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Abstract: The development of opportunistic pathogenic Candida strains insensitive to several classes
of antifungals has emerged as a major health care problem during the last years. Combinational
therapy of natural products (e.g., essential oils, EOs) with conventional antifungals has been sug-
gested as a promising alternative to overcome this medical problem. The present study investigates
the potential antifungal activity of EOs extracted from some selected medicinal plants, alone and in
combination with two common conventional antifungals (fluconazole and amphotericin B) against
four clinical Candida isolates. MIC assays indicated that EOs induced strong anticandidal activities
with MIC values ranging from 0.162 to 4.950 mg/mL. The combination of amphotericin B with
Thymus leptobotrys, Origanum compactum and Artemisia herba alba EOs provided a synergistic effect
against C. krusei only, with MIC gain of four-fold, and additive effect against remaining strains (MIC
gain = two-fold). Interesting synergistic interactions were observed by combining all studied EOs
with fluconazole, with reduction rates of their MICs ranging from 16 to 512-fold. This synergistic
effect was very pronounced with the combination of T. leptobotrys EO and fluconazole. These findings
indicate that studied EOs can be used as anti-candidals in combination with antifungals, particularly
fluconazole, to counteract the emergence of resistant Candida spp.

Keywords: essential oils; anticandidal activity; Candida spp.; synergy

1. Introduction

The incidence of systemic fungal infections has been increasing significantly and
currently affects millions of people worldwide [1–3]. Yeasts of Candida genus are reported
to be responsible for 80% of fungal infections, which are recognized as one of the most
common nosocomial contaminations, producing important morbidity and mortality rates,
particularly in immunocompromised patients [4,5]. Within 200 yeast species, Candida
albicans has been described as the most common pathogen found in severe candidiasis
infections, but other non-albicans Candida spp. such as C. glabrata, C. tropicalis, C. krusei,
and C. parapsilosis are becoming increasingly insidious [6–8]. The current treatment of
these candidiasis infections remains essentially based on the use of common polyenes (e.g.,
amphotericin B) and azole antifungals (e.g., fluconazole), mainly targeting ergosterol in
the fungal cell membrane or its biosynthetic pathway [9–11]. However, the fungistatic
property of many of these antifungals, in addition to the increased therapy cost and the
emergence of clinical drug resistance, limit their success in clinical practice [9,10,12,13]. The
development of novel antifungal agents is becoming difficult and challenging due to the
eukaryotic nature of Candida cells, which results in a limited number of drug targets. The

Antibiotics 2021, 10, 1049. https://doi.org/10.3390/antibiotics10091049 https://www.mdpi.com/journal/antibiotics

https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0000-0002-7287-2188
https://orcid.org/0000-0002-5063-1236
https://orcid.org/0000-0002-7524-2747
https://doi.org/10.3390/antibiotics10091049
https://doi.org/10.3390/antibiotics10091049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antibiotics10091049
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics10091049?type=check_update&version=1


Antibiotics 2021, 10, 1049 2 of 10

required antifungals should be specific against the pathogen’s targets, which are not shared
with human hosts; otherwise, these antifungals should display a selective toxicity to the
fungal cell, while being safe towards the human host cell [14]. Alternatively, the synergy
between conventional drugs and natural antimicrobial products has been described as an
emerging strategy to minimize the effective doses of standard antifungals, minimizing
their side effects and their related toxicity, while enhancing their biological efficacies [15,16].
Among natural products, essential oils (EOs) from medicinal plants constitute rich sources
of bioactive compounds with strong antimicrobial activities and low cytotoxicity against
the host [17]. Several EOs have been reported to present high synergistic interactions
with conventional antimicrobials against several pathogenic micro-organisms, including
polyene and azole-resistant Candida isolates [15,18,19]. In fact, many EO components target
multiple metabolic pathways in Candida cells, which can overcome or delay the emergence
of drug resistance [19–21]. Additionally, some terpenoids, when used in combination, are
able to transform the fungistatic nature of fluconazole into a fungicidal drug, and to inhibit
the antifungal efflux by blocking drug transporter pumps [15,18].

