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Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important
for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference
into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open
Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature
Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between
13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139
long noncoding RNAs (IncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High
consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e — 16) and gene frequency of individual
term (Pearson correlation = 0.1298, p = 3.686e — 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

1. Introduction

The human genome is the complete set of nucleic acid
sequence for human beings [1]. Researches on sequence of the
human genome aim at exploring the functions of genes [2-5].
Human genes consisting of sequences could play diverse roles
based on their functions in molecular level in balancing the
body. Once the balance is lost by lack or enhancement of the
functions of genes, diseases could be induced [6-9].

Previous studies focused on identifying the functions
of the protein-coding genes in molecular level based on
their encoded proteins. For example, through investigating
P53 protein, Brain and Jenkins [10] exposed that TP53 gene
is potentially capable of inhibiting mammalian replicative
DNA synthesis by blocking the DNA strand separation
step during replication origin recruitment. Based on a case

control study, Benzon Larsen et al. [11] determined that ADH
polymorphisms, which modify the rate of ethanol oxidation
to acetaldehyde, were associated with breast cancer risk.

As a growing number of protein-coding genes identified,
lots of functional terms emerged. For ease of comparing the
functions of genes, these terms needed to be normalized.
To this end, ontology was introduced to standardize the
functional terms of genes. Among existing ontologies, Gene
Ontology (GO) [12] is one of the earliest and most frequently
used vocabularies, which focuses on describing biological
process (BP), molecular function (MF), and cell component
(CC) of genes. Since appearing in 2000, a large number of
databases recording the functions of genes were annotated to
the GO. The functional annotation of human protein-coding
genes was provided at GO Annotation (GOA) databases
[13], which involves a nonredundant set of annotations to
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F1GURE L: Distribution of functional terms and genes in the annotation results. (a) Histogram of the number of genes associated with individual
functional term. (b) Histogram of the number of functional terms associated with individual gene.

the human proteome. In comparison with the GO, Disease
Ontology (DO) [14] focuses on standardizing the functional
terms of genes at phenotype level. And disease terms in Gene
Reference into Function (GeneRIF) [15] were annotated to
the DO [16-18].

Recently, large-scale sequence analysis at genomic and
transcriptomic level has shown that more than 98% of
genome sequence cannot encode protein [19, 20], and
microRNA genes and long noncoding RNA (IncRNA) genes
constitute a large portion of them [21]. In comparison with
protein-coding genes, the functions of microRNA genes and
IncRNA genes are difficult to be identified [22]. However,
these noncoding genes play an important role at molecular
level and phenotype level [23-27]. For example, at molecular
level, qPCR and in silico hybridization revealed that miR-124
and miR-155 can be directly involved in the transcriptional
regulation of Runt-related transcription factor 2 (RUNX2)
and receptor activator of nuclear factor kappa-B ligand
(RANKL) genes [28]. At phenotype level, Huang et al
identified that underexpression of miR-345 is associated with
prostate cancer [29]. At present, microRNA- and IncRNA-
related diseases in HMDD [30] and LncRNADisease [31]
have been manually annotated by Medical Subject Headings
(MeSH) [32]. And several recent works proved more relation-
ship between miRNA and diseases would be detected yet [33-
35].

Although a few of databases have been annotated to
gene functional vocabularies, a comprehensive annotation
resource recording the functions of human genes had not yet
appeared. For example, in our knowledge, no databases of
noncoding genes were annotated to functional vocabularies
at molecular level. This may be caused by the lack of resources
that record the functions of protein-coding genes and non-
coding genes simultaneously. Fortunately, GeneRIFs [15] pro-
vides a brief (up to 255 character) functional description of
each gene in the NCBI database, and these functional descrip-
tions could be annotated to vocabularies, such as DO and GO.

In this paper, we presented a framework, Gene2Function,
to annotate the function of human genome with GO and DO.

TaBLE 1: The statistical information of associations between genes
and terms.

