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Summary: Inactivated-SARS-CoV-2 vaccine induced lower NAb positivity in solid organ transplant, 

rheumatic diseases, cancer, and HIV infected groups compare to controls. Specific cellular response 

did not differ significantly between groups. A boosting vaccination strategy should be considered in 

these vulnerable patients. 
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Abstract  

Background: Inactivated SARS-CoV-2 vaccines have been widely implemented in low- and middle-

income countries. However, immunogenicity in immunocompromised patients has not been 

established. Herein, we aimed to evaluate immune response to CoronaVac vaccine in these patients. 

Methods: This prospective cohort study included 193 participants with five different 

immunocompromising conditions and 67 controls, receiving two doses of CoronaVac 8-12 weeks 

before enrollment. The study was conducted between May and August 2021, at Red de Salud UC-

CHRISTUS, Chile. Neutralizing antibodies (NAb) positivity, total anti-SARS-CoV-2 IgG antibodies (TAb) 

concentration, and T cell response were determined.  

Results:  NAb positivity and median neutralizing activity were 83.1% and 51.2% for the control group 

versus 20.6% (p<0.0001) and 5.7% (p<0.0001) in the solid organ transplant (SOT) group, 41.5% 

(p<0.0001) and 19.2% (p<0.0001) in the autoimmune rheumatic diseases group, 43.3% (p=0.0002) 

and 21.4% (p=0.0013) in the cancer patients with solid tumors group, 45.5% (p<0.0001) and 28.7% 

(p=0.0006) in the HIV infected group, 64.3% (p=n.s.) and 56.6% (p=n.s.) in the hematopoietic stem 

cell transplantation (HSCT) group, respectively. TAb seropositivity was also lower for the SOT (20.6%, 

p<0.0001), rheumatic diseases (61%, p=0.0001) and HIV groups (70.9%, p=0.0032), compared to 

control group (92.3%). On the other hand, the number of IFN-y Spot Forming T Cells specific for 

SARS-CoV-2 tended to be lower but did not differ significantly between groups. 

Conclusions: Diverse immunocompromising conditions markedly reduce the humoral response to 

CoronaVac vaccine. These findings suggest a boosting vaccination strategy should be considered in 

these vulnerable patients.  

 

Keywords: SARS-CoV-2; COVID-19; vaccine; CoronaVac; inactivated vaccine; Immunocompromised 

Patient 
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Clinical Trials registration:  NCT04888793 

  



Acc
ep

ted
 M

an
us

cri
pt

 

 5 

Introduction         

The COVID-19 pandemic has ravaged across the globe claiming >4 million lives (1). New vaccine 

platforms such as adenovirus vectored and nucleic acid vaccines have succeeded in inducing robust 

cellular and humoral immune responses (2). Novel mRNA vaccines such as the BNT162b2 (Pfizer-

BioNTech) or mRNA-1273 (Moderna) have reported a stunning >94% efficacy against COVID-19 (3, 

4). However, many low- and middle-income countries have had access to traditional inactivated 

vaccines approved under emergency use, such as CoronaVac (Sinovac), BBIBP-CorV (Sinopharm 

Beijing), or BBV152 (Bharat Biotech) SARS-CoV-2 vaccines (5). Inactivated vaccines have 

demonstrated relatively lower levels of neutralizing antibodies (NAb) and T-cell responses versus 

other vaccines, and require to be assisted by adjuvants with one or more boosters to establish 

immunological memory (2). A preliminary study in healthy individuals showed lower NAb 

concentrations obtained by CoronaVac compared to mRNA-based vaccine (6). This is relevant since 

neutralization antibodies could predict immune protection following SARS-CoV-2 vaccination and in-

vitro neutralization titers remain a correlate of protection from SARS-CoV-2 variants (7, 8). 

In Chile, COVID-19 was first detected in March 2020. Eighteen months later official numbers reached 

> 1.6 million confirmed cases and >37,000 deaths. As of January 2nd 2021, over 90% of its target 

population has received two vaccine doses and CoronaVac has been the main vaccine utilized in over 

70% of cases (9). Phase III trial in 18-59-year-old subjects indicated 83.5% of CoronaVac efficacy 

against symptomatic COVID-19 (10). Locally, the reported prevention and mortality effectiveness 

were 65.9% and 86.3% respectively (11).   