Thymus leptobotrys Murb. (Lamiaceae), T. pallidus Batt. (Lamiaceae), T. satureioides
Coss. (Lamiaceae), Origanum compactum Benth. (Lamiaceae), Artemisia herba alba Asso.
(Asteraceae) and Ammodaucus leucotrichus (Coss. &Durieu) (Apiaceae) are extensively
used in Moroccan folk medicine in different forms to treat many fungal diseases [22].
Moreover, their antibacterial, antifungal, antiparasitic and antiviral activities have been
reported in many previous studies [23–28]. To the best of our knowledge, no study has yet
been published about synergistic interactions of their EOs with conventional antifungals.
Therefore, the aim of the present work was to evaluate the capacity of these EOs to enhance
the anticandidal effects of amphotericin B and fluconazole, when used in combination
at significantly low concentrations, against four clinically isolated fungal strains, namely
C. albicans, C. glabrata, C. krusei and C. parapsilosis.

2. Results and Discussion
2.1. Chemical Composition of the EOs

The EOs extracted by steam-distillation were found to be pale to dark yellow, ex-
cept for A. leucotrichus EO which was blue, with yields ranging from (0.63 ± 0.05)% to
(2.15 ± 0.02)% (v/w) based on dry weight (Table 1). Generally, the EO yields of dried
aerial parts of T. pallidus and T. leptobotrys were similar to those reported previously [28,29],
while the fruit of A. leucotrichus and the aerial parts of T. satureioides, O. compactum and
A. herba alba yielded a lower number of EOs compared to those obtained in many previous
works [23,25–27,29]. The results of the chemical analysis of the volatile constituents of the
EOs (percentage content of each compound, elution order, retention index (RI), Retention
time (RT) and structural subclass) are summarized in Table 2. Sixty-eight constituents
were identified, which accounted for 94.34–99.20% of the total oils. Generally, the studied
EOs were quantitatively dominated by oxygenated monoterpenes (41.65–92.64%), except
T. pallidus EO which was dominated by monoterpene hydrocarbons (57.70%). GC-MS
analysis revealed a high content of carvacrol (78.75%) in T. leptobotrys EO, which is in
agreement with that previously reported in the literature [29,30]. The main constituents of
T. pallidus EO were found to be γ-terpinene (29.6%), thymol (26.8%) and p-cymene (18.9%)
(Table 2), which is in accordance with those reported in many previous works [31,32]. How-
ever, many other chemotypes dominated by camphene (7.5–17.7%), myrcene (1.1–15.4%)
and camphor (28.5–29.8%) have been reported in T. pallidus EOs originating from other
Moroccan regions [30,33]. The EO of O. compactum was dominated by carvacrol (35.69%),
p-cymene (13.72%) and carvacrol methyl ether (11.69%). This chemical profile is similar
to that obtained for EOs of some O. compactum samples harvested from different regions
of northern Morocco [34]. Otherwise, γ-terpinene (8.72–17.25%) thymol (10.33–15.75%)
and p-cymene (8.44–18.59%) were identified, beside carvacrol (43.58–47.85%), as main oil
constituents of the plant in other Moroccan regions [25,35]. The main oil constituents from
T. satureioides were carvacrol (25.45%), borneol (13.66%) and caryophyllene (12.10%), which



Antibiotics 2021, 10, 1049 3 of 10

is similar to what has been previously reported in the literature [31,33,36,37]. However,
camphene (11.8%) and α-terpineol (10.4%), beside borneol (26.7%), were reported as major
constituents of T. satureioides EO originating from the Imouzzer region [30]. Concerning
A. leucotrichus EO, the main compounds were found to be L-perillaldehyde (46.63%), D-
limonene (23.81%) and bornyl angelate (6.24%). This chemical profile is similar to those
reported in previous studies, where perillaldehyde and limonene were found to be the
major components of A. leucotrichus EO, while bornyl angelate was absent or present at a
low concentration [38–40].

Table 1. Local names, harvesting location and period, voucher specimens and EO yield for the studied plants.

