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Abstract

Background: Taxonomic profiling of microbial communities is often performed using small subunit ribosomal RNA
(SSU) amplicon sequencing (16S or 18S), while environmental shotgun sequencing is often focused on functional
analysis. Large shotgun datasets contain a significant number of SSU sequences and these can be exploited to
perform an unbiased SSU–based taxonomic analysis.

Results: Here we present a new program called RiboTagger that identifies and extracts taxonomically informative
ribotags located in a specified variable region of the SSU gene in a high-throughput fashion.

Conclusions: RiboTagger permits fast recovery of SSU-RNA sequences from shotgun nucleic acid surveys of
complex microbial communities. The program targets all three domains of life, exhibits high sensitivity and
specificity and is substantially faster than comparable programs.
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Background
Studying the composition and dynamics of microbial
communities is a key problem in microbiome research and
microbial ecology [1]. Traditionally, these studies have been
based on isolating and sequencing short subunits of the
16S and 18S genes, present in bacteria or archea, and
eukaryotes, respectively. Typically most studies now make
use of amplicon sequencing to obtain such data from
complex microbial communities [2, 3]. The PCR amplicon
technique was very useful when sequencing power was
limited, however, with the increasing power and complexity
of the new generation of sequencing technologies, the
broad advantages of amplicon sequencing are starting to be
balanced by major limitations, which include PCR primer

selection and amplification bias [4, 5]. In particular, no PCR
primers are able to amplify all known bacterial taxonomic
groups efficiently and uniformly [5], which leads to biased
rRNA profiling analysis, and the use of short read technolo-
gies, notably Illumina, results in a complex, interdependent
chain of technical decisions, that can heavily influence the
subsequent community profiling results [6].
Within microbiome research, there is increasing use of

whole community gDNA surveys (i.e. shotgun metage-
nomics), which offer, at theoretically, a less biased view of
community composition than using from amplicon based
methods, by eliminating dependency on 16S primers [7]. In
practice however, the interpretation of shotgun metagen-
ome data is heavily dependent on having access to refer-
ence genomes of community members, without which
substantial limitations of interpretation may arise [8]. While
the intended use of these shotgun data is typically to
capture functional capacity of a community [9], or to per-
mit member genome recovery [8], it has been recognized
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that whole commnuity shotgun surveys will of course
contain a substantial number of reads derived from SSU-
rRNA genes, and these can be exploited for the purposes of
community profiling [10–17]. Similarly, when using total
RNA metatranscriptome sequencing, rRNA often account
for 95% of reads sequenced, and thus provides coverage of
SSU diversity to great depth. Within this general area, a
number of examples of this approach have been undertaken
and several software implementations of this approach are
now available [13, 16, 17], mostly based on the use of
Hidden Markov Models to capture reads of SSU-origin
from the total read population [10–14, 16, 17].
Here we present a new open source software package,

RiboTagger, (https://github.com/xiechaos/ribotagger) to
analyze rRNA data from shotgun sequencing reads. The
software takes raw metagenome or metatranscriptome
sequencing reads in FASTQ or FASTA files as input, and
is able to process billions of Illumina HiSeq reads under
an hour. RiboTagger produces a BIOM formatted files for
downstream analysis in standard packages like QIIME
[18] or MEGAN [19]. It is equally sensitive over all known
bacterial and archaeal phyla and classes, and highly spe-
cific in not classifying non-rRNA sequences as rRNA.

Implementation
We start with genomic DNA or total RNA from a micro-
bial community that has been sequenced, then attempt to
recover sequencing reads covering a particular region on
16S rRNA gene using a short conserved recognition se-
quence (RS). A short sequence adjacent to the RS is used
as the tag sequence (TS) to represent the origin of the 16S
gene. For this strategy to be feasible with short-read
sequencing technologies, by nature both RS and TS have
to be short but informative and in particularly the RS
must be conserved across all taxonomic branches, while
the TS must be diverse with high taxonomic resolution.
The boundaries of each hypervariable region are logical
candidates for being RS, which we call ribotags from here