Immunocompromised patients represent a vulnerable population at higher risk of severe COVID-19 

and death from COVID-19, and there are very limited data on efficacy of SARS-CoV-2 vaccines in 

these patients. The present study aimed to evaluate the immune response induced by an inactivated 

anti-SARS-CoV-2 vaccine CoronaVac in adults with different acquired immunosuppressing conditions, 

as compared with healthy volunteers. 

 

Methods  

Study population and design      

Adult patients with pre-defined acquired immunosuppressive conditions under medical care at Red 

de Salud UC-CHRISTUS (Santiago, Chile) and collaborating centers (Hospital Clínico Universidad de 
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Chile, Santiago, Chile) having received two doses of CoronaVac vaccine separated by 4 weeks 

(standard schedule), with the second dose administered 8-12 weeks before enrollment, were invited 

to participate between May 12th and August 6th, 2021. In addition, participants without 

immunosuppression vaccinated with two doses of CoronaVac at the same time-period, were 

selected for the control arm. Patients reporting previous SARS-CoV-2 infection or having received 

plasma or intravenous immunoglobulin therapy in the previous 60 days were excluded.  

Specific inclusion criteria for each cohort were the following: 1. Cancer cohort: diagnosis of solid 

tumor (excludes leukemias, lymphomas, or multiple myelomas) and currently receiving 

chemotherapy. 2. Hematopoietic stem cell transplantation (HSCT) cohort: allogeneic with active 

immunosuppressive treatment or autologous transplantation, in the last 5 years. 3. Solid organ 

transplant (SOT) cohort: liver, kidney or heart transplant in the last 5 years, and active 

immunosuppressive treatment. 4. HIV cohort: HIV infection under antiretroviral therapy with CD4+ 

cell count ≤ 500 cells/mm3 and HIV viral load <200 copies/ml. 5. Autoimmune rheumatic diseases 

cohort: rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, relapsing polychondritis, 

Behcet’s disease or juvenile idiopathic arthritis, receiving chronic immunomodulatory treatment 

with anti-TNF, anti-IL6 or anti-IL17 agents.  

Blood sampling: A single blood sample was taken between 8-12 weeks (+/-72h) after the second 

dose of CoronaVac vaccine.  

Outcomes: The primary outcome was humoral immunogenicity assessed by the proportion of 

participants with positive SARS-CoV-2 NAb 8-12 weeks after CoronaVac vaccine. Secondary 

immunogenicity outcomes were the percentage of neutralizing activity, expressed as inhibition 

percentage of NAb, IgG seropositivity measured as total IgG anti- spike protein (S1) domain of SARS-

CoV-2 (TAb), geometric mean concentration (GMC) of anti-S1 IgG, and specific T cell immune 

response to SARS-CoV-2 antigens. The study was registered with ClinicalTrials.gov (NCT04888793). 

 

Laboratory assessments         

Determination of anti-SARS-CoV-2 IgG antibodies  

A commercial ELISA (SARS-CoV-2 QuantiVac, Euroimmun, Lübeck, Germany) was used for 

quantitative in vitro determination of human TAb in serum samples. Data were expressed in Relative 

Units per ml (RU/ml) and values ≥11 RU/ml were interpreted as positive according to manufacturer 

instructions. 
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Determination of neutralizing antibodies against SARS-CoV-2 

The presence of NAbs against SARS-CoV-2 was determined using a SARS-CoV-2 Surrogate Virus 

Neutralization Test (sVNT) Kit (GenScript, New Jersey, USA), according to the manufacturer 

instructions. The test assesses the presence/absence of NAb and allows the interpretation of the 

inhibition rate as Inhibition = [1 – (OD value of Sample/OD value of Negative Control)] × 100%. A 

percentage of neutralization ≥30 at a 1:10 sample dilution was considered positive.  

The assessment of Variant of Concern neutralization was performed using an sVNT developed based 

on previous reports (12). RBD unconjugated proteins from SARS-CoV-2 variant D614G was obtained 

from GenScript (#Z03483) and P.1-Gamma variant was obtained from SinoBiological (#40592-

V08H86). The percentage of inhibition was defined as: [OD450nm value of negative control-OD450nm 

value of sample] / [OD450nm value of negative control*100]. 

