differentiating tumour subtypes. Table 1 summarises
studies investigating tumour subtype classification, with a
focus on HCC outcomes. Schmauch et al® developed an
Al algorithm to identify FLLs in full-frame still US images
and classified them as angiomas, cysts, metastases, HCC,
or focal nodular hyperplasia (FNH). The model was
trained on a data set of 367 liver samples and tested on a
separate data set of 177 patients. The algorithm achieved
an AUC of 89.1% for classifying FLLs into subtypes and
an AUC of 93.1% specifically for classifying HCC. Chen
et al® developed a DL model to preoperatively differen-
tiate among three types of liver cancer: HCC, intrahe-
patic cholangiocarcinoma (ICC), and combined HCC-
ICC. This study used full-field B-mode US images from
465 patients with primary liver cancer. Overall, the model
achieved an AUC of 92.4% (95% CI: 86.3% to 98.4%),
an accuracy of 84.6%, a sensitivity of 78.3%, and a speci-
ficity of 92.7%. For HCC, the model achieved an AUC of
93.7% (95% CI: 84.0% t0 99.0%). These findings demon-
strate that Al can effectively distinguish between primary
liver cancer subtypes. Tangruangkiat et aP” investigated a
pretrained DL model for classifying the ROI of FLLs in
US images as non-FLL, cyst, focal fat sparing, haeman-
gioma, or HCC. The model was developed and validated
using a data set comprising 581 US images. Overall, it
achieved an accuracy of 87.0%, a sensitivity of 81.0%,
and a specificity of 89.0%. For HCC, the model attained
an accuracy of 87.2%, a sensitivity of 80.7%, and a speci-
ficity of 81.2%. Nishida et al'’ trained an AI model to clas-
sify the ROI of liver tumours into four categories—cyst,
haemangioma, HCC, and metastasis—using a large data
set of over 70950 images. The overall diagnostic accuracy
across all tumour types was 91.1%. When comparing the
accuracy of Al models to that of physicians, the correct
diagnosis rate for AI was 89.1%. The authors observed
that model performance improved with increasing data
set size, with Al models outperforming expert physi-
cians. Nakata and Siina®® investigated the effectiveness of
ensemble techniques in improving the Al accuracy for
classifying the ROI of hepatic masses in US images into
four categories: benign liver tumours, liver cysts, meta-
static liver cancer, and primary liver cancer. The study
observed that ensemble learning consistently improved
classification accuracy, with the weighted average voting

method achieving the highest performance, yielding a
sensitivity of 78.3%, a specificity of 92.8%, and an accu-
racy of 78.3%. These findings underscore the robustness
of ensemble learning approaches in liver tumour classi-
fication.

Certain recent research has explored Al-aided CEUS
models for tumour subtype classification and indicated
favourable diagnostic performance. Urhut et al evaluated
a DL model with CEUS data of 59 FLLs and achieved an
accuracy of 69.9%, sensitivity of 86.9%, and specificity of
56.2%.7* Li et alapplied the classic ML models—gradient-
boosted decision trees, random forest, and generalised
linear models—to a large CEUS data set of 3210 patients
and achieved an accuracy of 83%, sensitivity of 77.3%,
and specificity of 88.6%.” Feng et al used a DL approach
with 1,241 CEUS video frames and achieved an AUC of
89% and sensitivity, specificity, and accuracy of 83%, 82%,
and 83%, respectively.”’ Wan et al used a DL network
trained with 174 CEUS cases and achieved an AUC of
87.9%, accuracy of 88.4%, sensitivity of 86.2%, and spec-
ificity of 90.1%.%" Recently, Ding et al also achieved one
of the highest performances with DL on a CEUS data-
base of 3725 FLLs with 1250 HCC lesions (training) and
685 lesions (test), where they achieved test set AUCs of
87-91%, accuracy of 91-96%, and specificity of 96-98%.%
These findings demonstrate the value of CEUS with Al
models in enhancing tumour subtype discrimination and
offer a solid foundation for future integration of CEUS-
based algorithms in clinical applications.

