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Abstract: The aberrant aggregation of proteins is implicated in the onset and pathogenesis of
a wide range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases.
Mounting evidence indicates that misfolded protein oligomers produced as intermediates in the
aggregation process are potent neurotoxic agents in these diseases. Because of the transient and
heterogeneous nature of these elusive aggregates, however, it has proven challenging to develop
therapeutics that can effectively target them. Here, we review approaches aimed at reducing
oligomer toxicity, including (1) modulating the oligomer populations (e.g., by altering the kinetics
of aggregation by inhibiting, enhancing, or redirecting the process), (2) modulating the oligomer
properties (e.g., through the size–hydrophobicity–toxicity relationship), (3) modulating the oligomer
interactions (e.g., by protecting cell membranes by displacing oligomers), and (4) reducing oligomer
toxicity by potentiating the protein homeostasis system. We analyze examples of these complementary
approaches, which may lead to the development of compounds capable of preventing or treating
neurodegenerative disorders associated with protein aggregation.

Keywords: misfolded protein oligomers; countermeasures; kinetics; structure–toxicity relationships;
membrane protection; protein homeostasis; Alzheimer’s disease; Parkinson’s disease

1. Protein Aggregation and Its Links with Neurodegenerative Diseases

A wide variety of human disorders, including Alzheimer’s disease (AD) and other forms of
dementia, are associated with ageing and unhealthy lifestyles [1]. These diseases are still largely
incurable and represent a terrible burden for our societies and healthcare systems [2,3]. Over 50 million
people currently suffer from dementia worldwide, a number estimated to triple within the next three
decades unless effective treatments become available [4]. These conditions are characterized by the
presence of aberrant proteinaceous deposits in affected tissues [5–10].

To understand the molecular origins of these widespread disorders, we highlight two observations.
The first observation is about the generic nature of the phenomenon of protein misfolding and
aggregation [11]. The amide and carbonyl groups of the backbone of the polypeptide chains of
protein molecules have a strong tendency to form hydrogen bonds. Because the polypeptide backbone
is common to all proteins independent of their amino acid sequences, under suitable conditions,
almost any protein can access the amyloid state [1,12]. While at low protein concentrations, hydrogen
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bonds form intra-molecularly, leading to the formation of protein secondary structures, such as
α-helices and β-sheets that are characteristic of the native states of proteins, at high concentrations, the
formation of inter-molecular hydrogen bonds is favored, so that proteins tend to self-assemble into a
highly ordered structures known as amyloid fibrils, which are stabilized by a network of hydrogen
bonds [12]. The second observation is that the cellular concentrations of proteins are typically close to
the critical values that define whether the most stable state is the native or the amyloid state [13–15].
This observation, which has been referred to as “life at the edge of solubility” [13], has an evolutionary
origin. Proteins that are highly soluble are subject to an evolutionary drift in which random mutations
that are neutral in functional terms decrease the overall solubility of the proteins. This type of mutation
goes unchallenged by natural selection until the solubility decreases to the critical level, beyond
which negative selection prevents further reductions in solubility [13]. As a result, proteins tend to be
supersaturated in the cellular environment and they are, therefore, on the edge of aggregation [16,17].
Although it is perhaps surprising, we now know that proteins commonly aggregate under physiological
conditions [15], and it is only the presence of a strong protein homeostasis system that prevents the
progressive accumulation of large protein deposits [12]. Overall, the natural tendency of proteins to
aggregate when they are supersaturated predisposes certain cell and tissues to protein aggregation
upon stress or ageing [18–21].

These observations lead to the conclusion that in order to prevent or treat protein misfolding
diseases, one should find ways to pharmacologically augment or protect the protein homeostasis
system that regulates protein aggregation. The pharmacological interventions that we review in the
following sections are meant to address precisely this point.

2. Misfolded Protein Oligomers and Their Cytotoxic Effects

The abundance of amyloid deposits in the brains of patients afflicted by neurodegenerative
diseases initially implicated mature amyloid fibrils as the central toxic agents. Similar deposits are
observed for numerous other neurodegenerative diseases, including chronic traumatic encephalopathy,
dementia with Lewy bodies, and Parkinson’s disease (PD). Although in this review we generally
analyze the links between protein aggregation and human disease, we focus predominantly on
the proteins associated with AD and PD, because they have been investigated more extensively.
More recently, it has been realized that amyloid fibrils may not be directly responsible for toxic
gain-of-function. Instead, transient, metastable oligomeric intermediates may be more neurotoxic [22].
An important role for these aggregates started to emerge over two decades ago, when pre-fibrillar
species comprised of the 42-residue form of amyloid-β peptide (Aβ42), termed Aβ-derived diffusible
ligands (ADDLs), were reported as potent neurotoxic species and shown to induce cellular death at
nM concentrations [23]. Antibodies against ADDLs, but not monomeric or fibrillar Aβ, were found
to interact with AD brain samples [24–26]. Soon afterwards, other soluble assemblies were similarly
described as toxic forms of Aβ [27,28]. Many studies have since shown the presence of oligomers in the
brain of patients affected by AD [29] and PD [30] and have reported that these aggregates are seminal
in the induction of cellular dysfunction [31–35]. In a similar way, the onset of PD is characterized by
the presence of Lewy bodies and Lewy neurites comprised of the α-synuclein protein (αS) in the brains
of patients with the disease, and evidence indicates the source of neuronal death is the oligomeric
phase of α-synuclein [36]. It is now well accepted that oligomers are key pathological species in protein
misfolding diseases associated with amyloid deposition [7,31,37–39].

Misfolded protein oligomers can be formed as intermediates in the aggregation reaction of
various amyloidogenic peptides or proteins from primary and secondary nucleation processes or
from fragmentation of mature fibrils [37]. The heterogeneous nature of the oligomers that form
during the aggregation process is reflected in the report of many different types of these assemblies,
including Aβ*56 [32], ADDLs [23], amylospheroids [40], annular protofibrils of αS [41], dimers [29],
fibrillar oligomers [42], covalently stabilized oligomers [43], globulomers [44], kinetically trapped
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αS oligomers [45], mice 3×Tg-AD oligomers [46], prefibrillar oligomers [47], secreted oligomers [48],
spherical amyloid intermediates [49], and zinc-stabilized Aβ40 oligomers [50] (Figure 1a).

a  Modulating the concentration or lifetime of oligomers

b Targeting oligomer physicochemical properties c  Protecting cell membranes from oligomers

Characterized toxic amyloid oligomers:
-Ab*56
-ADDLs
-Amylospheroids
-Annular protofibrils of aS
-Cross-linked oligomers
-Dimers
-Fibrillar 
-Globulomers
-Kinetically trapped aS oligomers
-Mice 3xTg-AD oligomers
-Prefibrillar
-Secreted oligomers
-Spherical amyloid intermediates
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-Ion channels
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Less hydrophobic oligomers

Larger oligomers

More hydrophobic oligomers

Smaller oligomers

Increasing toxicity

Figure 1. Possible strategies to target the toxicity of misfolded protein oligomers. With the goal
of reducing the toxicity of misfolded protein oligomers, promising methods include: (a) targeting
oligomer populations by inhibiting (orange), enhancing (yellow), or redirecting (purple) the protein
aggregation reaction (k1, primary nucleation; k2, secondary nucleation; k+, elongation), (b) targeting the
properties responsible for the ability of oligomers to induce cell membrane dysfunction by binding to
specific receptors or generally to cell membranes, or (c) modifying cell membranes to prevent disruptive
oligomer interactions, as exemplified by trodusquemine (TRO). A subset of the toxic oligomers that
have been characterized thus far [23,29,32,40–50] are listed in (a) to illustrate the striking heterogeneity
in their structures, physiochemical properties, and biological activities.

These species have been found to cause cellular dysfunction in a wide range of manners, including
by interacting with the lipid and protein components of the cell [31], resulting in the disruption of
homeostatic mechanisms and the induction of cell death [51,52]. Oligomeric species of disease-related
aggregated proteins are highly toxic owing to their structural properties, such as small size and high
hydrophobicity [53–57], which makes them highly diffusible and prone to interact with cell proteins
and membranes. Notably, a direct relationship has been established between the cytotoxicity of
amyloid aggregates and their molecular weight [57]. In particular, it has been illustrated that small
A11 antibody-positive aggregates reduced the viability of cells by up to 80% in comparison to fibrils,
which only reduced cellular health by approximately 20% [31].