The number of The number of  The number of associations

genes terms between genes and terms
mRNA

13,148 7,182 288,869
MicroRNA

948 533 9,496
IncRNA

139 297 901

After annotating GeneRIFE, a comprehensive resource involv-
ing protein-coding genes, microRNA genes, and IncRNA
genes could be obtained. The resource could be accessed from
http://www.bio-annotation.cn/gene2function/.

2. Results

2.1. Mapping Genes to Gene Ontology and Disease Ontology.
After annotating GeneRIFs by GO and DO (see Section 3),
288,869 associations between 13,148 mRNAs and 7,182 terms,
9,496 associations between 948 microRNAs and 533 terms,
and 901 associations between 139 IncRNAs and 297 terms
were obtained. The statistical information is shown in Table 1.

Figure 1(a) demonstrates the histogram of the number of
genes associated with terms of GO and DO in the annotation
results. 1,657 functional terms (23.0%) are associated with
only one gene, while 3,924 functional terms (54.5%) are
associated with more than three genes. The histogram of the
number of terms associated with individual gene is shown in
Figure 1(b). 1,375 genes (9.9%) are associated with only one
functional terms, while 10,273 genes (74.3%) are associated
with more than three genes.

The top ten terms ordered by the number of gene
annotations and the top ten genes ordered by the number of
term annotations are shown in Tables 2 and 3, respectively.
Not surprisingly, several general terms in the top layer of the
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TABLE 2: The top ten terms ordered by the number of gene anno-
tations.

Term ID Term name Number of genes
GO0:0005623 Cell 7,524
GO:0005488 Binding 5,011
GO0:0065007 Biological regulation 4,846
G0:0023052 Signaling 4,466
G0:0032502 Developmental process 3,521
GO0:0009058 Biosynthetic process 3,346
DOID:162 Cancer 3,139
GO:0006351 Transcription, DNA-templated 3,121
DOID:305 Carcinoma 3,069
G0:0040007 Growth 3,011

TaBLE 3: The top ten genes ordered by the number of term anno-
tations.

HGNC geneID  Gene symbol Number of functional terms
HGNC:11998 TP53 828
HGNC:11892 TNF 792
HGNC:6018 1L6 683
HGNC:12680 VEGFA 669
HGNC:11766 TGFB1 664
HGNC:3236 EGFR 560
HGNC:7176 MMP9 521
HGNC:391 AKTI 517
HGNC:7794 NFKBI1 494
HGNC:6025 CXCL8 473

DAG have a larger number of genes associated with them,
such as cell, binding, and developmental process (Table 2).
The most prevalent disease terms appearing in the annotation
result is cancer, which is associated with 3,139 genes (22.7%
of all the terms). When we look at the genes associated with
many terms, TP53 is the most prevalent genes appearing in
the annotation result, which is associated with 828 terms
(11.5% of all the genes).

2.2. Comparing with Existing Ontology Annotation Resources.
To validate the performance of our annotation result, we
compared the result with the previous prevalent annotation
resources GOA [13], in which human gene is manually anno-
tated to GO. To ensure the exact evaluation, DO annotations
of GeneRIFs were discarded, and annotations Inferred from
Electronic Annotations (IEA) of GOA were removed.

In total, we obtained 196,423 associations between 4,613
GO terms and 13,107 genes in GeneRIFs and 168,246 associ-
ations between 13,920 GO terms and 16,724 genes in GOA.
Only 10,658 associations and 3,375 GO terms appeared in
both annotation resources. In comparison, both of them have
more common genes (11,816).

Figures 2(a) and 2(b) demonstrate the histogram of the
number of genes per GO term, and the histogram of the num-
ber of GO terms per gene in annotations of GeneRIFs and

TABLE 4: Data sources.