Tumour detection and segmentation

Further studies have investigated the localisation of
FLLs in US images through detection or segmentation
techniques. Table 2 summarises research on the localisa-
tion of FLLs, particularly in relation to HCC outcomes.
Tiyarattanachai et af® developed a model that achieved
an overall detection rate of 75% (95% CI: 71.7% to
78.3%), a sensitivity of 84.9% (95% CI: 81.6% to 88.2%),
and a specificity of 97.1% (95% CI: 96.5% to 97.6%)
when tested on an external data set. The model demon-
strated strong diagnostic performance for HCC, though
it exhibited limitations in detecting smaller lesions or
those with atypical features. Ryu et al’”* developed a system
capable of simultaneously segmenting liver lesion bound-
aries in US images and classifying lesions into four types:
cyst, haemangioma, metastasis, or HCC. The system was
trained and validated using a US data set of 3873 patients.
For segmenting liver lesions, the model achieved an
intersection-over-union (IoU) score of 68.5%. In differ-
entiating benign from malignant lesions, the model
achieved an AUC of 97%, a sensitivity of 86%, and a
specificity of 95%. For classifying the four hepatic lesion
types, the model attained an AUC of 94.7%, a sensitivity
of 86.7%, and a specificity of 89.7%. The authors demon-
strated that their approach outperformed traditional
segmentation and classification systems. Dadoun et al”
investigated the effectiveness of different DL models in
the detection, localisation, and classification of FLLs.
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§ 8| g g g T g = external validation data set. Compared with radiologists

8 Q| © S |5 I8 58 possessing >15 years of experience, the model demon-

IS ‘,i = 5 & & g 3 strated better diagnostic accuracy, sensitivity, and spec-

E 8 ; ificity. Zhao et al” developed USG-ENet, an Al model

g w O @ ..=; § leveraging EfficientNet to extract imaging features from

2 4 5 s g;) 5 é o e an FLL ROI in US images and integrate them with clin-

g - == g5 g _§§ @ §: ical data for enhanced classification of benign versus

£ i 5 & @ 2 p g' 5 18LeT e malignant liver lesions. This study analysed data from 542

° g N S P28 & o g kS 22 patients with liver tumours, improving sensitivity, speci-

3 FAED IO & «EQ 3 s % ficity, and AUC from 81.8% to 91.5%, 80.3% to 88.0%,

g % - B 229 and 82.5% to 95.6%, respectively. Xu et al’’ developed

E ° g % % % a = a DL pipeline that incorporated a mass-guided strategy

2 8 2 = ,g = §g and clinical factors to segment and classify liver malig-

S g(\“ g g 2 ; 5 L nancies. The model, trained and validated on a data set

z 2 © o % 9 EERY of 11468 patients, was evaluated using two external data

= 2| Sg S S8 8 2X95 sets. In the first data set, it detected liver metastases with

= Es [T |[Es[O e an AUC of 94.5%, a sensitivity of 86.7%, and a specificity
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Table 3 Performance comparison of studies integrating Al with clinical data

Outcome
AUC Sen Spc
Study Clinical data Data set Model Target (%) (%) (%)
Yang et al®® 7 clinical factors 24343 images ResNet18 and  Malignancy 92.4 86.5 85.5
including age, from 2143 LR (88.9-95.9)
gender, hepatitis patients
history, and AFP
Zhao et a/® 33 clinical variables 2168 images USC-ENet Malignancy 95.6 91.5 88.0
including age, from 542
gender, family patients
history, hepatitis
history, history of
alcoholism, AFP,
lesion characteristics,
and others
Xuetal 12 clinical factors 43746 images LMC-Net Malignancy 96.7 88.1 91.9
including age, sex, from 10997 (95.5-97.9)
AFP, ALB, GGT, AST, patients HCC 79.6 _ _

CEA, TBIL, and DBIL.

AFP, alpha-fetoprotein; Al, artificial intelligence; ALB, albumin; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; AUC, area under the curve; CEA, carcinoembryonic antigen; DBIL, direct bilirubin; GGT, gamma-glutamyl transferase;
HBsAg, hepatitis B surface antigen; HCC, hepatocellular carcinoma; LMC-Net, Liver Malignancy Classification Network; LR, logistic
regression; ResNet18, Residual Neural Network 18; Sen, sensitivity; Spc, specificity; TBIL, total bilirubin; USC-ENet, Ultrasound

Classification EfficientNet.

of 92.7%. It also classified liver masses as malignant or
benign with an AUC of 92.8%, a sensitivity of 82.7%, and
a specificity of 92.7%. In the second data set, the model
classified liver masses as malignant or benign, with an
AUC of 88.5%, a sensitivity of 85.4%, and a specificity of
77.8%. For subtype classification, the model different-
ated HCC from other subtypes with an AUC of 69.2%.
Its sensitivity was comparable to that of mid-level radiol-
ogists.

