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Abstract

Introduction: This study aims to evaluate deep learning (DL)-based artificial
intelligence (AI) techniques for detecting the presence of breast cancer on a
digital mammogram image.
Methods: We evaluated several DL-based AI techniques that employ different
approaches and backbone DL models and tested the effect on performance of
using different data-processing strategies on a set of digital mammographic
images with annotations of pathologically proven breast cancer.
Results: Our evaluation uses the area under curve (AUC) and accuracy (ACC)
for performance measurement. The best evaluation result, based on 349 test
cases (930 test images), was an AUC of 0.8979 [95% confidence interval (CI)
0.873, 0.923] and ACC of 0.8178 [95% CI 0.785, 0.850]. This was achieved
by an AI technique that utilises a certain family of DL models, namely ResNet,
as its backbone, combines the global features extracted from the whole mam-
mogram and the local features extracted from the automatically detected can-
cer and non-cancer local regions in the whole image, and leverages
background cropping and text removal, contrast adjustment and more training
data.
Conclusion: DL-based AI techniques have shown promising results in retro-
spective studies for many medical image analysis applications. Our study
demonstrates a significant opportunity to boost the performance of such tech-
niques applied to breast cancer detection by exploring different types of
approaches, backbone DL models and data-processing strategies. The promis-
ing results we have obtained suggest further development of AI reading ser-
vices could transform breast cancer screening in the future.

Key words: area under curve; artificial intelligence; breast cancer screening;
deep learning; mammogram.

Introduction

Breast cancer is the most common cancer and the sec-
ond most common cause of cancer-related death in Aus-
tralian women. Approximately one in seven Australian
women will be diagnosed with breast cancer in their
lifetime.1

BreastScreen Australia is a public health programme,
offering biennial mammographic screening targeted at

women aged 50–74 years (available from age 40). The
programme has successfully led to a 41–52% reduction
in mortality for screening participants and a 21% reduc-
tion in population-level breast cancer mortality in Aus-
tralia.2 However, screening has several significant
challenges:

• ACCURACY: Interpretation of mammograms by radiol-
ogists is subject to human variability and can result in
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detriment. Despite double reading of each mammo-
gram by two independent radiologists (followed by a
third arbitration read if disagreement), 34,001 Aus-
tralian women (in target age range 50–74 years) in
2018 were recalled for assessment, and later deter-
mined not to have breast cancer. These unnecessary
assessments create anxiety and may include digital
breast tomosynthesis, further mammographic views,
ultrasound, clinical examination and biopsy proce-
dures. In addition, 3842 women (in age range 50–
69 years screened in 2013–2015) were subsequently
diagnosed with breast cancer within 2 years after
receiving an ‘all-clear’ result.3

• PERSONALISATION: Screening is predominantly a
‘one-size-fits-all’ model and not tailored to risk.4

• SERVICE AND PARTICIPATION: Service delivery is
slow at 14 days for an ‘all-clear’ mammogram screen-
ing result and 28 days for an assessment appoint-
ment.3 Participation remains stubbornly flat at 55%.3

• COST: The current reading model is costly and labour-
intensive, and screening demand is growing with an
ageing population. Additionally, a workforce survey by
the Royal Australian and New Zealand College of Radi-
ologists (RANZCR) highlighted the potential undersup-
ply of breast imaging radiologists to support the
national breast screening programme in the future.5

AI has been held out as a potential solution to these
challenges. Recently, AI techniques, particularly those
based on DL models typically known as deep neural net-
works (DNN), have achieved promising results in many
medical image analysis applications. Accordingly, there is
a growing interest in using such techniques to assist in
interpretation of mammograms, for example detecting
the presence of breast cancer. Many relevant publications
have been produced since June 2019.6–15 Approaches
can be categorised into three types: local, global and
global + local as illustrated in Figure 1. Specifically, the
local approach uses image patches which correspond to
the local regions of cancer or non-cancer in mammo-
graphic images to train the DL model, applies the trained
model to some patches sampled from a mammographic
image to determine whether cancer is present in those
patches and accordingly detects the presence of cancer
in the whole mammogram. The global approach uses
whole mammographic images, and their associated
labels that indicate whether cancer is present in an
image to train the DL model and applies the trained
model to a mammographic image to determine whether
cancer is present in that image. The global + local
approach uses whole images to train a global DL model
and image patches obtained from whole images (manu-
ally or automatically) to train a local DL model, and
finally combines the global and local models to deter-
mine whether cancer is present in the whole image.