Cellular immunity assessments 

The presence of IFN- Spot Forming T Cells (SFC) specific for SARS-CoV-2 was determined with 

human IFN-/IL-4 double-color ELISPOT assay (Immunospot), using isolated Peripheral Blood 

Mononuclear Cells (PMBCs), obtained as previously described (13). T cells were stimulated with 

Mega Pools (MPs) of peptides derived from the SARS-CoV-2 proteome, which include 2 sets of 15-

mer peptides derived from the Spike protein (MP-S) and the remaining proteins (MP-R) and 2 sets of 

8- to 9-mer peptides derived from the whole proteome as previously described (14). A total of 3x105 

cells were incubated with each respective stimulus and incubated for 48 h at 37ºC, 5% CO2, (13). As 

positive controls, PBMCs were stimulated with Concanavalin A and MPs of peptides derived from 

Cytomegalovirus (CMV) and stimulation with DMSO 1% was included as negative control to 

determine unspecific response. IFN-/IL-4 production was measured as indicated by the 

manufacturer and SFCs were counted on an ImmunoSpot® S6 Micro Analyzer. SFC obtained in DMSO 

stimulation were subtracted to the SFC obtained for each MP stimulation and expressed as SFC per 

3x105 cells. 

Statistical analyses      

The sample size was calculated with a significance level of 5% and a statistical power of 90% to 

detect differences of 15% in post-vaccine NAb seropositivity for immunocompromised patients 

compared to the control group. The seropositivity in the immunocompetent population was 

estimated to be 97% according to the results of the Phase I/II study of the CoronaVac vaccine at 28 



Acc
ep

ted
 M

an
us

cri
pt

 

 8 

days post vaccination (15). The total number of patients to be recruited was 86 for each study arm 

with total participants 516. Dichotomous variables were compared with the chi-square test or Fisher 

exact test, and continuous variables with t-test or Mann-Whitney test. Confounding effects and 

effect modifier of potential covariates such as age, body mass index and time from vaccination were 

explored using generalized linear models. Binary variables such as seropositivity in NAb or TAb were 

analyzed with logistic regression, whereas NAb inhibition percentage was examined using a beta 

regression model. The quantitative measurement of anti-SARS-Cov2 IgG antibodies was expressed in 

geometric means and analyzed with generalized linear models with gaussian family and identity link 

functions, respectively. Exponentiated coefficients of the log transformed dependent variable 

provided the effects of the covariates on the geometric mean. These models were chosen based on 

the characteristics of the dependent variables as well as their goodness of fit using the Akaike 

information criterion (AIC). Analyses and graphs were performed using STATA version 14 and 

GraphPad Prism 9.0.1. 

Ethics 

This study was approved by the institutional review board of the Pontificia Universidad Católica de 

Chile. Informed consent was obtained from all patients. 

 

Results               

Description of cohorts        

A total of 260 healthy individuals and patients with immunocompromising conditions consented to 

this study. We excluded a total of 21 participants that were found not to fulfil protocol 

inclusion/exclusion criteria. Thus, final groups of analysis included 65 healthy controls, 34 SOT 

patients, 41 rheumatic diseases patients, 30 solid tumors cancer patients, 55 HIV infected patients 

and 14 HCST patients (Figure 1). Clinical and epidemiological characteristics of enrolled patients are 

described in Table 1.  

Humoral immune response        

The proportion of individuals with positive NAb and positive TAb were 40.8% and 63.8% respectively, 

for all immunocompromised patients, vs 83.1% and 92.3% in the control group (p<0.001). The 

proportion of patients who reached NAb positivity and the amount of neutralizing activity were 

significantly lower in all immunocompromised cohorts compared to the control group, except for the 
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HSCT group (Figure 2a-b). Neutralizing response was particularly impaired in SOT group with only 

20.6% of participants reaching NAb positive response and a median neutralizing activity of 5.66% 

(IQR 3.7-11.7) versus 51.21% (IQR 34.6-68.6) in the control group (p<0.0001). Multivariable analysis 

adjusting for age, body mass index, and time from vaccination to blood sampling did not modify 

these findings (Table 2). TAb positivity and concentration were also significantly lower in the SOT 

(20.6% and GMC 5.6 AU ml-1, both p<0.0001), rheumatic diseases (61% and GMC 15.2 AU ml-1, both 

p<0.001) and HIV (70.9% and GMC 21.2 AU ml-1, both p<0.005) groups, compared to the control 

group (92.3% and GMC 36.8 AU ml-1) (Figure 2c-d). Neither TAb seropositivity in cancer group nor in 

HSCT group differ from the control group. These findings were consistent in multivariable analysis 

(Table 2). As an exploratory analysis, we evaluated other co-variables that would impact the humoral 

response. We found that a negative NAb was strongly associated with the use of prednisone (87.32% 

vs. 12.68%, p=0.001) and mycophenolate (71.43% vs. 28.57%, p= 0.007). For all study participants, 

we found a strong correlation between TAb concentration and NAb neutralizing activity expressed as 

inhibition percentage (r = 0.864, p<0.0001) with an AUC of 0.965 (95% CI 0.943-0.988) and a cut-off 

of TAb ≥26 RU/ml best predicting NAb seropositivity (92% sensitivity and 94% specificity) (Figure S1). 