A great deal of effort has therefore been devoted to the discovery of inhibitors of protein aggregation,
which suppress oligomer generation through a variety of mechanisms [58–64], leading to reports of
hundreds of compounds that can potentially reduce the rate of protein self-assembly. It has been
much more difficult, however, to demonstrate the efficacy of these compounds in the clinical setting
to become FDA-approved, disease-modifying therapeutics [3,65]. This situation can be attributed, in
part, to the limited understanding of the mechanisms by which aggregation occurs, of its effects on the
different cell types that comprise specific vulnerable tissues, of the means by which these compounds
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modify the aggregation process, and, critically, to their administration at too late a stage in a clinical
situation where the amyloid load has already reached high levels [37].

In this review, we analyze recent strategies to suppress the toxicity linked to neurodegenerative
diseases with a critical focus on demonstrated molecular agents that have shown the ability to combat
the toxicity caused by oligomers. In particular, we assess species that (1) modulate populations of
oligomers by perturbing their respective protein aggregation reactions via inhibiting, enhancing,
or redirecting its reactive flux network (Figure 1a and Section 3), (2) target directly the properties
of oligomers linked to their ability to induce cell damage (Figure 1b and Section 4), (3) protect cell
membranes by targeting oligomer interactions (Figure 1c and Section 5), or (4) preserve the health
of cells through all of the above by regulation of the protein homeostasis network (see Section 6).
These approaches demonstrate examples of potential therapeutics designed to suppress the negative
effects of toxic oligomeric assemblies, as well as highlight the diversity of mechanisms by which
amyloid aggregation can be targeted. The hope is that future work using these promising lead strategies
will culminate in the development of therapeutically relevant treatments that can arrest the devasting
effects of neurodegeneration by targeting specifically misfolded protein oligomers.

3. Targeting the Kinetics of Formation of Misfolded Protein Oligomers

Due to the transient nature of the oligomers produced during the aggregation processes,
many therapeutics rely on modulating the kinetics of oligomer assembly to reduce the populations of
oligomers that are responsible for inducing cell death. We describe here three modes by which the
kinetics can be altered using therapeutics, including aggregation inhibition, acceleration, or redirection,
where inhibition reduces oligomer concentrations, acceleration shifts the reactive flux towards the final
fibrillar form to reduce the lifetime of oligomers, and redirection leads to the formation of off-pathway
species that are less toxic than on-pathway oligomeric aggregates (Figure 1a).

3.1. Inhibiting Protein Aggregation to Reduce the Number of Oligomeric Species

A series of recent studies on the modulation of the kinetics of Aβ and αS oligomer assembly
has revealed that this type of intervention can suppress the cytotoxicity associated with protein
aggregation [56,58,61–64,66–68]. While the exact mechanism of inhibition varies significantly for
the diverse array of small molecules, antibodies, molecular chaperones, and other agents that have
demonstrated efficacy in delaying the aggregation process, the biological importance of inhibition
is that the inhibitor prevents oligomer formation to reduce their populations by preventing some
step in the aggregation process of their respective oligomer assembly reaction. Additionally, some of
these molecules can not only interrupt the formation of oligomer aggregates, but also induce the
disaggregation of toxic oligomers into inert monomers, therein preventing the accumulation of
oligomeric species.

Following the development of a highly reproducible aggregation assay and the quantification
of the microscopic steps implicit to the Aβ42 aggregation reaction [69,70], numerous studies have
been reported that dissected the specific molecular processes inhibited by candidate therapeutic
compounds. Aβ42 aggregation is characterized by the formation of oligomers by primary nucleation,
where a relatively low population grow and become fibrillar aggregates. This process is stochastically
limited until a small but critical concentration of fibrillar aggregates have formed, after which time
monomer-dependent secondary nucleation on fibril surfaces dominates the proliferation of further
Aβ42 aggregates through a positive feedback loop [58,69,71]. During secondary nucleation, monomeric
proteins are catalytically converted to oligomeric aggregates on the fibril surface, and these oligomers
can then grow into fibrillar aggregates. The nature of this multiplicative process dictates that the
majority of oligomers are formed from secondary pathways during the aggregation reaction once
the critical concentration threshold of fibrillar aggregates is exceeded [72,73]. We note that these
kinetic assays require highly pure monomeric peptide as the starting material, as the presence of
higher-order aggregates at the start of an aggregation reaction modulates the mechanism of protein
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assembly [56,58,74]. Moreover, all assays based on amyloid-specific fluorescent dyes have the potential
to generate false positive results, in particular when a prospective therapeutic shares structural similarity
to the probe being used. For example, some conformations of candidate inhibitors, including quinones
of catecholamines, polyphenols, and flavonoids, have been found to quench the fluorescence of
thioflavin T (ThT), an amyloid-specific dye commonly used in aggregation assays [75]. It is therefore
important to run independent validation experiments to confirm the mechanism of action of a candidate
therapeutic, which can be accomplished through the use of label-free methods, including atomic force
microscopy (AFM) [66,67,76,77], transmission electron microscopy (TEM) [76], or dot-blot assays [66] on
aggregation mixtures over time using conformation or sequence-specific antibodies in the absence and
presence of centrifugation. In doing so, it is possible to gain mechanistic insight into the microscopic
steps governing the protein aggregation reaction using ThT kinetics while safeguarding against the
possibility of false positives that can result from molecules that bind to amyloid aggregates and induce
the displacement or quenching of ThT or other amylophilic dyes rather than directly impacting amyloid
fibril formation [74].

By adopting this type of approach, the anticancer drug bexarotene was characterized as a potent
inhibitor of primary nucleation in the Aβ42 aggregation process [56], and the subsequent derivatization
of this small molecule found that structurally similar agents could inhibit different and specific
microscopic steps, to include primary and secondary nucleation, to varying degrees [58]. A related
strategy leveraged the high specificity of rationally designed antibodies to generate a library scanning
the sequence of monomeric Aβ42, and a subsequent kinetic analysis revealed that the antibodies
selectively targeted specific microscopic steps in a similar fashion [62]. Additionally, phage display was
used to optimize the antibody inhibitory power by targeting specifically fibril-dependent secondary
nucleation [78].

A recent study has compared the mechanism of action of four clinical stage antibodies
(aducanumab, bapinezumab, gantenerumab, and solanezumab), revealing that while they all modulate
Aβ aggregation, they do so with different effects on Aβ oligomers [68]. Aducanumab was found
to be particularly effective in binding Aβ fibrils, thereby blocking the production of Aβ oligomers
by secondary nucleation [68], in addition to directing the fibrils themselves towards degradation.
This antibody is currently under consideration by the FDA and, if approved, will be the first
disease-modifying treatment for AD. By contrast, the other three antibodies did not show major effects
on Aβ oligomer production. Gantenerumab and bapinezumab were found to bind both Aβmonomers
and fibrils, and to inhibit mainly fibril elongation, and solanezumab was found to bind Aβ monomers,
and to inhibit primary nucleation. Similarly to aducanumab, BAN2401, which is a humanized version
of an antibody raised in mice immunized with Aβ42 protofibrils [79] and is in Phase 3 clinical trials,
has the ability to potently inhibit Aβ protofibril accumulation in AD mice [80]. Of note, crenezumab
has been reported to target different Aβ conformations, including oligomers, and to reduce oligomer
levels in cerebrospinal fluid (CSF) [81,82].