Plant Species Local Names Harvesting
Place

Harvesting
Time

Voucher
Specimens Latitude/Longitude Oil Yields a (%)

T. leptobotrys Za-itra Tafraoute May 2019 TL-03 29◦42′ N/08◦74′ W 1.85 ± 0.07
T. saturioiedes Za-itra Idni May 2019 TS-06 30◦54′ N/08◦17′ W 0.66 ± 0.08
T. pallidus Za-itra Ait Lkak June 2019 TP-13 31◦17′ N/07◦50′ W 2.15 ± 0.02
O. compactum Zaatar Toufliht June 2018 OC-12 31◦28′ N/07◦32′ W 0.63 ± 0.05

A. leucotrichus Kemoune
essoufi Tata June 2018 AL-17 29◦44′ N/07◦54′ W 1.25 ± 0.07

A. herba alba Sheeh Ijoukak September 2019 AHA-18 30◦59′ N/8◦09′ W 0.81 ± 0.01
a Yield of EOs determined based on their volume/weight of the sample used for distillation.

Table 2. Chemical compounds of studied EOs.

RT a RI b Compounds c Tl Tp Ts Oc Al Aha

2.70 928 α-Thujene 0.29 1.40 0.31 0.41 - d -
2.78 931 α-Pinene 0.26 1.30 2.82 0.52 4.20 -
2.92 950 Camphene - 2.20 4.11 0.14 0.15 1.63
3.02 975 1-Octen-3-ol 0.10 0.30 - 0.22 - -
3.10 983 3-Octanone 0.11 - - - - -
3.12 989 Sabinene - - - - 0.16 -
3.17 992 Myrcene 0.71 0.90 1.89 1.21 - -
3.41 1005 α-Phellandrene - - - 0.13 -
3.52 1019 α-Terpinene - 2.70 0.75 1.26 - -
3.62 1027 p-Cymene 1.91 18.90 9.50 13.72 - 0.64
3.67 1030 D-Limonene - 0.70 - - 23.81 -
3.73 1031 1.8-Cineole - - - - - 0.85
3.81 1047 Ocimene - - - 0.30 -
4.03 1057 γ-Terpinene 1.44 29.60 6.70 8.97 0.91 -
4.17 1067 trans-Sabinene hydrate 0.40 - - 0.51 - -
4.53 1098 Linalool 0.52 4.70 7.79 2.37 0.41 -
4.78 1108 cis-Thujone 2.56 - - - - 42.40
4.95 1118 trans-Thujone 1.98 - - - - 28.77
5.09 1127 Chrysanthenone - - - - - 0.91
5.50 1146 Camphor 0.62 - - - 0.42 16.65
5.87 1169 Borneol 0.64 5.40 13.66 0.40 0.25 1.72
6.06 1180 L-terpinen-4-ol 0.55 - 0.98 0.46 - 0.65
6.14 1188 α-Terpineol - - 3.95 1.02 -
6.29 1197 Caranone - - 0.33 - - -
6.42 1200 Dihydro-carvone 0.18 - 0.20 - - -
6.74 1213 Verbenone - - - - - 0.69
7.14 1230 Thymol methyl ether - - - 0.12 - -
7.36 1241 Cumin-aldehyde - - - - 3.83 -
7.37 1244 Carvacrol methyl ether - - - 11.69 - -
7.54 1257 Linalyl acetate - - - - 0.84 -
7.78 1260 Chrysanthenyl acetate 0.12 - - - - 1.00
8.22 1275 L-Perillaldehyde - - - - 46.63 -
8.39 1286 1.4-p-Menthadien-7-al - - - - 1.73 -
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Table 2. Cont.