The neutralization capacity against the SARS-CoV-2 variants D614G and Gamma was tested for 9-13 

sera from control and immunosuppressed patients having resulted with a positive NAb response in 

previous assays. These studies were performed using a sVNT that evaluated the capacity of sera to 

inhibit the binding of RBDs from these SARS-CoV-2 variants to the recombinant ACE2 receptor. As 

shown in Figure S2A, a significant reduction of neutralization of D614G variant was observed for the 

rheumatic disease and cancer groups, as compared to control. For neutralization of Gamma variant, 

a higher level was observed in the SOT group as compared to the control group (Figure S2B). 

Inhibition levels for the Gamma variant show a significant reduction as compared to the inhibition 

level observed for the D614G for all the groups, except for the SOT group (Figure S2C). 

Cellular immune response       

Subgroups of enrolled patients were evaluated for IFN- SFC upon stimulation with MP of SARS-CoV-

2 derived peptides. As shown in Figure 3, the IFN-y response in the immunocompromised groups 

when stimulated with 15-mer peptides (MP-S+MPR, Figure 3A) or 8-9 mer peptides (CD8A+CD8B, 

Figure 3B) tended to be lower but did not differ significantly as compared to the healthy controls. 

Similarly, no significant differences were observed between groups for IL-4 SFC (Figure S3). 
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Patients’ follow-up 

Four non-severe breakthrough COVID-19 cases occurred in enrolled participants (1.5%) from 

different groups after a mean period of 14 weeks elapsed from full vaccination. Two of these 

breakthrough cases occurred in patients with negative TAb and NAb. 

 

 

 

Discussion       

Our study demonstrates that humoral immune response induced by inactivated SARS-CoV-2 vaccine 

CoronaVac is significantly reduced in patients with immunocompromising conditions. As reported 

with other currently available vaccines, our findings are coherent with a higher-than-expected rate 

of breakthrough SARS-CoV-2 infections reports in immunocompromised patients (16). Given these 

findings, vaccinated immunocompromised patients should consider continuing nonpharmaceutical 

interventions such as mask wearing; social distancing in personal, work, and clinical settings; and 

avoiding crowded settings (17). 

Vaccine responses were markedly reduced in SOT recipients with only 20% attaining a positive  

neutralizing response. These patients - that require life-long immunosuppression regimens and 

sometimes highly immunosuppressive induction therapy – also develop a weak humoral and cellular 

response after two doses of mRNA vaccine, with described seropositivity of anti–SARS-CoV-2 IgG 

TAb ranging between 19% and 50% (18-20). A previous study found that less than 10% reached a 

positive neutralizing response with two doses of mRNA vaccine (21). Accordingly, recent cohort and 

population studies describe higher rate for COVID-19 breakthrough infection and worse outcomes 

compared with persons without immune dysfunction; with up to 27% of vaccinated SOT recipients 

requiring hospitalization, >10% required admission to the intensive care unit, and >5% dying (17, 22, 

23). 

Oncological patients have also been reported to be at high risk of severe COVID-19 with an 

estimated fatality rate of 25.6% versus 2.7% in the general population (24). Studies in patients 

undergoing chemotherapy show reduced immunogenicity after two doses of the BNT162b2 mRNA 

vaccine (25). Our study shows that cancer patients with solid tumors receiving chemotherapy 

despite having comparable TAb response, attain a lower neutralizing capacity versus control group 
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with this vaccine. Conversely, in HSCT patients, humoral response did not differ from control, 

although low number of participants, heterogeneity in underlying disease and in type of transplant 

in this group may preclude concluding. 

Immune function in people living with HIV (PLHIV) is impaired due to depletion of the CD4 T-cells 

and dysfunction of cellular and humoral immunity leads to weakening in vaccine response (26).  