Molecular chaperones have also been characterized to attenuate Aβ42 aggregation, including
DNAJB6, which targets primary nucleation [83], the transport protein transthyretin, which inhibits both
primary and secondary nucleation processes in Aβ aggregation [77]; a Brichos domain, which inhibits
specifically the monomer-dependent secondary nucleation microscopic step [63]; and clusterin,
which attenuates fibril elongation at low concentrations [71]. The latter process may not be
therapeutically relevant, as inhibiting elongation can redirect monomeric proteins from fibril ends
to their surface, where autocatalysis leads to the generation of additional oligomeric and fibrillar
aggregates. By quantifying a structure–kinetic–activity relationship for drug discovery against Aβ42, it
was found that hit compounds, including those with minimal inhibitory power in their original form,
could be rationally optimized from a kinetic perspective to target the production of oligomers [84].
Collectively, these results facilitate hope that hit compounds, including small molecules and antibodies,
can be further optimized using rationally designed processes to target specifically the oligomeric toxins
that are implicit and central to protein aggregation [58,62,84].
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It has also been reported that naturally occurring polyphenols, including epigallocatechin-3-gallate
(EGCG), curcumin, resveratrol, gallic acid, and oleuropein, as well as naturally occurring polyphenolic
biflavonoids, and polyphenol molecules containing two flavone groups, such as amentoflavone,
bilobetin, sequoiaflavone, sotetsuflavone, podocarpuflavone, ginkgetin, isoginkgetin, and sciadopitysin,
can reduce the cytotoxicity of oligomers by inhibiting protein aggregation [85,86]. Many studies
have shown that both polyphenols and polyphenolic bioflavonoids interact with the aggregation
profiles of Aβ and αS either by destabilizing existing β-sheet rich fibrils to create less toxic monomers
or through directly inhibiting the formation of soluble oligomers [85]. Studies have revealed that
polyphenolic biflavonoids interact with the Aβ aggregation reaction through inhibiting Aβ fibrillization
and disaggregating pre-formed fibrils, significantly reducing their cytotoxicity. Notably, bioflavonoids
possess hydrophobic and hydrophilic groups that are proposed to facilitate their binding to toxic
aggregates through hydrophobic and aromatic interactions, as well as hydrogen bonds. Additionally,
biflavonoids have an increased number of aromatic rings compared to monoflavonoids, which may
potentially afford them increased effectiveness in inhibiting fibrillization [85,86]. The interaction of
curcumin, a natural polyphenol, with αS can induce both the disaggregation of large pre-formed
aggregates, effectively creating more non-toxic monomers, as well as the prevention of oligomerization
by increasing the solubility of αS [86,87].

Aminosterols, a family of molecules including trodusquemine and squalamine, can inhibit and
accelerate protein aggregation depending on the protein under investigation [61,64,76]. Trodusquemine
and squalamine inhibitαS oligomer formation [61,64], while trodusquemine has been found to accelerate
Aβ aggregation [76]. Both aminosterols inhibit αS aggregation by preventing the lipid-induced
initiation process [61,64], therein attenuating the rate of the oligomerization reaction. Further studies of
trodusquemine revealed its ability to also inhibit fibril amplification in αS aggregation, demonstrating
its ability to exert a multi-step inhibition mechanism [64].

Another class of molecules exhibiting anti-amyloidogenic behavior are tetracyclines and
anthracyclines [86,88,89]. Tetracyclines, notably tetracycline and doxycycline, and the anthracycline
iododoxorubicin, can disrupt pre-formed oligomers and reduce their toxicity [88,89]. Due to structural
similarities between tetracyclines and anthracyclines, it has been proposed that the inhibition tendencies
of these molecules originate from their binding to fibril structures. Moreover, a variety of probe and
diagnostic dyes, including Congo red, methylene blue, crystal violet, acid fuchsin, and fast green FCF,
have revealed the inhibitory capacity of these molecules [86,90–93].

Finally, recent studies have shown that it may be possible to target Aβ42 andαS in their monomeric
forms to prevent their aggregation through the use of small molecules [66] or nanobodies [67]. From a
kinetic perspective, monomer sequestration would be expected to reduce primary nucleation, secondary
nucleation, and elongation [83], and despite the challenges associated with binding an intrinsically
disorder protein, these approaches hold promise towards combatting the formation and proliferation
of oligomeric species. Collectively, all of the inhibitors described in this section can function to
suppress amyloid toxicity by reducing the number of toxins that are formed during the aberrant protein
aggregation reactions central to numerous proteins and peptides.

3.2. Enhancing Protein Aggregation to Reduce the Populations of Oligomeric Species

Studies focused on preventing oligomer cytotoxicity through controlling the kinetics of their
formation have revealed a limited set of molecules that act in a net beneficial way by accelerating the
protein aggregation reaction. Molecules acting through the acceleration mechanism are postulated to
function by shortening the lifetime of the oligomeric phase of the aggregation reaction by stimulating
their conversion to the less toxic fibrillar form. Despite the possibility of the enhancement strategy as a
potential mode to suppress oligomer toxicity, a relatively small number of studies have demonstrated
the enhancement of fibril formation with the result that toxicity is reduced in comparison to the body
of work that is established for inhibitory compounds.



Int. J. Mol. Sci. 2020, 21, 8651 7 of 33

Congo red has been reported to promote β-sheet formation and Aβ aggregation, which may
act to reduce the lifetime and corresponding populations of oligomeric species, but it has also been
suggested to attenuate aggregation by stabilizing monomeric or partially folded intermediates of
the peptide [86,93]. Another dye, methylene blue, has demonstrated differential effects dependent
upon the protein under investigation, where it was found to mitigate Aβ oligomerization through
the promotion of Aβ fibrillization [92] and to inhibit prion protein aggregation [94]. The nonsteroidal
anti-inflammatory drug sulindac sulfide similarly was characterized to deplete toxic Aβ oligomers
by enhancing the rate of fibrillization in vitro [95], and the luminescent-conjugated oligothiophene
p-FTAA was determined to suppress the number of toxic Aβ aggregates by generating amyloid fibrils
that in this case were less hydrophobic and more resistant to proteinase K digestion [96].

Through a creative strategy, the racemic combination of mirror-image enantiomers of Aβ42
was shown to cause an acceleration in its rate of aggregation with a reduced propensity to form
soluble oligomers, therein demonstrating that the enantiomeric mixing stimulated the formation of
non-toxic fibrils [97]. The orcein-related small molecule O4 has also been characterized for its ability to
bind hydrophobic amino acids in Aβ and catalyze the Aβ polymerization reaction. Therein, it was
demonstrated that the O4-mediated acceleration of fibril formation decreases the concentration of
oligomers in vitro and that O4 prevented oligomer-induced dysfunction in hippocampal brain slices,
therein revealing that shifting the reactive flux of the aggregation reaction can suppress toxicity [98].

Recently, it was shown that the aminosterol trodusquemine, a natural product originally isolated
from the dogfish shark, stimulates predominantly secondary nucleation in Aβ42 aggregation by solving
analytically for the perturbation induced by the molecule using the master equation formalism [76].
This kinetic model was validated by measuring the morphology of the final fibrillar products formed
in the absence and presence of trodusquemine using high-resolution and phase-controlled atomic
force microscopy [99–101], which demonstrated that the aminosterol generated a multitude of shorter
and wider fibrils that were consistent with the predicted molecule-induced shift in reactive flux [76].
As discussed in more detail in Section 5 of this review, aminosterols also possess the ability to displace
toxic oligomers of multiple proteins from cell membranes [61,64,76,102]. In a C. elegans model of
AD, we found that trodusquemine decreased the toxicity induced by Aβ42 aggregation alongside
stimulating the rate of its aggregation [76], in stark contrast to its multistep mechanism of inhibition that
was observed in vitro and in vivo with respect to αS aggregation [64]. These results for trodusquemine
suggest that both the conversion of Aβ42 oligomeric aggregates to less toxic, higher-order fibrillar
forms, and also their displacement from cell membranes can work in tandem with a combinatorial
effect to suppress oligomer cytotoxicity [76,102].

3.3. Redirecting the Protein Aggregation Process to Sequester Oligomeric Species

In this section, we focus on potential therapeutics that can modulate the aggregation reaction
in a way that redirects oligomeric aggregates towards less toxic, higher-order forms that are often
off-pathway, e.g., high molecular weight aggregates, rather than mature fibrils. Despite the differing
end species in these two processes, both off-pathway high molecular weight aggregates and fibrils can
achieve the same result of reducing the lifetime or populations of oligomeric aggregates. Specifically,
the formation of higher-order species by the redirection mechanism can consume toxic oligomeric
intermediates, thereby depleting the populations of oligomers that are present and able to induce
cellular dysfunction.