RT a RI b Compounds c Tl Tp Ts Oc Al Aha

8.40 1288 Thymol 0.85 26.8 - 1.20 - -
8.41 1289 Bornyl acetate - - 1.32 - - -
8.54 1290 2-Caren-10-al - - - - 1.53 -
8.68 1301 Perrilla alcohol - - - - 0.28 -
8.69 1303 Carvacrol 78.75 1.40 25.45 35.69 - 0.30
9.05 1329 2-Methoxy-4-vinylphenol 0.32 - - - - -
10.50 1366 Carvacrol acetate 0.21 - - - -
10.67 1370 Ylangene - - - 0.13 - -
10.78 1375 α-Copaene - - - 0.55 - -
11.05 1389 (−)-β-Bourbonene - - - 0.26 - -
11.18 1397 Methyl perillate - - - - 1.51 -
11.68 1413 α-Gurjenene - - 0.10 - - -
11.98 1415 Caryophyllene 1.60 2.90 12.10 4.09 0.30 -
12.21 1425 β-Gurjunene - - 0.24 - -
12.35 1445 Aromandendrene 0.62 - 0.11 1.60 - -
12.50 1452 Humulene - - 0.64 0.42 - -
13.07 1462 epi-β-Caryophyllene 0.15 - - 0.12 - -
13.09 1464 γ-Decalactone - - - - 0.19 -
13.45 1484 γ-Murolene - - - 1.02 - -
13.62 1489 Germacrene D 0.26 - - 0.42 0.27 -
14.00 1500 Viridi-florene 0.56 - - 1.63 - -
14.16 1504 β-Himachalene - - - 0.57 -
14.25 1511 β-Bisabolene - - - 1.53 - -
14.48 1518 Cubebol 0.11 - - - - -
14.49 1519 γ-Cadinene - - 0.51 0.82 - -
14.71 1526 Cadina-1(10).4-diene 0.21 - - 2.16 - -
15.11 1531 α-Cadinene - - - 0.17 - -
15.74 1550 Bornyl angelate - - - - 6.24 -
16.23 1580 (+)-Spatulenol 0.33 - - 0.86 - -
16.34 1589 cis-Davanone 0.73 - - - - 2.34
16.39 1591 Viridiflorol 0.39 - - - - -
16.63 1598 Caryophyllene oxide - - 1.13 1.03 - -
17.89 1649 τ-Cadinol - - - - 0.64 -
18.97 1685 α-Bisabolol - - - - 0.33 -
19.26 1700 Shyobunol - - - - 0.83

Oxygen-containing monoterpenes 87.05 38.30 52.03 41.65 55.27 92.64
Monoterpene hydrocarbons 4.61 57.70 26.07 26.66 29.23 2.27

Oxygen-containing sesquiterpenes 1.56 0.00 1.13 1.89 8.04 2.34
Sesquiterpene hydrocarbons 3.40 2.90 13.46 15.16 1.14 0.00

Other 0.86 0.30 1.58 12.03 2.35 1.00
Total 97.48 99.20 94.34 97.39 96.03 98.25

Tl: T. leptobotrys, Tp: T. pallidus, Ts: T. satureioides, Oc: O. compactum, Al: A. leucotrichus, Aha: A. herba alba. a RT retention times. b Retention
indices determined using the homologous series of n-alkanes. c Compounds listed in order of elution.d Not detected.

A. herba alba EO was dominated by cis-thujone (42.40%), trans-thujone (28.77%) and
camphor (16.65%). This composition is qualitatively similar to that reported previously in
some studies, but with some quantitative differences [41–43]. In contrast, another chemical
profile dominated by chrysanthenone (47%) camphor (24%) and verbenone (7.2%) was
reported for the EO of A. herba alba collected from Tahanaoute region [27].

2.2. Anticandidal Activity

The anticandidal activities of studied EOs towards Candida strains were evaluated
using broth microdilution assays. The results given in Table 3 demonstrated that all EOs
expressed strong anticandidal effects with MIC values ranging from 0.162 mg/mL to
4.950 mg/mL (Table 3). A. leucotrichus, O. compactum and T. leptobotrys EOs displayed
the strongest inhibitory activity against all tested Candida strains, with comparative
MIC values ranging from 0.162 mg/mL to 0.596 mg/mL. These values were, interest-
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ingly, lower than those of fluconazole (MIC = 1 mg/mL for all Candida strains). EOs
of T. saturioiedes and T. pallidus expressed high anticandidal activities at concentrations
ranging from 0.373 mg/mL to 2.598 mg/mL, while A. herba alba EO showed poor effect
towards all tested strains, with MIC values between 2.475 mg/mL and 4.950 mg/mL.

Table 3. Minimal inhibitory concentrations (MIC) of essential oils and two conventional antifungals (mg/mL).