SARS-CoV-2 vaccine response in PLHIV has been scarcely assessed, with no study reporting so far on 

inactivated vaccines. Two studies have described that ChAdOx1 nCoV-19 elicits similar humoral, and 

cell mediated immune response compared to healthy individuals (27, 28). Subsequently, PLHIV 

vaccinated with mRNA-1273 or BNT162b2 exhibited robust immune responses comparable to those 

in healthy subjects (29). On the contrary, our study indicates that in PLHIV, humoral response to this 

inactivated SARS-CoV-2 vaccine is significantly impaired, a finding that may relate to the fact that we 

only included participants with CD4 cell count ≤500 cell/mm3. 

In inflammatory arthritis, both the disease and biologic immunomodulators used in its treatment can 

affect cellular and humoral immunity (30). We found a significant weaker humoral response in 

patients with autoimmune rheumatic diseases on biologic agents. An impairment in humoral 

response has also been described with BNT162b2 vaccine in other autoimmune rheumatic diseases, 

associated with older age and the use of methotrexate, steroids, mycophenolate, abatacept and 

rituximab (31, 32). A recent meta-analysis involving various autoimmune inflammatory diseases 

found over 90% seroconversion rates for mRNA vaccines for patients on anti-TNF, but combination 

of anti-TNF with immunomodulators resulted in an attenuated vaccine response as compared to 

anti-TNF monotherapy (33). CoronaVac was recently evaluated in rheumatic diseases patients in two 

studies conducted in Brazil: in the first, patients with immune mediated diseases were less likely to 

have detectable anti-S1 IgG TAb versus healthy controls (34), whereas in the second lower anti-S1 

IgG TAb seroconversion (70.4% vs 95.5%, p < 0.001) and NAb positivity (56.3% vs 79.3%, p< 0.001) 

were detected 6 weeks after vaccination in the autoimmune rheumatic diseases group versus the 

control group (35). 

The development of vaccines to prevent SARS-CoV-2 infection has mainly relied on the induction of 

NAb to the Spike protein of SARS-CoV-2, but there is growing evidence that T-cell immune response 

can contribute to protection as well. We know that mRNA vaccines elicit Spike-targeted T-cell 

responses, intracellular cytokine staining, and cytokine profile (36). We observed no differences 

when each subgroup was compared to control group. These results could be explained either by the 

reduced number of patients, or because CoronaVac is still able to promote to some extent the 

expansion of IFN- secreting T-cells in immunocompromised population.  
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The present study suggests that the current scheme of two doses CoronaVac is insufficient to induce 

an acceptable immune response in immunocompromised subjects, thus, booster doses or primary 

vaccination with more than two doses are needed. Multiple vaccine doses can boost the primary 

immune response by providing supplementary innate immune activation signals, and promoting 

further expansion of previously activated T- and B-cell clones (37). A third dose in 

immunocompromised patients is already being recommended in France, Israel, Chile, United States, 

and several other countries. Significant improvement in immunogenicity after administration of a 

third dose of the BNT162b2 vaccine to SOT recipients has been shown in one study (38). However, a 

second study reported that 51% of the kidney transplant recipients who did not respond after two 

doses of mRNA-1273 vaccine did not develop anti–SARS-CoV-2 antibodies after the third dose, 

especially those receiving triple immunosuppression (39). Multiple doses strategies must be 

followed with long term effectiveness and immunogenicity studies.  

As study limitations, we did not evaluate the prevalence of anti–SARS-CoV-2 antibodies before 

vaccination. However, we excluded participants reporting a previous positive SARS-CoV-2 RT-qPCR, 

specific antibodies, or a clinical history of COVID-19. Secondly, we did not attain the pre-specified 

sample size, given the strict enrollment period and all participants having been vaccinated nationally 

rapidly and in a very short period. However, the differences in humoral response between the 

immunocompromised and control groups were higher than expected, which allowed reducing the 

number needed to demonstrate significance. Furthermore, adjustment for other relevant covariates 

such as age did not modify the findings. Thirdly, we did not evaluate immune response to other 

relevant SARS-CoV-2 variants such as Delta. However, our previous data in immunocompetent 

subjects showed that NAb against Delta were equivalent to the levels reached for the Gamma 

variant with CoronaVac vaccine (40).  