Resveratrol has the ability to redirect three separate conformers in the aggregation reaction
to form unstructured off-pathway aggregates that are both non-toxic and of a high molecular
weight [103]. These non-toxic aggregates can be formed by resveratrol from the soluble oligomers,
fibrillar intermediates, and amyloid fibril conformers of the aggregation reaction, therein reducing
toxicity by limiting the number of oligomers and other conformers that can participate in the
aggregation reaction.
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In addition to the polyphenol resveratrol, EGCG also reduces toxicity by remodeling mature
amyloid fibrils and aggregates of Aβ and αS [104–106]. Studies show that EGCG remodels the
large, mature Aβ and αS fibrils into unstructured and nontoxic aggregates, decreasing the amount of
amyloidogenic species without creating a toxic product or reforming toxic oligomers in its mechanism
of action [105]. A similar mechanism has also been displayed for other polyphenols in addition to
resveratrol and EGCG, including trihydroxybenzophenone in tau protein aggregation and myricetin in
Aβ aggregation [107,108].

The biological consequences of forming large deposits of aggregates in vivo as a result of redirecting
the aggregation reaction away from fibrillar species, as well as the ability of the protein homeostasis
machinery of the cell to store or degrade such high molecular weight aggregates, such as through the
clearance of Aβ peptides through a proteasome-dependent mechanism, are processes likely to play
an important role in determining the physiological relevance of this approach in patients afflicted by
neurodegenerative disease. For example, fibrils have been shown to act as reservoirs of oligomers,
thereby storing them for their ultimate release [37].

Collectively, there is a wide range of heterogeneity with respect to the function and specificity of
molecular agents designed to disrupt the protein aggregation process with the result that toxicity is
reduced through inhibiting, accelerating, or redirecting the aggregation of specific proteins. As can
be observed by the appearance of certain molecules in the various classes of kinetic modulators of
aggregation described herein, the Aβ, αS, and tau protein aggregation reactions have many steps by
which molecules can interact with and perturb the direction and speed of the reaction in ways that
can reduce oligomer toxicity. As described for small molecule inhibitors [58,84], rational strategies to
optimize molecular potency could lead to species that can more efficiently accelerate or redirect the
aggregation reaction with the potential to further reduce toxicity associated with the oligomeric state.

4. Targeting the Physicochemical Properties of Misfolded Protein Oligomers

Owing to the transient and metastable nature of oligomeric species formed during an aggregation
reaction in vitro or in vivo, these aggregates represent a very small relative proportion of the total
protein concentration. For example, it has been shown that oligomeric aggregates can reach a
maximum of 1% of the total monomer concentration during an in vitro aggregation process for Aβ42 at
relevant concentrations of the peptide [69,73]. In addition to their short lifetimes, oligomers of various
proteins are highly heterogeneous in terms of their structures, morphologies, mechanisms of formation,
and biological activates [109]. In light of these facts, a multitude of studies have used chemical or
physical means to isolate or stabilize oligomeric aggregates in order to facilitate their investigation at
pragmatic timescales and concentrations [45,50,110–112].

The exposure of hydrophobic patches and size are structural determinants of oligomer toxicity,
and a high level of hydrophobicity and small size are associated with the ability to cause cellular
dysfunction (Figure 1b) [31,37,57,113–115]. Multiple studies have established the contribution of
increased solvent-exposed hydrophobicity to the toxicity of Aβ oligomers [57,116,117]. Additionally,
the size of the oligomers themselves is a key factor, with larger oligomers being less toxic than
their smaller counterparts [57,117,118]. Consequently, numerous studies have examined methods for
reducing the solvent-exposed hydrophobicity and increasing the size of oligomers for therapeutic
purposes. We therefore focus herein on the size–hydrophobicity–toxicity relationship.

By generating 12 oligomer variants of the N-terminal domain of the E. coli HypF protein (HypF-N),
it was demonstrated that the induced variations in oligomer size and hydrophobicity rationalized the
differential empirically observed cellular dysfunction caused by the aggregates. Moreover, an equation
was proposed based on size and solvent-exposed hydrophobicity that could predict the toxicity of
oligomers using relatively high-throughput methods [57]. This equation was recently leveraged to
explain the effects of rationally designed antibodies that were used as molecular tools to probe the
size–hydrophobicity–toxicity relationship for zinc-stabilized Aβ40 oligomers [50], where concomitant
increases in size and hydrophobicity induced by the antibodies were predicted and observed not to
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change the toxicity of the stabilized oligomers due to their offsetting effects [117]. Moreover, two forms
of αS oligomers have been resolved to embed themselves in cell membranes to different degrees based
upon their levels of solvent-exposed hydrophobicity, therein disrupting membrane integrity only in
the case of the embedded variant that was more significantly more hydrophobic [55].

The concept of reducing the cellular toxicity of oligomeric species by their sequestration into larger,
innocuous species with reduced diffusional mobility has been accomplished previously through the
use of molecular chaperones [113,114,119,120] and small molecules [103,106]. In particular, a variety
of chaperone and non-chaperone proteins have been shown to suppress the toxicity of oligomers
by promoting their assembly into bigger and less mobile species [114], including Hsp27 with Aβ42
oligomers [120] and other molecular chaperones with Aβ42, IAPP, and HypF-N oligomers [113].
In some cases, the mechanism of action of these molecular chaperones involves the inhibition of the
interaction of oligomers with cellular membranes [121,122]. Given their propensity to target oligomeric
intermediates, many of these chaperones also modulate the kinetics of protein polymerization,
as discussed in the preceding sections. Indeed, multiple chaperones can play an important role in
regulating the aggregation reactions innate to AD [63,123–125]. Molecular chaperones, such as clusterin
and crystallin, also protect cells from the aggregation of misfolded proteins by modulating the folding
of their respective substrate proteins [126].

Heat shock proteins are a class of molecular chaperones that have received attention for their
ability to reduce Aβ42 cytotoxicity; HspB1 and Hsp70 have both been shown to modulate the
cytotoxicity of Aβ42 in vitro [120,127], although they operate through different mechanisms. Of the
two, HspB1 appears to function by modulating the size–hydrophobicity–cytotoxicity relationship,
sequestering oligomers into relatively inert aggregates [120], whereas Hsp70 appears to disrupt the
primary nucleation process of oligomerization [127] by interacting with the hydrophobic residues of
Aβ42 [128]. Since heat shock proteins are found to be co-located with amyloid plaques in the brains
of AD patients, it is possible that increasing their endogenous concentration in vivo could improve
outcomes for patients. In support of this notion, transgenic mouse models for AD that are deficient in
heat shock proteins express significantly worse symptoms than their counterparts who do have the
ability to produce heat shock proteins [129], suggesting that these chaperones play an important role
in regulating Aβ42 aggregation.

In addition to heat shock proteins, a number of other species have shown promise in modulating
the size or hydrophobicity of Aβ42 aggregates. For example, monomeric human transthyretin
has been shown to produce large co-aggregates with reduced cytotoxicity and inhibit nucleation
processes [130]. Clusterin can also bind to hydrophobic patches in Aβ42 oligomers and inhibit
its aggregation [131]. The aminosterol trodusquemine accelerates the aggregation of Aβ42 in vitro,
reducing the concentration of toxic oligomers in solution and encouraging the formation of fibrillar
aggregates [76]. Analogous to the case of the rationally designed antibodies against oligomers of
Aβ40 stabilized by zinc ions, trodusquemine at super-stoichiometric concentrations that are not
physiologically relevant was observed to linearly increase the size and hydrophobicity of the stabilized
aggregates. These physiochemical chemical changes would therefore be predicted not to change the
toxicity of the oligomers [117], and it was shown that these biophysical parameters were not overtly
changed at physiological concentrations [102]. Collectively, these studies support the existence of a
size–hydrophobicity–toxicity relationship and suggest that targeting these biophysical parameters
can result in alleviating the cytotoxicity innate to protein misfolded oligomers by reducing oligomer
binding to cell membranes or specific receptors.