Microorganisms Tl a Ts Tp Oc Al Aha Fluconazole Amphoterecin B

C. albicans 0.596 0.598 2.598 0.278 0.324 2.475 1 0.0001
C. glabrata 0.297 0.373 0.644 0.278 0.162 4.950 1 0.0001
C. krusei 0.297 1.196 1.299 0.278 0.162 4.950 1 0.0001
C. parapsilosis 0.297 1.196 0.644 0.278 0.162 4.950 1 0.0004

a The abbreviations of the species are given in Table 2.

The relatively strong activity of A. leucotrichus observed in our study is in line with
those works reporting the effect of this oil on some Candida strains [28,44–46]. This
strong activity can be mainly explained by the presence of high content of perillalde-
hyde, an oxygenated monoterpene previously tested for its potent antimicrobial activ-
ity [47–49]. O. compactum and Thymus species have long been known for their large spec-
trum of activity against numerous pathogenic strains [23,25,50]. Their antifungal effect is
attributed to the presence of bioactive antimicrobial compounds, especially carvacrol, thy-
mol, borneol, p-cymene and γ-terpinene. The anticandidal effect of these monoterpenoids
has been well demonstrated, with carvacrol being more active than the other thyme oil
constituents [15,51–53], and can explain the relative high activities of T. leptobotrys and
O. compactum which contain higher percentages of this phenolic monoterpene compared to
the remaining studied thymes. The moderate anticandidal effect of A. herba alba obtained
in our study is consistent with that previously reported [41].

2.3. Synergistic Effect of EOs with Conventional Antifungals

The results of the synergistic interactions (FICI values and MIC gain of the antifungals)
between studied EOs and conventional antifungals fluconazole and amphotericin B are
reported in Tables Tables 4 and 5, respectively. The combinations of studied EOs and
fluconazole gave very pronounced synergistic effects regarding all tested Candida strains,
with FICI values between 0.25 and 0.31 (Table 4). Among these combinations, the one
prepared by T. leptobotrys EO showed the greater synergism, with promising reduction
in fluconazole MICs of Candida strains up to 512 fold. The addition of T. satureioides or
T. pallidus EOs reduced the fluconazole MICs for C. albicans, C. glabrata and C. krusei by
456 fold and by 64 fold for C. parapsilosis. EOs of O. compactum and A. leucotrichus decreased
the MIC values of fluconazole 128 fold for C. albicans and C. glabrata, 64 fold for C. krusei
and 16 fold for C. parapsilosis, while A. herba alba EO reduced the fluconazole MICs for
C. albicans, C. glabrata and C. krusei by 64 fold and C. parapsilosis by 32 fold. From these
results, it can be observed that the synergistic effect of EOs with fluconazole was stronger
than that obtained with amphotericin B (Table 5). Indeed, the combination of amphotericin
B with sub-MICs of T. leptobotrys, A. herba alba or O. compactum EOs gave synergistic effects
against C. krusei only, with FICI = 0.5 and four-fold gains, while additive effects (FICI = 0.75)
and gains of two-fold were obtained against the other tested Candida strains. Remaining
EOs gave MIC gains of 1 towards all tested Candida and FICI = 1.25, indicating indifferent
outcome. Interestingly, for all combinations and for the two conventional antifungals
studied, none was found to be antagonistic against the tested strains.

To the best of our knowledge, the combinations of the EOs and antifungals (fluconazole
and amphotericin B) have not been investigated previously. However, the studied EOs
are characterized by the presence of some major compounds known to possess strong
antimicrobial effects and synergism interactions with many antimicrobials [20,54,55]. In fact,
carvacrol and thymol (principal components of studied Origanum and Thymus EOs) were
reported to interact with the cytoplasmic membrane by its entry between the acyl chains of
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phospholipids, leading to the disruption of its fluidity and permeability [20,56,57]. This
mechanism may facilitate the permeability of fluconazole through the fungal membrane to
the intracellular target, acting together on the ergosterol biosynthesis pathway. Carvacrol
and thymol were reported to increase the effectiveness of fluconazole by chemo-sensitizing
the Candida cells to the antifungal and decreasing its extrusion by efflux pumps [15].