on. After examining all bacterial and archaeal 16S se-
quences in the RDP database [20] we designed a combin-
ation of probe patterns and Position Specific Scoring
Matrices (PSSM) to recognize the conserved site immedi-
ately outside a hypervariable region as RS, which we
describe as a universal recognition profile (Fig. 1). The
short region in the hypervariable region adjacent to the
RS is then considered as a candidate tag sequence for the
hypervariable region (Fig. 1). In this PSSM-based detec-
tion, the RS sequences are 23 n.t. in length and the TS are
typically 33 n.t. in length. The lengths of both RS and TS
were empirically determined so as to achieve a good
trade-off between sensitivity and specificity, while main-
taining a total length that is smaller than a typical sequen-
cing read. For each of the three domains of life and each
of the most commonly used variable regions, namely V4,
V5, V6 and V7, we computed a universal recognition
profile by analyzing the Greengenes database [21] (Fig. 2).
To improve sensitivity, our implementation provides and
can utilize a set of 17–30 supplementary taxon-specific
recognition profiles for each of the variable regions.

Results and discussion
Validation analyses
Application of our universal profiles to the Greengenes
database gave rise to a set of 90,061 ribotags. Each ribotag
was assigned a taxon based on the set of SSU sequences
that contain it, using the majority taxon in the case of dis-
cordance. The sensitivity of each of the profiles is over 95%
percent (Fig. 2), as established by applying the profiles to all
SSU sequences in the SILVA database [22]. To test the false
positive rate, we ran the profiles on 5.6 billion faux reads,
obtained by sampling all 80 nt non-overlapping fragments
in the RefSeq database (release 66), calculating the false
positive rate to be at most 2 × 10−6 in all cases (Fig. 2). To
address the problem of the extent to which sequencing-
error can generate false ribotags, RiboTagger estimates the
expected frequency of each ribotag due to sequencing error,

Fig. 1 Schematic representation of RiboTagger detection scheme. Starting with shotgun sequencing reads from (either gDNA or cDNA)
RiboTagger procedes as follows; (1) all reads are screened using PSSMs for the presence of a conserved recognition sequence (blue arrowed
rectangles) adjacent to V-regions using a cohort of pre-defined recognition profiles; (2) for reads that are positive for recognition sequences, the
adjacent V-region tag sequence is extracted, assuming if sufficient length is available (dashed blue rectangles denote in sufficient length in the
tag sequence); and (3) for related tag sequences, equivalent coordinates are defined, prior to counting and annotation
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based on the observed frequencies of ribotags that differ by
one letter and a simple probabilistic model.
To determine how well ribotags can differentiate be-

tween organisms at a given taxonomic rank, we computed
the concordance of all ribotags obtained from an analysis
of the Greengenes database. We consider a ribotag as fully
concordant (or to have concordance 1) at a given taxo-
nomic rank, if all database sequences that contain that
ribotag have the same taxonomic assignment at the given
rank. For example, the concordance is between 0.95 and
1.00 if between 95 and 100% of the database sequences
that contain the ribotag all have the same taxon assign-
ment. The percentages of V4 ribotags with a given range
of concordance (i.e. 1, [0.95,1), [0.95,0.90), etc.) for differ-
ent taxonomic ranks as annotated in the Greengenes
database are shown in Fig. 3a. Approximately 80% of all
ribotags are fully concordant on the species level, while
practically all reads are concordant at the phylum level.
Results are similar for V6 ribotags, while the number of
fully concordant ribotags is about 5% lower for V5 and V7
(data not shown). We also examined the degree of
concordance against de novo OTU clusters defined by
Greengenes over a range of percent identity thresholds,
showing that for ribotags in clusters defined at 99% simi-
larity, over 80% show no sequence differences (Fig. 3b).
Due to the short length of the 16S tags, we need to con-

sider the possible influence of sequencing errors explicitly.
PCR artifacts during library generation would lead to
abnormally high numbers of reads with identical starting
position and sequence content. Therefore, simply counting

sequencing reads with different starting position can detect
possible PCR artifacts. Using stringent quality value filtering
for each nucleotide that covers 16S tags can also the impact
of limit potential sequencing errors, which results ex-
tremely low error probability for each sequencing read
considered. For example, with quality value threshold 30,
the probability of sequencing error is only 0.1%. In addition,
we also calculate the number of expected number of occur-
rence of any 16S tag, assuming the tag is not present at all.
Assuming the tag of interest is not present, given the ob-
served average sequencing error probability at each nucleo-
tide position along the tag and the abundance of all other
tag sequences with one nucleotide difference in the data,
we can calculate the expected abundance of the tag of
interest by sequencing error. Firstly, for the tag under study,
all tag sequences with one nucleotide difference from the
tag of interest are collected. Each of the 1 nt neighbors will
contribute E = n × e/3 false positive counts to the tag of
interest, where n is the number of reads covering the 1 nt
neighbour and e is the observed error probability for the
difference position on the tag of interest. The sum of E for
all 1 nt neighbours gives the expected false positive tag of
interest due to one sequencing error. Multiple sequencing
errors can be also considered in a similar fashion but due
to the quality-value filtering step, we can consider the