Comparatively, the local approach is less impacted by
irrelevant image details in the whole image and can

reveal the locations of cancers in the whole image. How-
ever, it often demands intensive human labour and
domain expertise to designate cancer and non-cancer
regions in the whole image and a computationally expen-
sive post-processing step to convert the patch-level pre-
diction into the image-level one. The global approach
avoids the costly requirement for manually localising
regions of interest in the whole image. However, it has to
tolerate image details irrelevant to discrimination of can-
cers and cannot directly localise cancers in the whole
image. The global + local approach addresses the draw-
backs of the standalone local or global approach and uni-
fies their strengths.

In this study, we examined all three AI approaches by
using digital mammograms from the BreastScreen Victo-
ria dataset, which are annotated by breast imaging radi-
ologists with ground truth confirmed by surgical
histopathology. Also, we studied the effects of applying
different data processing strategies (i.e. enhancing data
quality and increasing training data volume) on perfor-
mance.

Method

We evaluated the local, global and global + local
approaches, respectively. Particularly, the two
global + local techniques14,15 we examined mainly differ
in how image patches are obtained from the whole image
(i.e. manually or automatically) and how global features
(from the whole image) and local features (from the
image patch) are utilised. We also assessed data pro-
cessing strategies in terms of data quality enhancement
and data volume expansion. Our experiments were per-
formed on Swinburne supercomputer OzSTAR* with a
cluster of NVIDIA Tesla P100 GPUs.

Data description

Our study was based on a BreastScreen Victoria dataset
with 28,694 digital mammographic images (six mam-
mography machine vendors) from 7498 women with
screen-detected breast cancer between January 2014
and December 2017. The mammograms from different
vendors may have different photometric interpretation
modes, that is monochrome 1 (the lowest pixel value is
displayed white) and 2 (the lowest pixel value is dis-
played black). Mammographic images with breast can-
cer were annotated by BreastScreen radiologists with
circles indicating the sites of biopsy-proven cancer. Typ-
ically, each breast for every woman has medio-lateral
oblique (MLO) and cranio-caudal (CC) views. To facili-
tate DL model training and evaluation, all mammo-
grams in the monochrome 1 mode were converted to
the monochrome 2 mode by applying a simple linear
grayscale inversion. Also, all mammograms were con-
verted from the original DICOM format to the 8-bit PNG
format.
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Assessing AI approaches

Pre-processing data

To assess AI approaches, one set of data is required for
training the model and another set of data for testing the
trained model. We selected, from the BreastScreen Vic-
toria dataset, 8049 mammograms (3919 with cancers
and 4130 without cancers) as the training set and 930
images (434 with cancer and 496 without cancers) as
the test set. We only selected the images from those
mammography machines that are currently in opera-
tional use. Further, our selection of mammograms with
cancer was based on the requirements of no breast
implants or pacemakers, no annotation conflict from two
or more radiologists and only one cancer site on the
mammogram. In addition, we generated 8949 image
patches with and without cancers from some selected
mammograms and established 8375 (3988 with cancer
and 4387 without cancer) as the training set and 574
(379 with cancer and 195 without cancer) as the test set
for assessing the local approach.

When generating image patches without cancer, we
randomly selected some mammograms without annota-
tions and sampled the patches from them, where the
selected mammograms correspond to the ‘normal’ mam-
mograms from the same women with histologically pro-
ven cancer in the opposite breast. Further, the image
patches not within the density range of the patches con-
taining cancer were excluded to avoid the patches not
covering the breast tissue. Then, all image patches were
visually reviewed to ensure they are all centred on the
breast tissue.

We made a 90-10 split of the training set for training
and validation and used this setting to perform model
selection and hyper-parameter tuning. We applied data
pre-processing prior to model training, where the data
used for building and evaluating the model were resized,

normalised and augmented. Different techniques (to be
described below) employed different data pre-processing
strategies to seek better generalisation performance.
More details about data pre-processing can be referred
to in the Supporting Information.