Table 4. Fractional inhibitory concentrations indices (FICIs) and gain of fluconazole combined with the essential oils.

EOs
C. albicans C. glabrata C. krusei C. parapsilosis

MICF/MICC Gain FICI MICF/MICC Gain FICI MICF/MICC Gain FICI MICF/MICC Gain FICI

Tl 1/0.002 512 0.25 a 1/0.002 512 0.25 a 1/0.002 512 0.25 a 1/0.002 512 0.25 a

Ts 1/0.004 256 0.25 a 1/0.004 256 0.25 a 1/0.004 256 0.25 a 1/0.016 64 0.27 a

Tp 1/0.004 256 0.25 a 1/0.004 256 0.25 a 1/0.004 256 0.25 a 1/0.016 64 0.27 a

Oc 1/0.008 128 0,26 a 1/0.008 128 0.26 a 1/0.016 64 0.27 a 1/0.062 16 0.31 a

Al 1/0.008 128 0.26 a 1/0.008 128 0.26 a 1/0.031 32 0.28 a 1/0.062 16 0.31 a

Aha 1/0.016 64 0.27 a 1/0.016 64 0.27 a 1/0.016 64 0.27 a 1/0.031 32 0.28 a

MICF/MICC: MIC of Fluconazole alone/MIC of Fluconazole in combination with essential oil in mg/mL. a Synergism.

Table 5. Fractional inhibitory concentrations indices (FICIs) and gain of amphoterecin B combined with the essential oils.

EOs
C. albicans C. glabrata C. krusei C. parapsilosis

MICA/MICC Gain FICI MICA/MICC Gain FICI MICA/MICC Gain FICI MICA/MICC Gain FICI

Tl 0.0001/0.00005 2 0.75 b 0.0001/0.00005 2 0.75 b 0.0001/0.00003 4 0.50 a 0.0004/0.0002 2 0.75 b

Ts 0.0001/0.0001 1 1.25 c 0.0001/0.0001 1 1.25 c 0.0001/0.0001 1 1.25 c 0.0004/0.0004 1 1.25 c

Tp 0.0001/0.0001 1 1.25 c 0.0001/0.0001 1 1.25 c 0.0001/0.0001 1 1.25 c 0.0004/0.0004 1 1.25 c

Oc 0.0001/0.00005 2 0.75 b 0.0001/0.00005 2 0.75 b 0.0001/0.00003 4 0.50 a 0.0004/0.0002 2 0.75 b

Al 0.0001/0.0001 1 1.25 c 0.0001/0.0001 1 1.25 c 0.0001/0.0001 1 1.25 c 0.0004/0.0004 1 1.25 c

Aha 0.0001/0.00005 2 0.75 b 0.0001/0.00005 2 0.75 b 0.0001/0.00003 4 0.50 a 0.0004/0.0002 2 0.75 b

MICA/MICC: MIC of Amphoterecin B alone/MIC of Amphoterecin B in combination with essential oil in mg/mL. a Synergism; b Additive
effect; c Indifference.

3. Materials and Methods
3.1. Plant Material and EOs Extraction

Aerial parts of T. leptobotrys, T. pallidus, T. satureioides, O. compactum, A. herba alba and
fruits of A. leucotrichus were collected from different wild locations in Morocco (Table 1)
and identified by one of the authors (Abbad. A). Plants collected were dried in the shade
at room temperature (≈25 ◦C) and voucher specimens were deposited at the Laboratory
of Microbial Biotechnologies, Agrosciences and Environment of the Faculty of Science
Semlalia, University Cadi Ayyad, Marrakech. Each dried plant material was submitted
to four successive steam-distillations (4 × 200 g) for about 3 h using a Clevenger-type
apparatus, and recovered EOs were dried with anhydrous sodium sulfate and stored in
hermetically sealed vials at 4 ◦C until use.