5. Targeting the Aberrant Interactions of Misfolded Protein Oligomers

A relatively distinct mechanism of counteracting the cytotoxicity of misfolded protein oligomers
is through the use of molecules to prevent their deleterious interactions with cell membranes.
Oligomeric species of Aβ42 are thought to damage cells by binding to their membranes, therein
forming ion channels and disrupting the integrity of the cell membrane [132,133]. Recent work
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suggests that cellular membranes can act as nucleation sites for Aβ42 oligomerization at physiological
concentrations of the protein [134]. Cell membranes themselves are highly heterogenous in their
compositions of various biomolecules, including sterols, fatty acids, lipids, and scaffolding proteins,
amongst many other molecules, and it has been suggested that age-related changes in membrane
lipid rafts correlate to the loss of neuronal function observed in neurodegenerative disease [135].
Furthermore, Aβ42 oligomers bind to a wide variety of receptors on membranes, which has contributed
significantly towards the challenge of blocking the effects of oligomer binding to membranes by
targeting a specific receptor or set of receptors [136].

The environment of the cellular membrane, with its heterogeneous regions of differing lipids and
receptors, provides evidence for the proposed general mechanism of oligomeric membrane interactions.
For one, extensive research has demonstrated that the ganglioside GM1 (and ganglioside GT1b to a
lesser degree) amplifies Aβ42 cytotoxicity by promoting its aggregation cascade [137]. Additionally,
evidence suggests lipid rafts as regions of increased oligomer interaction with the membrane, as well
as the site of the cleavage of amyloid precursor protein (APP) [138]. Furthermore, studies have
identified relatively expanded regions of the membrane characterized by increased cholesterol content
as more favorable for the insertion of APP [139], which may be related to the increased distribution of
cholesterol on the exterior of lipid rafts as cells age [138]. Moreover, the sphingolipid sphingomyelin
is thought to be a driver of lipid raft formation due to its interaction with cholesterol, pointing to its
potential influence on Aβ42–membrane interactions [140]. The aggregation of Aβ42 activates protein
homeostasis systems in the cell, which downregulates sphingomyelin production, further implicating
sphingomyelin and by extension lipid rafts in the progression of AD [141]. Finally, an increase in
sphingomyelin synthesis is associated with oxidative stress and increased concentrations of long-chain
ceramides, which can induce cellular stress responses [142]. These interactions, when taken together,
indicate that while oligomer binding to specific membrane receptors does indeed occur, the mechanism
of membrane interaction appears to be more generic in nature.

While the structures of Aβ42 oligomers are currently not well resolved, with many different
shapes and structures having been characterized simply in the case of Aβ oligomers, such as
dimers [143–145], timers [146,147], Aβ*56 oligomers [32,148], ADDLs [25,26,149], and amylospheroids
as spherical Aβ oligomers [150], where each type of oligomer can exhibit differing biological effects [151],
a common principle exists: toxic oligomeric species bind to cellular membranes and disrupt membrane
integrity [37]. Due to their high degree of solvent-exposed hydrophobicity, oligomers embed into the
interior of the membrane, remaining relatively immobile with respect to the rest of the membrane, with a
majority of oligomers remaining in place rather than diffusing throughout the membrane [152,153].
The oligomers, once embedded, disrupt the function of the cell by increasing the molar volume of
acyl chains in the interior of the membrane, thereby increasing the conductivity of the membrane,
most notably to calcium ions [53,154]. Additionally, the method of binding of oligomers to cell
membranes has been observed to be heterogeneous in nature, with the same peptide binding to
different regions of the membrane based on its specific quaternary structure, which further points
toward a general mechanism by which oligomers interact with membranes, rather than one beholden
to a specific lipid moiety [152,153]. Therefore, molecules that displace misfolded protein oligomers
from the cell membrane stand to potentially disrupt both aggregation pathways and directly protect
cells from the effects of already assembled oligomers [61,155].

One promising molecule that operates according to this mechanism is again the aminosterol
trodusquemine, which can cross the blood–brain barrier [156]. Trodusquemine displaces a variety
of toxic oligomers from cell membranes in vitro, including those of Aβ40, Aβ42, HypF-N, and αS,
suggesting that the aminosterol-induced protection of cell membranes from oligomers occurs through a
generic mechanism (Figure 1c) [64,76,102]. This oligomer displacement hypothesis for the mechanism
by which trodusquemine attenuates oligomeric cytotoxicity is also supported by research observing
a marked difference in the impact of trodusquemine on the aggregation of Aβ42 and αS, where the
former was enhanced and the latter inhibited, coupled with similar reductions in the cytotoxicity of
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isolated or stabilized oligomers [64,76,102]. These studies together suggest that trodusquemine is able
to outcompete oligomers for binding sites on cell membranes. Importantly, this mechanism does not
seem to effect the normal binding of monomeric αS to cell membranes [64].

Similar to trodusquemine, other aminosterols have been shown to function through a comparable
mechanism. Specifically, squalamine reduces oligomer toxicity in a similar fashion [61]. In addition
to the aminosterol family, cholesterol has also been shown to impact the binding of Aβ40 oligomers
to cellular membranes at super-stoichiometric concentrations [157], and a clear correlation was
found between the concentration of GM1 and binding and subsequent toxicity of Aβ42 and HypF-N
oligomers [158]. Additionally, the small molecule anle138b appears to affect Aβ42 oligomers in the
cell membrane, binding to the pores Aβ42 creates in membranes and thereby preventing the loss of
membrane integrity normally associated with Aβ42 membrane interactions [159].

Collectively, these studies illustrate the importance of membrane composition with a wide range
of biomolecules and show that molecules that interact directly with cell membranes, rather than
binding oligomeric aggregate themselves, represent an approach distinct from the previous strategies.
By bypassing the heterogeneity innate to protein oligomerization and the host of specific receptors that
may play a role in the oligomer-mediated dysfunction of cell membranes via targeting membranes in a
ubiquitous manner, molecules with a common therapeutic effect on a variety of toxic oligomers have
been identified [102]. Further exploration of molecules that compose and interact with membranes,
therefore, could be a promising avenue by which to arrive at cellular targets for oligomeric species and
potential countermeasures against their deleterious effects.

6. Targeting Misfolded Protein Oligomers by Potentiating the Protein Homeostasis System

In order to be functional, the proteins that constitute the cellular proteome need to fold properly and
remain soluble. The maintenance of a functional proteome is achieved through the action of the protein
homeostasis system, which regulates the synthesis, folding, transport, and degradation of proteins,
guaranteeing their functionality and mitigating their aggregation [160]. This system assists in protein
folding, remodeling misfolded proteins back to folding intermediates, disaggregating intermediate
aggregates, and assisting in protein turnover or aggregate removal via the ubiquitin–proteasome or
autophagosomal–lysosomal systems (Figure 2) [51,161]. This quality control system declines over time
as a function of ageing, often resulting in age-related comorbidities [161,162]. Over the course of a
life, the gradual accumulation of certain mutations can result in a larger pool of aggregation-prone
species. Evidence from model organisms suggests that as genetic and epigenetic longevity controls
affect a downregulation in the expression of molecular chaperones, it becomes increasingly difficult for
the protein homeostasis network to adequately keep pace with the growing demand of proteotoxic
species [51].

The decline of the protein homeostasis network represents both a trigger and a target in a wide
range of protein misfolding diseases. A study in C. elegans showed that naturally the vast majority
of the proteins are expressed at concentrations close to their intrinsic solubility limits [15], and these
supersaturated proteins form a metastable subproteome that is highly susceptible to aggregation
related to specific neurodegenerative diseases [13,16].