Strengths of our study include the inclusion of an immunocompetent control group, and assessment 

of both full humoral and memory T-cell responses. Also, this is the first study to report the response 

to two doses of CoronaVac inactivated SARS-CoV-2 vaccine in PLHIV and SOT. 

Lastly, systematic assessing of immune response in all vaccine recipients to verify immunogenicity 

status is currently not recommended since no validated biomarkers for both humoral and cellular 

immunity correlate with protection, as suggested by previous analyses of the immune response of 

CoronaVac breakthrough cases in immunocompetent adults (41). Here, we observed that a 

substantial proportion of immunocompromised recipients have no detectable NAb at all, and 

probably remain at a high risk for COVID-19 even after vaccination. Our results, fully support the 
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necessity of additional vaccine doses in primary vaccination schemes in the immunocompromised 

population.  
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Legends to tables and figures 

Table 1. Baseline characteristics of enrolled participants from immunocompromised and control. 

Table 2. Frequency of neutralizing antibodies (NAb); median neutralizing activity expressed in inhibition 

percentage; frequency of total anti SARS-CoV-2 IgG antibodies (TAb) and TAb GMC, 8-12 weeks after the 

second dose of CoronaVac vaccination in patients with immunosuppression conditions in comparison to 

control group 

 

Figure 1. Study flow-chart 

 

Figure 2. Humoral response against SARS-CoV-2 in healthy and immunocompromised individuals 8-

12 weeks after vaccination with CoronaVac. Distribution for (a) neutralizing antibodies (NAb) 

positivity (≥30% of inhibition rate) (b) neutralizing activity (median (IQR) of percentage of inhibition), 

(c) frequency of total IgG anti S1 positivity (≥11 relative units per ml, RU/ml) and (d) total IgG anti S1 

GMC (95%CI), RU/ml). Healthy control (n=65), solid organ transplant (SOT) (n=34), rheumatic diseases 

(n=41), cancer (n=30), HIV-infected (n=55) and hematopoietic stem cell transplant (HSCT) (n=14)). 

Dotted line in 2b, d show seropositivity cutoff. Statistical significance was calculated with Fisher test 

(1a-b), Mann-Whitney (1c-d), and two-tailed p values are indicated when significant. *p ≤0.05, **p≤ 

0.01, ***p≤0.001 and ****p≤0.0001.  

 

Figure 3. Evaluation of IFN-g secreting Spot Forming T cells in healthy controls and 

immunosuppressed patients after vaccination with CoronaVac. PBMCs (3x105 cells) obtained 

between 8-12 weeks after a second dose of CoronaVac from heathy controls (n=29), solid organ 

transplant (SOT) (n=30), cancer (n=25), rheumatic diseases (n=27), HIV-infected (n=26) and 

hematopoietic stem cell transplant (HSCT) (n=11) were stimulated with 15-mer megapool of 

peptides (MP-S+MP-R) (a), or 8-9-mer megapool of peptides (CD8A+CD8B) (b) from SARS-CoV-2 

proteins. IFN-g-secreting spot forming T cells (SFC) were quantified by ELISPOT. Medians with IQR 

are shown. 
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Table 1. Baseline characteristics of enrolled participants from immunocompromised and control 
group. 
 Total (n=239) Cont

rol 
grou

p 
(n=6

5) 

Solid 
organ 
trans
plant 
group 
(n=34) 

Rheu
matic 
diseas

es 
group 
(n=41) 

Can
cer 
gro
up 
(n=
30) 

HIV 
infec
ted 

grou
p 

(n=5
5) 

Hematopoietic stem cell 
transplant group (n=14) 

Demographics       

  Mean age (range) 44.3 
(51.
0) 

54.0 
(54.0) 

51.7 
(45.0) 

57.7 
(46.
0) 

46.8 
(52.0

) 

47.4 (49.0) 

  Female (n, %) 44 
(67.
7) 

16 
(47.1) 

30 
(73.2) 

17 
(56.
7) 

2 
(3.6) 

4 (28.6) 

  Current smoking (n, %) 12 
(18.
5) 

1 (2.9) 8 
(19.5) 

2 
(6.7

) 

17 
(30.9

) 

0 (0.0) 

  BMI (mean, SD) 24.7 
(4.2) 

28.1 
(6.6) 

29.5 
(4.9) 

25.7 
(3.4

) 

26.9 
(3.7) 

28.8 (6.0) 

Comorbidities       

  Hypertension (n, %) 4 
(6.2) 

14 
(41.2) 

