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ABSTRACT

SILLANPÄÄ, E., T. PALVIAINEN, S. RIPATTI, U.M. KUJALA, and J. KAPRIO. Polygenic Score for Physical Activity Is Associated with

Multiple CommonDiseases.Med. Sci. Sports Exerc., Vol. 54, No. 2, pp. 280-287, 2022. Introduction:Genetic pleiotropy, in which the same

genes affect two or more traits, may partially explain the frequently observed associations between high physical activity (PA) and later re-

duced morbidity or mortality. This study investigated associations between PA polygenic risk scores (PRS) and cardiometabolic diseases

among the Finnish population.Methods: PRS for device-measured overall PAwere adapted to a FinnGen study cohort of 218,792 individuals

with genomewide genotyping and extensive digital longitudinal health register data. Associations between PA PRS and body mass index, dis-

eases, and mortality were analyzed with linear and logistic regression models. Results: A high PA PRS predicted a lower body mass index

(β = −0.025 kg·m−2 per one SD change in PA PRS, SE = 0.013, P = 1.87 � 10−80). The PA PRS also predicted a lower risk for diseases that

typically develop later in life or not at all among highly active individuals. A lower disease risk was systematically observed for cardiovascular

diseases (odds ratio [OR] per 1 SD change in PA PRS = 0.95, P = 9.5� 10−19) and, for example, hypertension [OR = 0.93, P = 2.7� 10−44),

type 2 diabetes (OR = 0.91, P = 4.1� 10−42), and coronary heart disease (OR = 0.95, P = 1.2� 10−9). Participants with high PA PRS had also

lower mortality risk (OR = 0.97, P = 0.0003).Conclusions:Genetically less active persons are at a higher risk of developing cardiometabolic

diseases, which may partly explain the previously observed associations between low PA and higher disease and mortality risk. The same

inherited physical fitness and metabolism-related mechanisms may be associated both with PA levels and with cardiometabolic disease risk.
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and intervention regarding these diseases are fundamental
goals in advancing human health and quality of life (1). To date,
it is known that individual disease risk is a complex interplay of
genetic susceptibility and multiple social, environmental, and
policy factors.

Genetic risk estimate can be calculated at the time of birth
and is therefore one of the earliest measurable contributors to
overall disease risk during person’s life span. Genetic contri-
butions to complex traits and diseases, such as physical activ-
ity (PA) and cardiometabolic diseases (CMD), are polygenic
(i.e., accounted for by a large number of causal variants with
very small effects). Polygenic risk scores (PRS) summarize
genomewide genotype data into single variables that produce
individual-level risk scores regarding genetic liability. PRS al-
ready have been produced for several CMD traits (2–4). The
single nucleotide polymorphisms and their associated weights
summarized into CMD PRS have confirmed the existence of
genetic influence on common disease risks previously re-
ported in twin and family studies (2). A couple of studies have
already evaluated the value and usability of CMD PRS in
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clinical risk prediction. These studies have shown that CMD
PRS may have additive value in improving the clinical risk
prediction of CMD and that PRS may predict disease onset
—especially among high-risk individuals (5). In contrast to
CMD, PRS values for lifestyle factors are less frequently used.
Multiple twin studies suggest that human behavior ismoderately
genetically regulated (6), and PRS can be calculated to any heri-
table trait. In year 2020, we published two PRS for PA and
showed their significant out-of-sample predictive values in
two independent cohorts with different PA phenotypes (7).

The existence of polygenic influences on both PA and
CMD suggests that gene–environment interplay and reverse
causality may play a role in associations between PA, CMD,
and mortality (8–11). PA has suggested to be a cost-effective
strategy for the prevention of CMD (12), as observational ep-
idemiological studies show that high PA levels strongly pre-
dict lower disease risk and all-cause and cause-specific mortal-
ity (13,14). Clinical trials and field interventional studies have
not provided strong evidence for or against a causal role of PA in
mortality or cardiac diseases (15). PA has generally beneficial—
but relatively modest—effects on selected biological risk fac-
tors for disease, such as improvements in blood lipid levels,
blood pressure, and glucose metabolism (16,17).