Examining the local approach

We implemented the local approach by using ResNet5016

as a backbone DL model, pre-trained on the ImageNet17

dataset (the most widely used large-scale public dataset
of natural images) and re-trained on 8375 image patches
with cancer and non-cancer labels. The trained model
was applied to all image patches centred around each
pixel in a mammogram to produce a saliency map that
reflects the probability of cancer occurrence at each site
on that mammogram where the value of each pixel in
the saliency map is the output (in the probability form)
of the trained model. The saliency map can be directly
provided to radiologists or further processed, for exam-
ple thresholding the saliency map at a suitable level to
convert it to a binary mask which outlines tumour
regions on the mammogram.

Examining the global approach

Three DNNs (i.e. Inception-ResNet-V2,18 EfficientNetB619

and NASNetLarge20) which have shown state-of-the-art
performance in computer vision applications were imple-
mented as the backbone DL models in the global
approach. We initialised these models with their pre-
training models on ImageNet and re-trained them using
the pre-specified hyper-parameters on our training data
that were resized to 331 9 331 pixels for NASNetLarge
and 768 9 768 pixels for the other two DNNs, respec-
tively. To seek the best classification performance, we
applied hyper-parameter tuning to these models with
details provided in the Supporting Information.

Fig. 1. Illustration of the local, global and global + local approaches.
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Examining the global + local approach

We implemented and evaluated two global + local meth-
ods14,15 for breast cancer classification. Specifically,
global+local method 1 (GL1)14 relies on the strongly
supervised localisation of abnormal and normal regions
for building the local model (i.e. a patch classifier) on a
large set of manually obtained image patches, whereas
global+local method 2 (GL2)15 automatically obtains
image patches from the saliency map generated by a
global model and uses them to train the local model (and
thus avoid manual effort) in a weakly supervised man-
ner.

The GL1 follows a two-stage training pipeline. First, a
patch classifier is trained on a set of manually obtained
image patches with cancer and non-cancer labels. Sec-
ond, the parameters of the trained patch classifier are
used to initialize those of the whole image classifier
which is then trained on a set of whole images with
image-level annotations. The implementation details of
GL1 can be referred to in Shen et al.,14 where the Digital
Database for Screening Mammography (DDSM)21 dataset
was used to train the patch and whole image classifiers
and the following pre-trained models on DDSM are pro-
vided:

• VGG16: VGG1622 model used as both patch and whole
image classifiers,

• ResNet50: ResNet50 model used as both patch and
whole image classifiers and

• VGG16_ResNet50_hybrid: VGG16 model used for the
patch classifier and ResNet50 model used for the
whole image classifier.

We directly applied the pre-trained patch classifier† on
DDSM to initialise the whole image classifier and then re-
trained it using the default data pre-processing opera-
tions and hyper-parameter settings suggested in Shen
et al.14 on our training images resized to 1152 9 896 to
enable the use of the pre-trained model.

The GL2 has three modules, that is global, local and
fusion modules. First, the global module is trained on the
whole image to generate a saliency map that reflects the
coarse locations of malignant lesions. Next, several
highly possible malignant regions revealed by the sal-
iency map are extracted automatically as image patches
which are then used to train the local module. Finally,
the fusion module aggregates the global information
(generated by the global module) and the local details
(generated by the local module) to make a prediction on
the existence of malignant lesions in a mammogram.
The details of GL2 can be referred to in Shen et al.15

Several models pre-trained on the NYU breast cancer
screening dataset23 by using different hyper-parameter
settings are available. We explored three of such pre-
trained models‡ with ResNet22 and ResNet1816 used in
global and local modules, corresponding to three

different hyper-parameter settings, that is GL2-
ResNet22/18-Setting 1, GL2-ResNet22/18-Setting 2 and
GL2-ResNet22/18-Setting 3. To re-train them on our
own training data, we resized images to 2944 9 1920
(to enable the use of the pre-trained model), employed
the pre-trained model to initialise the model to be re-
trained, and used the default data pre-processing opera-
tions and hyper-parameter settings suggested in Shen
et al.15

Assessing data processing strategies

Data quality enhancement

We assessed background cropping with text removal
(BCTR) and contrast adjustment (CA) for enhancing data
quality. BCTR aims to improve image quality by removing
text and background areas which do not contain breast
regions by using image segmentation techniques.24 CA
aims to improve image quality by transforming the inten-
sity scales (i.e. the range of intensity values) of the
breast regions of all mammograms into a uniform one
(determined by selected mammograms that contain
breast regions with visually good appearance) and thus
the same contrast. Notably, CA is not used to enhance
the visual quality of mammograms to improve readability
for radiologists but used as a data normalisation opera-
tion for training the DL model. In this study, we use CA
to reduce the variations of intensity scales across the
breast regions of different mammograms to support the
AI model learning tissue structure properties alongside
intensity properties. More details about BCTR and CA can
be referred to in the Supporting Information.