Universal Recognition Profile Sensitivity
False 

Positive 
Rate

V4

B 96.9% 3.4E-07

A 96.2% 1.7E-10

E 96.9% 9.6E-07

V5

B 96.6% 1.2E-06

A 95.6% 3.3E-08

E 96.5% 5.1E-07

V6

B 98.3% 1.9E-07

A 95.6% 3.1E-08

E 97.7% 6.0E-07

V7

B 98.4% 2.0E-06

A 95.3% 1.6E-08

E 97.2% 4.1E-07

Fig. 2 Universal recognition profiles for each of the variable regions V4–
V7 used to target bacteria (B), archaea (A) and eukaryotes (E), respectively,
with corresponding observed sensitivities and false positive rates

Fig. 3 Percentage of V4 ribotags with a given range of concordance
for different taxonomic ranks as (a) annotated in the Greengenes
database and (b) as measured against Greengenes de novo OTU
clusters as a function of cluster formation threshold
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probability of observing multiple sequencing errors in ribo-
tag sequences as negligible.

Example
To illustrate the results obtained from RiboTagger, we ran
RiboTagger against a coupled DNA-Seq and RNA-Seq
dataset generated from an activated sludge community of
an operational wastewater treatment (Ulu Pandan Water
Reclamation Plant, Northworks, Tank 3C), operated by the
Public Utilities Board, Republic of Singapore; samples ob-
tained between 10/08/2012 and 17/08/2012). Genomic
DNA and total RNA sequencing were each performed on a
HiSeq2500 Rapid run using 250 bp paired end sequencing
for DNA samples, and 150 bp paired end read sequencing
for RNA samples. We observed a total of 4686 V4-region
ribotags in the entire dataset. From the DNA dataset, we
can estimate whether the number of observed 16S tags is
as expected using the following rough approximation: if we
assume there are up to 5000 genes in a typical free-living
bacteria [23], and if we neglect the likely variation in 16S
copy number across the member species in the community,
and assume that one of those is a 16S gene with roughly 9
equally sized V-regions and 10 equally sized conserved re-
gions, then we would expect approximately 308,505,950/
(19 × 5000) = 3247 reads to originate from a single V-region
in our analysis, which is a conservative underestimate to
our observed number. For the RNA data, we report only re-
sults for one sample to for purposes of illustration, specific-
ally with a total of 41,523,808 RNA reads available after QC
filtering., we obtained a total of 4867 tags, of which the top
11 accounted for 20%, 80% and 95% of community mem-
bership (as described by total number of reads). Collectively
there are 327 unique genera detected, 203 families, 128 or-
ders and 51 phyla, The majority of annotated tags at king-
dom level (1450) were attributable to bacteria, as expected
in this community, with 34 and 40 tags being assigned to
archaea and eukaryota, respectively. Approximately 3343
tags could not be assigned any annotation using SILVA
v119 [22], including 1 and 41 in the top 20% and 50% of
the community, respectively. These latter results highlight
the substantial numbers of unknown taxa residing in com-
plex microbial communities.

Comparison to related programs
Using the RNA dataset described above, we compared the
computational time of RiboTagger against two other exist-
ing search tools, RiboFrame [16] and SSUSearch [17],
which are designed for retrieval of 16S sequences from
whole metagenomic sequencing datasets. The comparison
was carried out on a standalone server with the following
specifications—2 Intel Xeon X7542 (18 M Cache,
2.66 GHz) CPUs, 128 GB memory, internal 146 GB HDD
and external 8 TB RAID HDD. RiboTagger took approxi-
mately 90 min to complete, and we observed RiboTagger to