Primary regulators of the protein homeostasis system are molecular chaperones, which constitute
a family of structurally and functionally diverse proteins with varying mechanisms of action based
on cell-specific expression [163]. According to a recent mapping, the human chaperome consists of
332 genes, of which 88 are molecular chaperones and 244 are co-chaperones [164]. As humans age,
the quality of these control measures often degrades leading to the formation and propagation of toxic
protein aggregates, specifically intermediate oligomers that are commonly found in neurodegenerative
diseases. While the role that molecular chaperones play in maintaining protein homeostasis is well
documented [165,166], recent studies have shown that they also exhibit cytoprotective characteristics
through their ability to neutralize toxicity associated with aberrant protein oligomers present in
neurodegenerative diseases [114,164]. Numerous studies have shown the ability of molecular
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chaperones to interact with oligomers, and fibrils, to neutralize their associated toxicity by preventing
cell membrane interaction and inducing the formation of larger, non-toxic species [114,167,168],
and others have demonstrated the ability to inhibit protein aggregation and therefore oligomer
formation [63,127]. While many mechanisms of action of molecular chaperones are not fully resolved,
they may be utilized therapeutically to reduce the deleterious effects of oligomers in protein misfolding
diseases. Recently, the S100 family of proteins have been investigated for their role in AD, based on
their ability to influence the Aβ aggregation pathway and its cellular receptors. While evidence shows
that their function depends on the stage of pathology and related levels of Aβ and S100 proteins, it is
possible that the S100 family could function as molecular chaperones to suppress oligomer toxicity
through several mechanisms [169,170]. Development of chaperone-targeted therapeutics is limited by
their stability, oral bioavailability, and blood–brain barrier permeability. Current therapeutic strategies
targeting molecular chaperones include development of small molecule inhibitors or activators,
viral and non-viral mediated delivery of molecular chaperones or their activators, and pharmacological
chaperones [171–176].
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Figure 2. The protein homeostasis system targets oligomeric aggregates through a variety of mechanisms.
Molecular chaperones can redirect misfolded or aggregated proteins back to the monomeric state,
remodel pre-formed oligomers into less hydrophobic or higher molecular weight aggregates that are less
toxic, and inhibit various microscopic steps in the protein aggregation process. These aggregates can be
targeted for degradation by autophagic and proteasomal processes, and the degree to which the body
can eliminate protein aggregates plays a critical role in the onset and progression of neurodegenerative
disease. In addition, therapeutics are under development to reduce the production of monomeric
proteins, such as through the use of BACE1 inhibitors in AD.

This type of approach may be particularly helpful in the case of neurodegenerative diseases such as
PD, which have been linked to the dysfunction of lipid metabolism resulting in neuroinflammation [177].
The involvement of the stress-induced unfolded protein response (UPR) of the endoplasmic reticulum
(ER) is an active area of investigation, and molecular chaperones are being considered to potentiate
the folding capacity of proteins in the endoplasmic reticulum or mitochondria [161]. Targeting such
stress responses by modulating signaling pathways could be therapeutically efficacious against the
widespread toxicity caused by protein aggregation, as stress responses can vary significantly amongst
different cell types.

A major therapeutic approach towards reducing oligomer numbers is to stimulate their removal
from the cellular milieu. A promising target is autophagy, a lysosomal degradation pathway already
investigated in relation to diverse pathologies including cancer and infections [178]. The pathway itself also
deteriorates with age, which contributes to the myriad of comorbidities in elderly populations [179,180],
and stimulation of the pathways that preserve autophagy may demonstrate a protective effect
against protein aggregation [181]. For example, rapamycin has been demonstrated to inhibit mTOR



Int. J. Mol. Sci. 2020, 21, 8651 13 of 33

signaling and to reduce the amount of amyloid plaques and tau tangles in an AD mouse model [182,183].
Contrasting studies, however, have suggested that inducing autophagy could cause deleterious changes
in Aβ production, and it is currently unclear if alterations in autophagy are causative, protective, or
simply a result of AD [184]. In addition to the autophagosomal–lysosomal pathway, aggregate removal
can also be potentiated by the ubiquitin–proteasome system (UPS) [185]. This pathway requires ATP
usage to unfold proteins, and in both systems, molecular chaperones recognize misfolded proteins and
hold them in conformations that can be degraded [161,186].

In addition to enhancing the clearance of oligomer aggregates, reducing the concentration of Aβ
through the use of secretase inhibitors or regulating its metabolism by ApoE-modifying therapeutics
are active areas of clinical research [187,188]. Apolipoprotein E4 (ApoE4) is one of the three major
isoforms of apolipoprotein E (ApoE) implicated in neurodegenerative disorders, in particular AD.
These lipoproteins play an essential role in lipid metabolism, as well as maintaining normal brain
function [189]. Studies have shown a strong association between ApoE, especially ApoE4, and Aβ
accumulation in the brain leading to AD through reducing microglial function, lipid transport,
synapse integrity and stability, energy metabolism, protein aggregation, and inhibition of protein
clearance [190]. In these cases, reducing the populations or lifetimes of oligomers by acting on
protein expression or degradation could prove therapeutically beneficial by indirectly targeting
oligomeric species.

7. Discussion

The development of therapeutics for the prevention or treatment of protein misfolding diseases is
fraught with challenges. For one, as misfolded protein oligomers are intermediates in the aggregation
process, their structures are transient and heterogeneous. Furthermore, there are many interconnected
pathways in the aggregation process in each disease, making the exact nature of the cytotoxic aggregates
difficult to discern. For similar reasons, the oligomers themselves are also difficult to control in vitro,
making estimates of oligomer concentrations and cytotoxic properties difficult to compare across
different experimental protocols. By increasing our understanding of the mechanisms of action of
candidate compounds targeting oligomers, we anticipate that it will become possible to develop more
clinically relevant therapeutics in comparison to the numerous ones described thus far that target
non-specifically the protein aggregation reaction and have failed in the clinical setting [3].

The molecules with the different mechanisms of actions outlined in this review (Figures 1 and 2)
have advantages and disadvantages. We have highlighted numerous candidate compounds for their
ability to target amyloid oligomers in order to illustrate the current state of the field. To broaden the
scope of this review and to show more examples of amyloid oligomer targeting species that fit within
these categorizations, Table 1 summarizes compounds discussed in this review, as well as many more
not mentioned explicitly in the text, for their ability to impact oligomers and reduce their toxicity
in vitro, in model organisms, and, in some cases, in clinical trials. For the compounds in Table 1,
the National Institutes of Health (NIH) U.S. National Library of Medicine’s clinical trial database
(ClinicalTrials.gov) was used to determine the statuses of the various listed molecules that have been,
or are currently in, clinical trials.

Modulating the kinetics of oligomer assembly by either acceleration, inhibition, or redirection
has the advantage of working directly with the protein in question, and an extensive list of promising
molecules have already been identified for their ability to suppress the toxicity innate to amyloid
aggregation. Molecules that accelerate the aggregation cascade or redirect it toward the formation of
larger, less cytotoxic aggregates, however, could lead to the long-term stabilization of sizable aggregates
in the brain, which could cause complications over time.

Molecular chaperones, including those that modulate the size–hydrophobicity–toxicity
relationship, have been intensively studied, and many promising candidates have been identified,
including those that are dysfunctional in AD patients. However, these molecules are relatively large
and typically unable to cross the blood–brain barrier, thus hindering their usefulness as therapeutics.

ClinicalTrials.gov
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Additionally, there is the question of whether these molecules, and other therapeutics that target the
protein directly, will remain effective at relatively high concentrations of the protein, as most patients
with neurodegenerative diseases are first diagnosed at an advanced stage of the disease.

Molecules that interact with oligomers on cell membranes have the advantage of functioning
outside the aggregation cascade altogether, therein protecting cells in a general way, independent
of the stage of oligomerization. Additionally, some of these molecules function through a generic
mechanism and are therefore able to displace multiple oligomeric species, indicating their potential
for use in treating multiple diseases [102]. However, these molecules also face challenges due to
their mechanism of interaction, as they have varied effects on the aggregation cascades of different
proteins related to neurodegenerative disease [61,64,76]. Additionally, since many of these molecules,
such as trodusquemine, function by competing with oligomers at the site of membrane binding, their
effectiveness would rely on their continual presence of the molecule for duration of the life of a patient.

Finally, modulation of the protein homeostasis network has proven therapeutically challenging,
and strategies to reduce monomeric concentrations of disordered proteins have in some cases
resulted in worsened cognition in AD patients, such as those for secretase inhibitors [187],
highlighting the challenges of regulating the functional forms of the target proteins. For all described
strategies, specificity for oligomeric aggregates remains a critical challenge in the design of effective
therapeutics [86].

Looking forward, these classifications of potential therapeutic molecules illustrate that it may
be possible to leverage combination therapies to combat neurodegeneration, as seen in many cancer
treatments. Combining two molecules with different mechanisms of action has the potential to operate
along the advantages of both methods, without engaging in competition.