15 
(36.6) 

8 
(26.
7) 

9 
(16.4

) 

2 (14.3) 

  Diabetes (n, %) 1 
(1.5) 

10 
(29.4) 

6 
(14.6) 

8 
(26.
7) 

6 
(10.9

) 

2 (14.3) 

  Asthma or COPD (n, %) 5 
(7.7) 

0 (0.0) 4 (9.8) 1 
(3.3

) 

3 
(5.5) 

0 (0.0) 

  Chronic renal disease (n, %) 0 
(0.0) 

1 (2.9) 0 (0.0) 0 
(0.0

) 

0 
(0.0) 

0 (0.0) 

  Chronic liver disease (n, %) 0 
(0.0) 

3 (8.8) 0 (0.0) 0 
(0.0

) 

0 
(0.0) 

0 (0.0) 

Current immunosuppressive or 
immunomodulator therapy 

      

  Prednisone (n, %) - 23 
(67.6) 

22 
(53.7) 

0 
(0.0

) 

1 
(1.8) 

0 (0.0) 

  Prednisone dose >15 mg/d (n, %) - 3 (8.8) 0 (0.0) 0 
(0.0

) 

0 
(0.0) 

0 (0.0) 

  Hydroxichloroquine (n, %) - 0 (0.0) 8 
(19.5) 

0 
(0.0

) 

0 
(0.0) 

0 (0.0) 

  Sulphasalazine (n, %) - 0 (0.0) 7 
(17.1) 

0 
(0.0

) 

0 
(0.0) 

0 (0.0) 

  Leflunomide (n, %) - 1 (2.9) 10 
(24.4) 

0 
(0.0

) 

0 
(0.0) 

0 (0.0) 

  Methotrexate (n, %) - 0 (0.0) 20 
(48.8) 

0 
(0.0

) 

0 
(0.0) 

3 (21.4) 

  Mycophenolate mofetil (n, %) - 25 
(73.5) 

1 (2.4) 0 
(0.0

) 

0 
(0.0) 

0 (0.0) 

  Tacrolimus (n, %) - 30 
(88.2) 

0 (0.0) 0 
(0.0

0 
(0.0) 

2 (14.3)  
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) 

  Cyclosporine (n, %) - 3 (8.8) 0 (0.0) 0 
(0.0

) 

0 
(0.0) 

1 (7.1) 

  TNF inhibitors1 (n, %) - - 40 
(97.6) 

- - - 

  Anti-IL6 (tocilizumab) (n, %) - - 1 (2.4) - - - 

  Anti-IL17 (secukinumab) (n, %) - - 0 (0.0) - - - 

  Cancer chemotherapy (n, %) - - - 30 
(10
0) 

- - 

Induction immunosuppressive      
therapy 

      

  Basiliximab (n, %) - 19 
(55.9) 

- - - - 

  Anti-thymocyte globulin (n, %)          
- 

4 
(11.8) 

- - - - 

Antibody-mediated rejection  
therapy 

- - - - - - 

  Anti-CD20 (rituximab) (n, %) - 2 (5.9) - - - - 

  Anti-thymocyte globulin (n, %) - 1 (2.9) - - - - 

Years since transplant       

  <=1 - 29 
(85.3) 

- - - 10 (71.4) 

  1->=3 - 4 
(11.8) 

- - - 4 (28.6) 

  >3-5 - 1 (2.9) - - - 0 (0.0) 

Type of cancer        

Colorectal (n,%) - - - 14 
(46.
6) 

- - 

Breast (n, %) - - - 6 
(20.
0) 

- - 

Páncreas (n, %) - - - 2 
(6.7

) 

- - 

Lung (n, %) - - - 2 
(6.7

) 

- - 

Other2 (n, %) - - - 6 
(19.
8) 

- - 

Rheumatic disease 

Rheumatoid arthritis (n, %) - - 31 
(75.6) 

- - - 

Psoriatic arthritis (n, %) - - 9 
(22.0) 

- - - 

Juvenile idiopathic arthritis (n, %) - - 1 (2.4) - - - 

Type of transplant        

Liver (n, %) - 20 
(58.8) 

- - - - 

Kidney (n, %) - 11 
(32.4) 

- - - - 

Liver & kidney (n, %) - 2 (5.9) - - - - 

Kidney & páncreas (n, %) - 1 (2.9) - - - - 
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HSCT3 allogeneic  (n, %) - - - - - 5 (35.7) 