Data source Web site (date of download)

http://www.ncbi.nlm.nih.gov/gene/about-generif

GeneRIF (Jun 2016)

HGNC http://www.genenames.org/ (Jun 2016)
GO & GOA http://geneontology.org/ (Jun 2016)
DO http://disease-ontology.org/ (Jun 2016)

GOA, respectively. Obviously, more GO terms (4,545) could
be annotated to only one gene in GOA than that (1,114) in
GeneRIFs. In contrast, more genes (1,671) could be annotated
to only one term in GeneRIFs than that (1,499) in GOA.

In order to evaluate the consistency, we compared the
term frequency of individual gene and gene frequency of
individual term in GeneRIFs and GOA. As a result, term
frequency of individual gene in GeneRIF was significant
positively correlated with it in GOA (Pearson correlation y* =
0.6401, p = 2.2e — 16; Figure 2(c)), and gene frequency of
individual term in GeneRIF was also significantly positively
correlated with it in GOA (Pearson correlation y* = 0.1298,
p = 3.686e — 14; Figure 2(d)). Considering that GOA is
most frequency used annotation resource, annotations of
GeneRIFs should be also reliable.

2.3. A Network Visualization Based on the Functional Anno-
tation of the Human Genome. Information in the annotation
result can be used to describe the relationship among multiple
genes or multiple terms. To this end, we create a bipartite
network that describes the relationships between three genes
(RNF2, RNF8, and RPS6) and 79 terms (Figure 3). Within
this network, 33 terms are annotated to RNF2, 37 terms are
annotated to RNF8, and 37 terms are annotated to RPS6. At
the centre of the figure, 6 terms involving translation, execu-
tion phase of apoptosis, breast cancer, biological regulation,
binding, and apoptotic process are related to all of these three
genes. Using our annotation result, one can create this type of
bipartite network as needed.

3. Materials and Methods

3.1. Data Collection

3.1.1. GeneRIF. GeneRIF was downloaded in June 2016
(Table 4). It involves five columns for describing tax identifier,
NCBI gene ID, PubMed Unique Identifier (PMID), updated
date, and function description. After extracting function
descriptions of human genes, 650,079 descriptions remained.

3.1.2. Normalized Gene Symbol Vocabulary. The Human
Genome Organisation Gene Nomenclature Committee
(HGNC) [36] is responsible for approving unique symbols
and names for human loci, including protein-coding genes
and noncoding genes, to allow unambiguous scientific
communication. In this paper, genes in GeneRIFs were
normalized to HGNC gene symbols.
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FIGURE 2: The comparison of annotations in GeneRIFs and with annotations in GOA. (a) Histogram of the number of genes associated with
individual GO term. (b) Histogram of the number of DO terms associated with individual gene. (c) The correlation between term frequency
of gene by GeneRIFs and GOA. (d) The correlation between gene frequency of term by GeneRIFs and GOA.

3.1.3. Ontologies and Annotations. As shown in Figure 4,
GO organized BP terms in the Directed Acyclic Graph
(DAG) by “IS_A” relationship. Currently, GO contains 55,565
“IS_A” relationships between 28,654 BP terms, 12,375 “IS_A”
relationships between 10,159 MF terms, and 5,618 “IS_A”
relationships between 3,907 CC terms. GOA was compared
with our annotation result. After removing IEA and getting
rid of duplicate records of GOA, 168,246 associations between
13,920 GO terms and 16,724 genes remained.

DO is a first ontology to organize terms around human
disease, which describes each disease by a unique identifier,
a disease name, and its synonymous. In the current version,
it involved 7,124 “IS_A” relationships between 6,920 disease
terms.

3.2. Method for Annotating Human Genome. As shown in
Figure 5(a), we presented a framework, Gene2Function, to
annotate the function of human genome. Firstly, a raw text of
GeneRIF with functional description should be annotated by
a text mining tool named Open Biomedical Annotator (OBA)
[37], which provided an ontology-based web service that
annotates public datasets with biomedical ontology concepts

based on their textual metadata. As a result, the functional
description will be mapped to the corresponding ontologies,
such as GO and DO. Then, the Entrez gene identifier will
be converted into a normalized gene symbol. Here, HGNC
was exploited for normalizing and labelling the locus type
of gene, such as protein-coding genes, microRNA genes, and
IncRNA genes. Finally, each GeneRIF could be annotated to
a triple involving gene symbol, locus type, and functional
description.