Increasing the volume of training data

We studied the effect of increasing the training data vol-
ume on performance. Specifically, we selected additional
previously unused mammographic images with and with-
out cancers from the original dataset and added them
into the original training set to form an expanded training
set of 12,531 (cancer: 5888 and non-cancer: 6643)
mammograms. We maintained the same test set for a
fair comparison.

Results

Evaluation of AI approaches

Our implemented local approach was trained for 100
epochs. The trained model was tested on 574 image
patches, producing promising patch classification results
with AUC of 0.9765 [95% CI 0.9770, 0.9761] and ACC
of 0.9442 [95% CI 0.9446, 0.9437], where a bootstrap-
ping method was used to obtain the 95% confidence
interval (CI) for AUC and ACC with details in the Sup-
porting Information. The saliency maps generated by
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applying the trained model to some image patches are
illustrated in Figure 2, reflecting the probability of cancer
occurrence at each site within the patch.

Table 1 reports the classification results in terms of
AUC and ACC for the global approach implemented with
three different DL models (including Inception-ResNet-
V2, EfficientNetB6 and NASNetLarge) and the two
global + local approaches GL1 and GL2 implemented with
different DL models (GL1) or the same DL model under
different hyper-parameter settings (GL2). It can be
observed that

• With the global approach, the best AUC and ACC
results are achieved by Inception-ResNet-V2. After
performing hyper-parameter tuning, the performances
of Inception-ResNet-V2, EfficientNetB6 and NASNe-
tLarge are all improved. Due to space limit, the sal-
iency maps generated by applying the re-trained
models with hyper-parameter tuning to some mam-
mograms are provided in the Supporting Information.

• With the global + local approach, directly applying pre-
trained models obtained from DDSM and NYU datasets
to our data leads to reduced performance. We think
that the poor performance is due to the discrepancy in
data properties (e.g. intensity scales) between DDSM
and NYU datasets and ours. This is verified by the fact
that re-training pre-trained models on our data signifi-
cantly improves the performance as shown in Table 1.
For GL1, GL1-VGG16 achieves the best AUC and ACC
results. For GL2, GL2-ResNet22/18-Setting1 outper-
forms the other models in terms of the highest AUC
and the competitive ACC.

• The global + local approach GL2 which automatically
generates saliency maps and extracts suspicious
image patches around malignant regions from the
mammogram, demonstrates the most promising
results. Example saliency maps and image patches
generated by GL2 are provided in the Supporting
Information.

Figure 3 plots the receiver operating characteristic
(ROC) curves of the best performing models for the glo-
bal approach (i.e. Inception-ResNet-V2, EfficientNetB6
and NASNetLarge) and the global+local approaches GL1
and GL2 (i.e. GL1-VGG16 and GL2-ResNet22/18-
Setting1).

Evaluation of data quality enhancement

We assessed the effect of data quality enhancement in
terms of BCTR and CA by comparing the performances of
the five best performing models in Figure 3 with and
without applying these two operations. The results are
reported in Table 2.

It can be observed that applying BCTR leads to per-
formance improvement for GL1-VGG16 and GL2-
ResNet22/18-Setting1 but degradation for Inception-
ResNet-V2, EfficientNetB6 and NASNetLarge. In fact,
BCTR results in smaller images with changed sizes
which, after being resized to a square shape required by
the three DL models (to enable using the pre-trained
model), causes ratio aspect distortion and thus perfor-
mance degradation. This is not the case for GL1 and
GL2 approaches because their DL models do not require
square-shaped input images. Applying CA consistently
improves performance across all tested cases because
CA reduces the discrepancy of the intensity scales of
breast regions. GL2-ResNet22/18-Setting1 with BCTR
and CA achieves the best performance among all tested
cases.