be approximately 6 times faster than RiboFrame (~9 h) and
6.6 times faster than SSUSearch (~10 h). As RiboTagger
and SSUsearch both used SILVA annotations, we compared
the identity and relative abundance of detected phlya
between both programs. In total 112 phyla were detected
(51 with Ribotagger and 86 with SSUsearch) of which 25
were common between the two methods. The number of
unclassifiable sequences differed, with 21.6% being called in
SSUsearch and 47.5% in RiboTagger, however, of the 25
common phyla, 7 accounted for 95% of community
composition in each set of results. The overall correlation
between relative abundance was 0.99 (with 25 common
phyla) and 0.88 (using all 112 phyla with non-detects set as
zero). We note that while some of these differences may be
accounted for by different database versions (SILVA v115
and SILVA v119 for SSUearch and Ribotagger, respectively)
and/or handling of unclassifible sequences, these results
suggest that further investigation of the differences between
detection methodologies are warranted.

Practical aspects
RiboTagger is a implemented as a platform independent Perl
program. It can be executed in a single command in several
modes with are briefly described here, along with their re-
spective outputs. Full details can be found on the RiboTagger
project page on Github (see Availability and Requirements)

A. Single input file mode
The most basic way to run RiboTagger is using a single
FASTQ file (including with either gzip and bzip2 compres-
sion), which will generate an output file formatted as a table
with the following fields:

� tag: the tag sequence for the variable region
� n: the number of reads that contains this tag
� npos: the number of different locations of the tag on

their source reads (a large value of n and a small value of
npos indicates the presence of duplicated reads or would
be observed if applied to amplicon sequencing reads).

� fp: the number of reads you would expect to see this
tag due to sequencing errors alone

� long.total.count: the number of reads containing a
longer sequence of this tag (see the-long option)

� long1.count, long2.count, long3.count: number of
reads containing the most abundant variants of this
tag’s long sequences (low long1.count/
long.total.count ratio indicates that this tag is very
likely representing a mixture of “species”)

� long1, long2: the most abundant long representive
sequences of this tag

B. Multiple input file mode
For multiple input files, RiboTagger can return a series
of files. Data from paired end read data can also be
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combined into a single output. The.tab file returns a
table of unnormalized read counts, with ribotags
indexed in rows and samples indexed in columns.
The.anno files contains QC, metadata and annotations,
if available, for the same set of ribotags with the follow-
ing columns fields:

� tag: the ribotag sequence
� use: “tag” or “long”, whether the annotation was

based on the short tag or long representative
sequence

� taxon_level: taxa rank of this annotation of this tag
� taxon_data: taxa rank of the most specific

annotation appeared in the database (SILVA or
Greengenes) for this tag

� long: the long representative sequence of this tag
� long_total: the number of samples having any long

representative sequence
� long_this: the number of samples having this long

sequence as its major representative of this tag
� support: the number of database sequences having

this tag or long sequence
� confidence: the proportion of the database

sequences agreed on this annotation
� k, p, c, o, f, g, s: annotation for each of the taxa

ranks, namely kingdom/domain, phylum, class,
order, family, genus, and species

The *.xls file is an Excel file combining data from the
*.tab and *.anno files. Using biom.pl, a *.biom file can
be subsequently used by QIIME [19]. We have im-
plemented options for generating annotations to either
SILVA [24] or Greengenes [21]. All 4 files types can
automatically be generated if RiboTagger is run in batch
mode.

Conclusions
Here, we have developed software for the fast recovery
of SSU-RNA sequences from shotgun nucleic acid sur-
veys of complex microbial communities. Our code is
fast, completing an analysis of about 40 M reads within
1.5 h, and will output an annotated matrix of read
counts that can be used for downstream community
profiling analysis with minimal further processing. Our
implementation executes in a single line, avoiding the
complications and the lack of robustness inherent in
combination-type pipelines and is at least 6 times faster
than SSUsearch [17] and RiboFrame [16]. Additional, we
also note that our approach avoids the use of OTU
generation, which recent analyses suggest may carry
significant advantages in resolving intra-community
dynamics for some classes of experimental design, such
as time series experiments [25].

Availability and requirements
Project name: RiboTagger
Project home page: https://github.com/xiechaos/ribotag
ger
Operating system (s): Platform independent
Programming language: Perl
Other requirements: None
License: GPLv3
Any restrictions to use by non-academics: none.

Abbreviations
OTU: Operational taxonomic unit; PSSM: Position specific scoring matrix;
RS: Recognition sequence; TS: Tag sequence
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