All the GeneRIFs could be annotated based on the anno-
tation framework. Figure 5(b) gives an example of annotating
a GeneRIF with GO. “Enzyme activity” is a synonym of “cat-
alytic activity (GO:0003824),” which was identified by OBA.
And Entrez gene identifier “9” was converted into “NATI
(HGNC:7645)” based on HGNC. Through the annotation
framework, the annotation triple “mRNA, NATI, catalytic
activity” could be obtained.

4. Discussion

The importance of the functional annotations of genes had
been reflected in the previous annotation resource, such as
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GOA. Unfortunately, functional annotation resources of non-
coding RNA are very few, which lead to the lack of a compre-
hensive annotation resource involving protein-coding genes,
microRNA genes, and IncRNA genes. With the largest num-
ber of noncoding genes in the human genome, it is urgent to
provide functional annotation of these genes. In this study,
we presented a framework, Gene2Function, for annotating
GeneRIFs. As a result, a comprehensive functional annota-
tion resource of human genome was obtained based on the
framework, which could be accessed at http://www.bio-anno-
tation.cn/gene2function/. To evaluate the reliability, our
annotation result was compared with a prevalent resource
GOA. Subsequently, a network visualization of connectivity

of genes by their functional terms shows the usability of the
annotation result.

The annotation framework is based on a text mining tool
OBA [37]. Under the framework, the functional terms of
descriptions of GeneRIFs were annotated to GO and DO
terms. And gene symbols were mapped to a normalized
vocabulary of human gene HGNC [36], which makes it easy
to distinguish the locus type of gene, such as protein-coding
RNA, microRNA, and IncRNA.

The consistency test of the GeneRIFs and GOA (Figures
2(c) and 2(d)) shows the reliability of our annotation result.
Because of a small amount of common associations between



6 BioMed Research International

Biological_process GO:0008150

/\

Cellular component organization
or biogenesis GO:0071840

Cellular process GO:0009987

Cellular component organization
GO:0016043

Organelle organization
G0:0006996

Mitochondrion organization
GO:0007005

Mitochondrial genome maintenance
GO:0000002

FIGURE 4: A subgraph of the DAG for BP term “Mitochondrial genome maintenance (GO:0000002).” The arrow symbol represents an “IS_A”
link of GO. For example, “Mitochondrial genome maintenance (GO:0000002)” is linked to “Mitochondrion organization (GO:0007005)” by
an “IS_A” relationship.

Ontologies with
functional terms

Vocabularies with
normalized symbols

Text with Associations for

Raw text from ) ) )
Open biomedical annotator annotation ID mapping gene symbols

GeneRIF

(@)
Entrez gene identifier: 9

Description: NAT1 variants
that reduce or abolish enzyme
activity appear to protect
against spina bifida, and to
exert their influence via both
the maternal and the offspring

genotypes

Molecular_function
Catalytic activity
Transferase activity

mRNA: NAT1

Annotated with GO (HGNC: 7645)

Mapping IDs to HGNC

(b)

FIGURE 5: Diagram of functional annotation of human genome. (a) A framework to annotate functional description of human genome to
ontologies. (b) An example of annotating a GeneRIE.

genes and GO terms in both annotation resources, they = and IncRNA genes could be annotated with GO and other
could be complementary in the usage of protein-coding RNA  function terms (Table 1).

annotation. More GO terms were annotated in GOA (see

Section 2) suggesting it is more deep and serious than our Competing Interests

annotation results. In comparison, advantage of GeneRIFs is

that not only protein-coding genes but also microRNA genes ~ The authors declare that they have no competing interests.
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