Evaluation of increasing training data volume

To evaluate the effect of increasing the volume of train-
ing data on performance, we used an expanded training
set and repeated the experiment described in the previ-
ous section. The results are reported in Table 3. It can be
observed that using additional training data leads to con-
sistent performance improvement (over those reported

Fig. 2. Saliency maps (second and fourth columns) generated by the local approach applied to example image patches (first and third columns).
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in Table 2) across all tested cases. Notably, the overall
best performance with AUC of 0.8979, 95% CI [0.873,
0.923] and ACC of 0.8178, 95% CI [0.785, 0.850], is
achieved by GL2-ResNet22/18-Setting1.

Discussion

Medical images, including mammograms, are unique with
high resolution and often very small, subtle regions of

Table 1. Comparison of the classification performances of using the re-trained models with (w/) and without (w/o) hyper-parameter tuning in the global

approach and using pre-trained and re-trained models in two global + local approaches, where the best AUC and ACC in the global approach and two

global + local approaches are highlighted in bold

Models in the global approach Re-trained model w/o hyper-parameter tuning Re-trained model w/ hyper-parameter tuning

AUC [95% CI] ACC [95% CI] AUC [95% CI] ACC [95% CI]

Inception-ResNet-V2 0.8398 [0.812, 0.869] 0.7333 [0.696, 0.752] 0.8625 [0.836, 0.890] 0.7572 [0.725, 0.790]

EfficientNetB6 0.8394 [0.808, 0.869] 0.7387 [0.713, 0.770] 0.8459 [0.818, 0.874] 0.7540 [0.719, 0.786]

NASNetLarge 0.8264 [0.794, 0.858] 0.7430 [0.717, 0.775] 0.8393 [0.807, 0.868] 0.7479 [0.717, 0.784]

Models in two global + local approaches Pre-trained model Re-trained model

AUC [95% CI] ACC [95% CI] AUC [95% CI] ACC [95% CI]

Global + local approach 1 (GL1)

GL1-ResNet50 0.6236 [0.584, 0.659] 0.5677 [0.539, 0.588] 0.7779 [0.744, 0.817] 0.6871 [0.653, 0.725]

GL1-VGG16 0.6087 [0.564 - 0.650] 0.5613 [0.522 - 0.598] 0.8636 [0.837, 0.891] 0.7580 [0.729, 0.793]

GL1-VGG16_ResNet50_hybrid 0.6273 [0.585, 0.668] 0.5845 [0.579, 0.656] 0.8009 [0.766, 0.834] 0.6935 [0.654, 0.728]

Global + local approach 2 (GL2)

GL2-ResNet22/18-Setting1 0.5638 [0.520, 0.609] 0.5452 [0.507 - 0.584] 0.8758 [0.850, 0.900] 0.7790 [0.746, 0.811]

GL2-ResNet22/18-Setting2 0.6128 [0.572, 0.655] 0.5634 [0.527, 0.602] 0.8719 [0.843, 0.897] 0.7806 [0.747, 0.811]

GL2-ResNet22/18-Setting3 0.5774 [0.534, 0.621] 0.5398 [0.502, 0.579] 0.841 [0.812, 0.870] 0.745 [0.712, 0.774]

Fig. 3. Receiver Operating Characteristic (ROC) curves of the best models for Inception-ResNet-V2, EfficientNetB6, NASNetLarge, GL1, and GL2.
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interest. In breast screening programmes, radiologists
need to use their visual perception and acuity to examine
a whole image and explore smaller regions of interest to
conclude whether they view a mammogram as suspicious
for breast cancer. Significant variation can be observed in
the reporting of images such that the current BreastSc-
reen Australia standard is double reading of every mam-
mogram followed by a third arbitration read if needed.3,25

A range of international studies6–15 has applied AI
techniques to assist in reading mammograms and seek-
ing to address the unique challenges arising therein. Our
study employed a high-quality, multi-vendor dataset of
digital mammograms with cancer being annotated (and

confirmed on surgical histopathology) and explored a
range of DL-based AI techniques with different types of
approaches and backbone DL models as well as different
data processing strategies. Specifically, we focused on
global and global + local approaches and studied the
effects of enhancing the data quality and increasing the
training data volume on performance. The global + local
approach with ResNet22 and ResNet18 used as its global
and local DL modules, respectively, when BCTR and CA
are applied and the training data volume is increased,
produces the overall best result with AUC of 0.8979,
[95% CI 0.873, 0.923] and ACC of 0.8178 [95% CI
0.785, 0.850].