HSCT3 autologous (n, %) - - - - - 9 (64.3) 

CD4 cell count (mean, SD) - - - - 358.
8 

(100.
0) 

- 

 
1. TNF inhibitors: infliximab, golimumab, adalimumab, etanercept, certolizumab pegol 
2. Other cancers: peritoneum, gastric, liver, ovarium, testicular and small bowel 
3. HSC: hematopoietic stem cell transplant 
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Table 2. Frequency of neutralizing antibodies (NAb); median neutralizing activity expressed in inhibition 

percentage; frequency of total anti SARS-CoV-2 IgG antibodies (TAb) and TAb GMC, 8-12 weeks after the second 

dose of CoronaVac vaccination in patients with immunosuppression conditions in comparison to control 

 

NAb positivity1 Neutralizing activity TAb positivity2 TAb quantification 

n (%) 

OR (95% 
CI)3, p 
value 

adOR 
(95% CI) 

3, p value 

Median 
%, 

(IQR) 

ß 
regression3, 

p value 

adß 
regression3, 

p value n (%) 

OR (95% 
CI) 3, p 
value 

GMC 
(RU ml-

1), 
95%CI 

ß 
regression3, 

p value 

Control 
(n=65) 

54 
(83.1) 

-- -- 
51.21 
(34.6-
68.6) 

-- -- 
60 

(92.3) 
-- 

36.77 
(30.0-
45-05) 

-- 

Solid 
organ 
transplant 
(n=34) 

7 
(20.6) 

0.05 
(0.02-
0.15), 

p<0.001 

0.07 
(0.02-
0.19), 

p<0.001 

5.65 
(3.67-
11.7) 

-1.23, 
p<0.001 

-0.28, 
p<0.001 

7 
(20.6) 

0.02 
(0.01-
0.07), 

p<0.001 

5.64 
(3.45-
9.24) 

0.15, 
p<0.001 

Rheumatic 
diseases 
(n=41) 

17 
(41.5) 

0.14 
(0.06-
0.35), 

p<0.001 

0.19 
(0.07-
0.49), 

p=0.001 

19.23 
(11.27-
38.98) 

-0.82, 
p<0.001 

-0.19, 
p<0.001 

25 
(61.0) 

0.13 
(0.04-
0.39), 

p<0.001 

15.17 
(10.36-
22.22) 

0.41, 
p<0.001 

Cancer 
(n=30) 

13 
(43.3) 

0.15 
(0.06-
0.41), 

p<0.001 

0.18 
(0.06-
0.49), 

p=0.001 

21.44 
(12.86-
52.34) 

-0.60, 
p=0.002 

-0.14, 
p=0.002 

28 
(93.3) 

1.17 
(0.21-
6.39), 

p=0.859 

24.71 
(17.04-
35.82) 

0.67, 
p=0.062 

HIV+ 
(n=55) 

25 
(45.5) 

0.17 
(0.07-
0.39), 

p<0.001 

0.19 
(0.08-
0.44), 

p<0.001 

28.72 
(15.74-
54.13) 

-0.39, 
p=0.029 

-0.09, 
p=0.027 

39 
(70.9) 

0.20 
(0.07-
0.60), 

p=0.004 

21.20 
(15.98-
28.13) 

0.58, 
p=0.002 

HSCT 
(n=14) 

9 
(64.3) 

0.37 
(0.10-
1.31), 

p=0.122 

0.45 
(0.12-
1.71), 

p=0.241 

56.57 
(21.46-
85.71) 

0.11, 
p=0.742 

 

0.02, 
p=0.742 

12 
(85.7) 

0.50 
(0.09-
2.89), 

p=0.438 

34.98 
(17.75-
68.97) 

0.95, 
p=0.887 

1Number of participants reaching the cut-off (≥30%) in SARS-CoV-2 neutralizing antibodies (NAb) for test positivity. 2Number of 
participants reaching the total anti-SARS-CoV-2 S1 IgG antibodies (TAb) cut-off (≥11 UR/ml). 3All comparisons are versus Control 
Group. Abbreviations: OR: Odds Ratio; CI: Confidence interval: IQR: Inter Quartile Range; GMC: Geometric mean concentration: RU: 
Relative units; HIV: human Immunodeficiency Virus; HSCT: Hematopoietic Stem Cell Transplant 
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Figure 1 
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Figure 2 
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Figure 3 

 