Although not discussed in depth in this review, the treatment of neurodegenerative disease has
proven highly challenging in significant part due to limited diagnostic assays that can detect the
various pathologies early in a patient’s life. Recent efforts to rationally design antibodies against
oligomeric Aβ42 have illustrated the possibility of using these highly specific molecular tools to
advance diagnostics [191]. Moreover, advances in cryo-electron microscopy have recently led to
the characterization of patient-derived fibrils of the tau protein in AD [192], Pick’s disease [193],
chronic traumatic encephalopathy [194], corticobasal degeneration [195,196], and αS filaments from
multiple system atrophy [197]. For the various tau fibrils in the above pathologies, discrete core
structures were observed in a disease-specific manner. With recent advances in the resolution of
this approach [198], and the possibility of isolating a homogenous population of oligomers from
brain tissue, cryo-electron microscopy may in the future lead to a better understanding of the precise
molecular nature of oligomers implicit in specific neurodegenerative diseases.

In conclusion, the efficacy of the different approaches described here will become clearer as the
field advances to understand and combat the toxic effects of oligomers in neurodegenerative diseases.

Table 1. Examples of compounds, including those that are currently in clinical trials, reported to target
misfolded protein oligomers.

Compound Molecular
Family Target Proposed Mechanism of Targeting

Oligomers

ABBV-0805
(BAN0805) Antibody

αS aggregates,
in particular oligomers

and protofibrils

Humanized form of the murine
antibody mAb47 that inhibits the

accumulation of αS aggregates within
astrocytes [199]

Aducanumab Antibody
Aβ aggregates,

including oligomers
and fibrils

Autoantibody-derived antibody that
binds Aβ oligomers and fibrils and
reduces insoluble amyloid plaques

[68,200]; under FDA review
for approval



Int. J. Mol. Sci. 2020, 21, 8651 15 of 33

Table 1. Cont.

Compound Molecular
Family Target Proposed Mechanism of Targeting

Oligomers

BAN2401 Antibody
Aβ aggregates,

in particular
protofibrils

Binds Aβ protofibrils, its murine
version (mAb158) reduces levels of

protofibrils in the brain and CSF of AD
mice [80] and prevents Aβ

accumulation in astrocytes [201]; in a
Phase 3 clinical trial

Bapineuzumab Antibody Aβ, in particular
soluble Aβ and fibrils

Passive Aβ immunotherapy; failed in a
Phase 3 trial for AD despite biomarker
changes in APOE ε4 carriers [68,202]

Cinpanemab
(BIIB054) Antibody αS aggregates

Autoantibody-derived antibody that
binds aggregated forms of αS and

prevents its spreading; in a Phase 2
clinical trial [203]

Crenezumab Antibody
Aβ aggregates,

including oligomers
and fibrils

Targets Aβ oligomers, fibrils, and
plaques and reduces their levels in the

CSF [81,82]; terminated in a Phase 3
clinical trial

Gantenerumab Antibody Aβ aggregates,
in particular oligomers

Targets Aβ oligomers and reduces
amyloid plaques [68,204]; in a Phase 3

clinical trial

Lu-AF-82422 Antibody αS aggregates Prevents the cell-to-cell transmission of
αS [205]; in a Phase 1 clinical trial

MEDI1341 Antibody
αS aggregates,

from monomers to
higher-order species

Binds soluble and insoluble aggregate
forms of αS [206]; in a Phase 1

clinical trial

PMN310 Antibody Aβ aggregates,
in particular oligomers

Inhibits Aβ oligomer propagation and
toxicity [207]

Prasinezumab
(PRX002) Antibody αS aggregates

Reduces truncated forms and slows αS
propagation [208]; in a Phase 2

clinical trial

Rationally
designed

antibodies
Antibody

Aβ aggregates,
in particular oligomers

and fibrils

Selectively inhibits specific microscopic
steps in Aβ42 aggregation [62] or binds

specifically Aβ oligomers [191]

Solanezumab Antibody
Aβ aggregates,

in particular soluble
forms

Binds soluble forms of Aβ and
promotes its clearance from the brain in

pre-clinical models [68,209]; did not
meet endpoints in two Phase 3 trails,

with one Phase 3 trial currently ongoing

Sargramostim
(Leukine) Glycoprotein

Granulocyte-
macrophage colony-
stimulating factor

Stimulates the innate immune system to
suppress Aβ oligomer levels in mice

[65,210]; Phase 2 clinical trial completed

Docosahexaenoic
acid Lipid (fatty acid) α-, β-, and γ-secretases

Reduces amyloid production by
decreasing β- and γ-secretase activity

and increases nonamyloidogenic
processing by stabilizing

α-secretase [211]

Monosialote
trahexosylganglio-

side GM1

Lipid
(glycosphingolipid) Cell membranes

Increases oligomer binding and
subsequent toxicity for Aβ42 and

HypF-N oligomers [158]
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Table 1. Cont.

Compound Molecular
Family Target Proposed Mechanism of Targeting

Oligomers

Cholesterol Lipid (sterol) Aβ aggregates and cell
membranes

Can affect the binding of Aβ oligomers
to cell membranes [157], and catalyzes

the heterogeneous nucleation of
Aβ42 [212]

Brichos domain Molecular
chaperone

Protein aggregates,
in particular fibrils

Inhibits monomer-dependent secondary
nucleation in Aβ42 aggregation [63]

Clusterin Molecular
chaperone

Protein aggregates,
in particular fibrils

Attenuates Aβ fibril elongation at low
concentrations [71]

Crystallin Molecular
chaperone Protein aggregates

Can protect cells from protein
aggregation by modulating protein

folding [126]

DNAJB6 Molecular
chaperone

Protein aggregates,
in particular oligomers

Targets and inhibits primary nucleation
in Aβ42 aggregation [83]

Hsp27 Molecular
chaperone

Protein aggregates,
in particular oligomers

Suppresses oligomers toxicity by
promoting their assembly into larger,

innocuous species with reduced
diffusional mobility [114] for Aβ42

oligomers [120]

Hsp70 Molecular
chaperone Protein aggregates

Can disrupt primary nucleation
processes of oligomerization [127] by

bonding to the hydrophobic regions of
Aβ42 [128]

HspB1 Molecular
chaperone

Protein aggregates,
in particular oligomers

Modulates the size–hydrophobicity
relationship, sequestering oligomers
into relatively inert aggregates [120]

100074-G5 Small molecule Monomeric Aβ42
Binds the monomeric state of Aβ42 and

prevents primary and secondary
nucleation processes [66,213]

ALZ-801 Small molecule Aβ aggregates Inhibits Aβ oligomer formation [204];
Phase 1 clinical trial completed

ANAVEX2-73
(Blarcamesine) Small molecule Aβ aggregates

Reversed learning deficits in mice
injected with Aβ25-35 and prevented
hippocampal oxidative stress [214];

Phase 2 clinical trial completed

anle138b Small molecule Cell membranes and
protein aggregates

Blocks the activity of conducting Aβ
pores in cell membranes [159]; Binds αS

aggregates and prevents loss of
membrane integrity associated with αS
membrane interactions [215]; Phase 1

clinical trial completed

Candesartan
cilexetil Small molecule Aβ aggregates,

in particular oligomers

Prevents Aβ40 and Aβ42
oligomerization in vitro [216]; Phase 2

clinical trial completed

Cilostazol Small molecule Aβ aggregates,
in particular oligomers

Reduces Aβ oligomerization and
toxicity, and promotes Aβ clearance

[217,218]; clinical trials ongoing

CNP520
(Umibecestat) Small molecule BACE1 inhibitor

Reduces brain and CSF Aβ levels in
rats, dogs, AD mice, and humans [219];

in a Phase 2/3 clinical trial
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Table 1. Cont.