Table 2. Comparison of the classification performances of five DL-based AI techniques with (w/) and without (w/o) data quality enhancement, where the

overall best AUC and ACC are highlighted in bold

DL-based AI techniques w/o BCTR w/ BCTR

AUC [95% CI] ACC [95% CI] AUC [95% CI] ACC [95% CI]

Inception-ResNet-V2

w/o CA 0.8625 [0.836, 0.890] 0.7572 [0.725, 0.790] 0.8496 [0.819, 0.878] 0.7543 [0.721, 0.787]

w/ CA 0.8694 [0.841, 0.894] 0.7726 [0.743, 0.804] 0.8650 [0.838, 0.891] 0.7664 [0.734, 0.797]

EfficientNetB6

w/o CA 0.8459 [0.818, 0.874] 0.7540 [0.719, 0.786] 0.8427 [0.812, 0.871] 0.7389 [0.704, 0.773]

w/ CA 0.8521 [0.821, 0.880] 0.7638 [0.732, 0.798] 0.8467 [0.814, 0.878] 0.7498 [0.714, 0.784]

NASNetLarge

w/o CA 0.8393 [0.807, 0.868] 0.7479 [0.717, 0.784] 0.8366 [0.803, 0.864] 0.7380 [0.702, 0.770]

w/ CA 0.8481 [0.816, 0.876] 0.7557 [0.723, 0.789] 0.8435 [0.811, 0.870] 0.7483 [0.713, 0.781]

GL1-VGG16

w/o CA 0.8636 [0.837, 0.891] 0.7580 [0.729, 0.793] 0.8714 [0.846, 0.899] 0.7667 [0.734, 0.799]

w/ CA 0.8745 [0.850, 0.900] 0.7785 [0.747, 0.810] 0.8757 [0.852, 0.903] 0.7796 [0.748, 0.811]

GL2-ResNet22/18-Setting1

w/o CA 0.8758 [0.850, 0.900] 0.7790 [0.746, 0.811] 0.8783 [0.851, 0.903] 0.7806 [0.747, 0.814]

w/ CA 0.8810 [0.855, 0.905] 0.7946 [0.765, 0.826] 0.8877 [0.865, 0.911] 0.8011 [0.770, 0.833]

Table 3. Comparison of the classification performances of the five DL-based AI techniques trained on the expanded training set with (w/) and without (w/o)

data quality enhancement, where the overall best AUC and ACC are highlighted in bold

DL-based AI techniques w/o BCTR w/ BCTR

AUC [95% CI] ACC [95% CI] AUC [95% CI] ACC [95% CI]

Inception-ResNet-V2

w/o CA 0.8670 [0.839, 0.892] 0.7823 [0.746, 0.808] 0.8598 [0.834, 0.885] 0.7759 [0.744, 0.805]

w/ CA 0.8767 [0.850, 0.905] 0.7838 [0.749, 0.819] 0.8666 [0.846, 0.900] 0.7780 [0.747, 0.814]

EfficientNetB6

w/o CA 0.8611 [0.832, 0.888] 0.7605 [0.730, 0.798] 0.8553 [0.818, 0.883] 0.7465 [0.714, 0.785]

w/ CA 0.8636 [0.833, 0.893] 0.7684 [0.735, 0.800] 0.8587 [0.830, 0.889] 0.7568 [0.722, 0.790]

NASNetLarge

w/o CA 0.8549 [0.827, 0.882] 0.7564 [0.724, 0.788] 0.8431 [0.812, 0.871] 0.7463 [0.711, 0.780]

w/ CA 0.8599 [0.830, 0.888] 0.7615 [0.728, 0.795] 0.8522 [0.823, 0.880] 0.7553 [0.721, 0.788]

GL1-VGG16

w/o CA 0.8698 [0.845, 0.897] 0.7774 [0.749, 0.813] 0.8720 [0.847, 0.901] 0.7783 [0.750, 0.815]

w/ CA 0.8773 [0.858, 0.910] 0.7877 [0.752, 0.822] 0.8787 [0.852, 0.905] 0.7888 [0.754, 0.830]