A clear trend is emerging toward integrating imaging,
clinical, laboratory, and genomic data to improve HCC
risk prediction and early detection. Instead of relying
solely on the US, newer Al models incorporate patient
demographics, laboratory results (eg, liver function tests
and viral load), and medical history alongside imaging.”'
Such multimodal systems offer comprehensive risk scores
and diagnostic assessments.”* Although these multimodal
Al systems remain in the prototype stage, initial applica-
tions in preliminary research indicate that they exhibit
superior predictive power compared with single-modality
algorithms.

BRIDGING RESEARCH TO CLINICAL PRACTICE

Several studies have examined the real-world applica-
bility of Al-assisted systems in clinical practice (online
supplemental table 2). Tiyarattanachai et al”® investigated
the feasibility of an Al-based US system to detect FLLs
in US videos. The Al system was developed and trained
using a two-stage process. The model was trained on
US snapshots and further refined using difficult frames

extracted from full-length US videos where the initial
model struggled to recognise FLLs. This approach
addresses the challenge of detecting FLLs, even in cases
where they are difficult to visualise. Overall, the perfor-
mance of the Al system was compared with that of radi-
ologists and non-radiologist physicians, demonstrating
significantly higher detection rates (89.8% vs 70.9% and
29.1%, respectively). Notably, the Al system functions in
real-time, underscoring its clinical practicality. Tiyarat-
tanachai et al”* conducted a randomised controlled trial
(RCT) investigating an Al-assisted system for real-time
FLL detection in 260 patients. This study compared the
performance of expert and non-expert ultrasonogra-
phers with and without Al support. The Al system signif-
icantly improved FLL detection rates among non-expert
ultrasonographers, demonstrating its potential utility in
resource-limited settings where trained specialists are
scarce.

Al models show strong potential in detecting and classi-
fying HCC and other liver lesions. However, variability in
data sets and evaluation protocols limits direct compar-
isons. Nonetheless, the consistent performance of Al
across different applications highlights its promise for
clinical practice. Integrating Al into clinical workflows
could significantly impact early detection, treatment
decisions, and overall patient outcomes.

Recently, the US Food and Drug Administration
approved numerous Al-enabled medical devices, though
only a few are directly intended for HCC surveillance,
and just three devices involve US.” This indicates that
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HCC subtypes.

Figure 2 Role of artificial intelligence (Al) in hepatocellular carcinoma (HCC) surveillance This diagram illustrates the various
applications of artificial intelligence (Al) in HCC surveillance, including Al-driven risk stratification, automated lesion detection,
Al-assisted lesion characterisation, prognostic modelling, personalised treatment guidance, and longitudinal monitoring.

US-based Al applications for HCC surveillance remain
in the early stages of regulatory approval. Regulatory
agencies are actively developing frameworks to ensure
the safety and efficacy of Al-based technologies. In
Europe, the Conformité Européenne (CE) marking is
a mandatory requirement for clinical Al systems under
medical device regulations. However, no CE-marked
Al tools for HCC US screening have been formally
mcognised.76 Authorities in various countries are in the
process of establishing guidelines that will shape the
integration of Al in healthcare, which could influence
the deployment of HCC surveillance protocols in these
regions.

Major liver disease guidelines have begun to recog-
nise Al; however, none have formally incorporated it
into standard HCC surveillance protocols. The Interna-
tional Liver Cancer Association and other bodies have
published white papers calling for further research and
the eventual integration of Al as the evidence matures."’
Regulatory and policy bodies have also emphasised the
need for standardisation (eg, common performance
benchmarks) before AI can be fully used for HCC
screening.

CONCLUSIONS

Al is reshaping HCC surveillance by enhancing diag-
nostic accuracy, risk stratification, and clinical decision-
making (figure 2). Recent progress—from accurate DL
models and initial RCTs to evolving regulatory frame-
works—underscores the potential of Al to enhance
image interpretation, enabling earlier detection and
improved patient outcomes. However, challenges
remain, including the need for standardised Al algo-
rithms, diverse and robust training data, real-world vali-
dation, and broader clinical adoption. Future research
should address these limitations while exploring the
AT’s potential role in real-time diagnostics and personal-
ised surveillance strategies. In the coming years, further
results from clinical trials may pave the way for Al inte-
gration into standard HCC screening and treatment
guidelines, thereby ushering in a new era of technology-
enabled surveillance. With continued innovation and
integration into clinical workflows, Al could significantly
improve detection, reduce mortality, and enhance

healthcare efficiency.
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