Compound Molecular
Family Target Proposed Mechanism of Targeting

Oligomers

Congo red Small molecule Protein aggregates

Disaggregates oligomers by solubilizing
them, promotes β-sheet formation [93],
attenuates aggregation by stabilizing

monomeric or partially folded
intermediates of the peptide [86,93]

Cromolyn sodium
(as part of

ALZT-OP1)
Small molecule

Aβ aggregation, in
particular monomers

and oligomers

Inhibits Aβ aggregation and promotes
its clearance [220]; ALZT-OP1 is in a

Phase 3 clinical trial

Crystal violet, acid
fuchsin, fast green
FCF, symmetrical
cyanide inhibitors

Small molecule Protein aggregates Inhibit tau aggregation [86,221]

Curcumin Small molecule
Protein aggregates,
from monomers to

fibrils

Inhibits Aβ and tau oligomerization,
disrupts mature Aβ, tau, and αS fibrils,

redirects Aβ and αS aggregation
reactions to create nontoxic oligomers

[85,86]; various past and ongoing
clinical trials

Doxycycline,
tetracycline Small molecule Aβ aggregates, in

particular oligomers

Disrupts pre-formed Aβ oligomers and
fibrils and inhibits fibril

formation [88,89]

Elenbecestat
(E2609) Small molecule BACE1 inhibitor

Reduces the concentration of Aβ by
inhibiting its production [222]; in a

Phase 3 clinical trial

Elyata (CT1812) Small molecule Oligomer receptors

Allosterically binds the
sigma-2-receptor to displace

Aβ-oligomers and reduce their toxicity
[223–225]; in a Phase 2 clinical trial

Epigallocatechin-3-
gallate (EGCG) Small molecule

Protein aggregates
from monomers

to fibrils

Binds to monomers and prevents
aggregation, remodels mature amyloid
fibrils and aggregates of Aβ and αS into

larger, nontoxic aggregates,
[85,86,104–106]; many past and ongoing

clinical trials

Furosemide Small molecule Aβ aggregates,
in particular oligomers

Prevents Aβ40 and Aβ42
oligomerization and decreases Aβ

oligomers levels in Tg2576 mice [216]

Gallic acid Small molecule
αS aggregates,

in particular soluble
species

Inhibits αS amyloid fibril
formation [85,86,226]

ID1201 Small molecule α-secretase

Reduces Aβ and amyloid levels in
AD-model mice by activating the

PI3K/Akt pathway [65,227,228]; Phase 2
clinical trial completed

Iododoxorubicin Small molecule Protein aggregates,
in particular fibrils

Disrupts fibril formation [88,89]; Phase
2 clinical trial completed

Methylene blue Small molecule Protein aggregates, in
particular fibrils

Promotes Aβ fibrillization to deplete
oligomers [92], inhibits tau [229] and

prion protein aggregation [90–94];
TRx0237 is in a Phase 3 clinical trial
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Table 1. Cont.

Compound Molecular
Family Target Proposed Mechanism of Targeting

Oligomers

Nilotinib Small molecule Antineoplastic tyrosine
kinase inhibitor

Reduces αS accumulation and tau
hyperphosphorylation; in a Phase 2

clinical trial [230,231]

NPT200–11 Small molecule αS aggregates,
in particular oligomers

A small molecule rationally designed to
target αS oligomers [232]

O4 Small molecule Aβ aggregates

Binds to hydrophobic amino acids in
Aβ and catalyzes the Aβ

polymerization reaction to deplete
oligomer populations [98]

Oleuropein Small molecule Protein aggregates

Prevents oligomer formation, disrupts
oligomer binding to the plasma

membrane and inhibits their toxicity
[85,86]; associated with a dementia

management clinical trial

Oligothiophene
p-FTAA Small molecule Protein aggregates

Suppresses Aβ aggregation by
generating amyloid fibrils that are less
hydrophobic and resistant to proteinase

K digestion [96]

PBT434 Small molecule αS aggregates Inhibits αS aggregation by preventing
αS interactions with iron [233]

Posiphen Small molecule APP inhibitor

Targets APP mRNA to reduce APP and
Aβ levels [234,235], also targets SNCA

MRNA to reduce αS expression
[236,237]; in Phase 1 (AD) and Phase 2

(PD) clinical trials

PTI-125 Small molecule

Restores native forms
of filamin A, reduces

associations with
α7-nAChR/TLR4

Reduces tau hyperphosphorylation,
Aβ42 deposition, neurofibrillary tangle
formation, and neuroinflammation in

3xTg-AD mice [238]; in a Phase 2
clinical trial

Rapamycin Small molecule Autophagy stimulant

Inhibits mTOR signaling and reduces
the amount of amyloid plaques and tau
tangles in AD model mice [182,183]; in a

Phase 1 clinical trial

Resveratrol Small molecule Protein aggregates

Redirects conformers in the aggregation
reaction to form less toxic aggregates

[85,86,103]; Phase 2 clinical trial
completed

Squalamine Small molecule

Protein aggregates,
in particular oligomers

and fibrils, and cell
membranes

Displaces αS oligomers from cell
membranes and inhibits αS

lipid-induced nucleation [61]; ENT-01
(an aminosterol) is in a Phase 2 clinical

trial (PD)

Sulindac sulfide Small molecule Aβ aggregates
Depletes toxic Aβ oligomers by

enhancing the rate of fibrillization
in vitro [95]
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Table 1. Cont.

Compound Molecular
Family Target Proposed Mechanism of Targeting

Oligomers

Trodusquemine Small molecule

Protein aggregates,
in particular oligomers

and fibrils, and cell
membranes

Displaces Aβ40, Aβ42, αS, HypF-N
oligomers from cell membranes

[64,76,102], inhibits αS lipid-induced
nucleation and fibril amplification [64],

enhances Aβ42 aggregation [76];
ENT-01 (an aminosterol) is in a Phase 2

clinical trial (PD)

Verubecestat
(MK-8931) Small molecule BACE1 inhibitor

Reduces plasma, CSF, and brain levels
of Aβ in rats and monkeys [239];
Phase 1 clinical trial completed

Bexarotene and
derivatives Small molecules Aβ aggregates Inhibit specific microscopic steps in

Aβ42 aggregation [56,58]

Amentoflavone,
bilobetin,

sequoiaflavone,
sotetsuflavone,

podocarpuflavone,
ginkgetin,

isoginkgetin,
sciadopitysin

Small molecules
(bioflavones)

Aβ aggregates,
in particular fibrils

Inhibits Aβ42 fibrillization and
disaggregates pre-formed fibrils [85,86]

Trihydroxy
benzophenone,

myricetin,
tannic acid

Small molecules
(polyphenols) Protein aggregates

Inhibit Aβ aggregation [240,241] and
remodels tau fibrils into unstructured

and nontoxic aggregates [107,108]

Human umbilical
cord mesenchymal

stem cells
Stem cell therapy Soluble amyloid

Secretes soluble intracellular adhesion
molecule-1 that decreases Aβ levels by

inducing expression of the
Aβ-degrading enzyme neprilysin [242];

in a Phase 1 clinical trial

Monomeric human
transthyretin Transport protein Protein aggregates Inhibits both primary and secondary

nucleation in Aβ aggregation [77]

AADvac1 Vaccine
Tau aggregates,

in particular
phosphorylated tau

Reduces tau hyperphosphorylation and
prevents its oligomerization [243]; in a

Phase 1 clinical trial

ABBV-8E12 Vaccine Protein aggregates,
in particular tau

Removes brain and plasma tau and
reduces tau pathology and associated
atrophy [244]; in a Phase 2 clinical trial

CAD106 Vaccine
Aβ aggregates,

in particular monomers
and oligomers

Blocks Aβ toxicity in cell cultures,
reduces amyloid accumulation in AD
model mice, induces an immunogenic

response [245]; in a Phase 2 clinical trial

UB-311 Vaccine

Aβ aggregates,
from monomers to

higher-order
aggregates

Preferentially binds to higher-order
Aβ42 aggregates and reduces Aβ42

oligomer, protofibril, and plague levels
by stimulating an immunogenic

response [246]; in a Phase 2 clinical trial
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Abbreviations

αS α-synuclein
Aβ amyloid-β peptide
Aβ40 40-residue form of the amyloid-β peptide
Aβ42 42-residue form of the amyloid-β peptide
ADDLs Aβ-derived diffusible ligands
AFM atomic force microscopy
ApoE Apolipoprotein E
APP
CSF

amyloid precursor protein
cerebrospinal fluid

EGCG epigallocatechin-3-gallate
ER endoplasmic reticulum
GM1 monosialotetrahexosylganglioside
HypF-N N-terminal fragment of the HypF protein
IDP intrinsically disordered protein
k1 primary nucleation (microscopic step)
k2 secondary nucleation (microscopic step)
k+ elongation (microscopic step)
PD Parkinson’s disease
UPR unfolded protein response
UPS ubiquitin proteasome system
TEM transmission electron microscopy
ThT thioflavin T
TRO trodusquemine
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