GL2-ResNet22/18-Setting1

w/o CA 0.8817 [0.857, 0.906] 0.7860 [0.756, 0.817] 0.8872 [0.861, 0.910] 0.7946 [0.765, 0.823]

w/ CA 0.8878 [0.861, 0.912] 0.7968 [0.767, 0.830] 0.8979 [0.873, 0.923] 0.8178 [0.785, 0.850]
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There are challenges with drawing conclusions from
comparisons of AUC and ACC values unless the same
data are used for training and testing. However, these
results are similar to those reported in recently published
studies on screening data, for example McKinney et al.8

reported the best AUC of 0.889 on a UK screening data-
set. It shows the potential to replace the second reader
with an AI reader in screening programmes (non-
inferior) and the use of an AI reader in single reader
diagnostic services like in the USA (superior).8

Whilst the potential to see such AI services become
part of screening programmes in the future is clear, sig-
nificant technical and clinical challenges still need to be
overcome. Furthermore, the ethical, legal and social
implications of introducing AI into healthcare systems
need to be further developed.

Technical

There remains opportunity for future work to improve
performance. Some key opportunities are described
below:

• The DL models used in either the global or the local
approaches are large-scale, leading to expensive com-
putational cost and preventing use of a large batch
size for training (due to memory limit) to enable DL
models to converge more quickly than using a small
batch size. Therefore, it is highly desirable to study
the effect of using lightweight DL models.

• For GL2, we re-trained the pre-trained DL models
based on NYU data by using our own training data,
where CA was applied to our training data to reduce
its difference from NYU data in terms of image proper-
ties. More data enhancement strategies including
better CA methods need further exploration to make
the best use of pre-trained models and thus boost
performance.

• In the current implementation of GL1 and GL2, the
default hyper-parameter settings as suggested in Shen
et al.14 and Shen et al.15 were used. Tuning hyper-
parameters in GL1 and GL2, given the availability of
sufficient computing resources, may lead to perfor-
mance improvement.

Clinical

The current evaluation of AI techniques needs to shift
from simply understanding AUC and ACC performance to
clinically meaningful outcomes in a population screening
programme. A scoping review of AI for early detection of
breast cancer26 highlighted few studies that report com-
parative estimates for AI and radiologists. Key focus
areas for our future work included as follows:

• Demonstrating comparative performance in low cancer
prevalent ‘real-world’ retrospective, prospective feasi-
bility studies and randomised controlled trials,

• Reducing unnecessary recalls and interval cancers,

• Distinguishing prognostically significant breast can-
cers,

• Understanding the performance of AI techniques in
various risk cohorts (covariate-adjusted AUC) such as
screening round, age, density and family history
alongside opportunities for risk prediction enabling
personalisation of screening pathways,

• Explainability and reporting of AI reading results,

• Generalisability in other screening jurisdictions in Aus-
tralia and globally.

Ethical, legal and social

Finally, the ethical, legal and social implications need to
be examined and addressed for successful translation
into the healthcare setting.27 Here, our future work is
focused on

• Quality management of AI techniques to prevent bias
and drift, and to ensure stated clinical performance
achieved by them,

• Clinician and client acceptance, experience and work-
flow,

• Legal obligations.

In conclusion, using AI in screening programmes has
major transformative possibilities. Our study revealed
the potential of applying DL-based AI techniques to
mammogram reading. The challenge is now shifting
towards testing prospectively, demonstrating clinically
meaningful outcomes and addressing ethical, legal and
social implications. This is now the focus of our ‘Trans-
forming Breast Cancer Screening with Artificial Intelli-
gence’ or ‘BRAIx’ research programme.
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Notes

*https://supercomputing.swin.edu.au/
†We used the open source code and pre-trained patch
classifiers from https://github.com/lishen/end2end-all-
conv to re-train the GL1 model on our data.
‡We used the open source code and pre-trained models
from https://github.com/nyukat/GMIC to re-train the
GL2 model on our data.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article at the publisher’s web-site:

Appendix S1. Supplementary material from the evalua-
tion of deep learning models for detection of breast can-
cer on mammography.
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