3.2. GC/MS Analysis

Qualitative and quantitative analysis of the EO chemical compounds was carried
out using a gas chromatograph equipped with a TG-5MS column (length: 30 m; internal
diameter: 0.25 mm, thickness film: 0.25 mm) and coupled to a mass selective detector ISQ
(Single Quadrupole Mass spectrometer). The carrier gas was helium with flow rate of
1.0 mL/min. EO samples (20 µL) were diluted in 2 mL of hexane and 2.0 µL of the dilution
was injected, using split mode. The injection temperature was 260 ◦C and the column
temperature was programmed from 100 to 260 ◦C at a rate of 4 ◦C/min with a hold of
10 min at 246 ◦C. The transfer line and ion source temperatures were held at 230 ◦C with EI
ionization (70 eV) and the m/z scan range was of 41–500. Identification of the individual
components was carried out by matching their mass spectra with WILEY275, NBS75K,
and Adams terpene library [58], and standards of the main components where possible.
For semi-quantification purposes, the normalized peak area of each compound was used
without any correction factors to establish abundances.
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3.3. Candida Strains

The yeast strains used in this study were provided by the Moroccan coordinated collec-
tion of microorganisms. C. albicans (CCMM L4), C. glabrata (CCMM L7), C. krusei (CCMM
L10) and C. parapsilosis (CCMM L18) are clinically isolated fungal strains originating from
patients suffering from acute candidiasis. They were cultured in Sabouraud Dextrose Agar
at 28 ◦C for 48 h [59].

3.4. Determination of the Minimum Inhibitory Concentration (MIC)

The anticandidal activities of EOs were evaluated using broth microdilution method
according to the Clinical and Laboratory Standards Institute (CLSI) guidelines M27-A3 [60].
EO dilutions were performed in Sabouraud Dextrose Broth supplemented with dimethyl-
sulfoxide (DMSO), at a final concentration of 1%, to enhance oil solubility. A negative
control was prepared using the same concentration of DMSO. Then, 100 µL of each di-
lution was mixed with the same volume of cell suspension at 1–2 × 103 cells/mL. The
microplates were incubated at 28 ◦C for 48 h and the MIC value was defined as the lowest
EO concentration that inhibits macroscopic growth of the tested strains. Fluconazole and
amphotericin B were used as positive controls.

3.5. Synergistic Effect of EOs with Conventional Antifungals

Synergistic interactions between conventional antifungals (fluconazole and ampho-
tericin B) and EOs, were determined using microdilution assay [16]. Briefly, 50 µL of a
serial dilution of antifungals (from MIC to 1/512 MIC) were added to microwells contain-
ing 50 µL of the EO at sub-inhibitory concentrations (1/4 MIC), and previously seeded
by 100 µL of cell suspensions. The microplates were incubated at 28 ◦C for 48 h. The
MIC values of antifungals in combination with sub-MICs of EOs were determined and
fractional inhibitory concentration index (FICI) was calculated using the following formula:
FICI = FIC of EO + FIC of antifungal

FIC of EO = MIC of EO in combination with antifungal/MIC of EO alone, and FIC of
antifungal = MIC of antifungal in combination with EO/MIC of antifungal alone.

The FICI results were interpreted as: A synergism when (FICI ≤ 0.5), additive ef-
fects when (0.5 < FICI ≤ 1), indifference when (1 < FICI ≤ 2) or an antagonism when
(FICI ≥ 2) [61].

The MIC gain of the antifungal was determined as MIC of antifungal alone/MIC of
antifungal in combination with EO.

4. Conclusions

The present work provides new information regarding the anticandidal potential of
some selected Moroccan EOs and their synergistic effects with two common antifungals
(fluconazole and amphotericin B). The results indicate that all EOs studied possess anti-
candidal activity, with those extracted from A. leucotrichus, O. compactum and T. leptobotrys
being more effective. The addition of the different EOs at sub-inhibitory concentration
reduces the fluconazole and amphotericin B MICs of the tested Candida strains by 16 to
512-fold and one to four-fold, respectively. Among the EOs examined, T. leptobotrys EO
combined high anticandidal effect and high synergistic interaction with two conventional
antifungals, mainly fluconazole. These findings showed that the studied EOs, in particular
T. leptobotrys EO, may be used as effective anticandidal agents to restore the efficacy of
these common antifungal drugs for combating resistant-Candida strains. Additional studies
are necessary to determine the mechanism of these synergistic antifungal associations.
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