The latest animal and human findings challenge the assump-
tion regarding the causal association between higher PA and re-
duced mortality risk later in life (18–20). When genetic factors
are fully controlled, twin studies suggest that PA does not re-
duce mortality risk (18). It has been suggested that genetic
pleiotropy, where the same genes affects two or more charac-
ters, may partially explain the frequently observed associa-
tions between high PA and reduced mortality risk later in life
(8,18), but evidence from human studies is limited.

Genetic confounding occurs when a genetic variant or set of
variants causally affect both the risk factors and the outcomes
(e.g., variants associated with CMD risk factors, such as PA,
also directly affect CMD). This causes challenges in observa-
tional epidemiology, as adjusting for genetic confounders is
typically insufficient in analysis (21). Another potential source
of bias is gene–environment interaction. Although the effect of
genetic inheritance on PA is generally poorly understood, it is
assumed that individuals with favorable genotypes tend to par-
ticipate in PA. Studies suggest that these individuals may have
inherited better cardiorespiratory fitness (22), derive greater
pleasure from PA, and that their personality and other behavioral
characteristics makes it easier for them to adopt and follow a
physically active lifestyle (23). This gene–environment interac-
tion hinders causal reasoning because the environment or life-
style experienced by an individual is partly influenced by their
genotypes. The PRS construct offers tools to answer confound-
ing and gene–environment challenges in observational research.
Individual PRS can be used to explore potential genetic overlap
in two or more traits (such as PA and CMD) as well as to predict
other traits in a regression model across a study sample.

This study investigated associations between PA PRS,
CMD, and mortality among the Finnish population study co-
hort FinnGen of 218,792 individuals.
PRS FOR PA AND CARDIOMETABOLIC DISEASES
METHODS
Study Sample and End Points

The data comprised 218,792 Finnish citizens from FinnGen,
Data Freeze 5. The sample included 56.5% women, and the
mean age was 59.8 yr (range, 1.5–120.3). FinnGen includes
prospective epidemiological cohorts, diseases-based cohorts,
and hospital biobank samples (see Table, Supplemental Digi-
tal Content 1, List of FinnGen Data Freeze 5 cohorts, http://
links.lww.com/MSS/C426). In FinnGen, genome information
is combined with national hospital discharge (1968–present),
death (1969–present), cancer (1953–present), and the Social
insurance Institute of Finland (Kela) medication reimburse-
ment (1995–present) registers. End point definitions were
based on the International Statistical Classification of Diseases
and Related Health Problems (ICD-8, ICD-9, and ICD-10)
codes. The ICD codes included in each end point can be revised
at FinnGen Web pages (https://www.finngen.fi/en/researchers/
clinical-endpoints, DF-5). The quality of the CMD diagnoses
in these registers has been extensively validated in several
studies (24). For example, health care data included 21,012
major coronary heart disease events, 55,970 hypertension
cases, and 29,139 T2D cases (Tables 1–3). We also tested as-
sociations with PA PRS and CMD medication end points.
Based on the three existing smoking status variables in
FinnGen, 40.2% (n = 87,859) had missing smoking status
data, whereas 59.8% (n = 130,933) could be classified. Of
the latter, 22.9% (29,961) were current smokers, 24%
(31,471) were former smokers, 51.1% (66,872) were never
smokers, and 2.0% (2629) were noncurrent smokers (it was
not knownwhether theywere former smokers or never smokers).
Occasional smokers were considered current smokers. Based on
this information, we decided to use data from current smokers
and never smokers in our analysis.
Genotyping, Quality Control, and Imputation

The FinnGen Study samples were genotyped with vari-
ous Illumina and custom AxiomGT1 Affymetrix arrays
(Thermo Fisher Scientific, Santa Clara, CA; please see
http://www.finngen.fi/en/researchers/genotyping and Sup-
plemental Digital Content 2 (see Document, Genotyping
and quality control of the FinnGen data, http://links.lww.
com/MSS/C427).

Polygenic scoring for PA. The PA PRS, which was re-
cently developed for continuous accelerometer-based overall
PA volume (7,25), was adapted to the FinnGen cohort.
Briefly, GWAS summary statistics from the UK Biobank for
risk score calculation were obtained from the data-sharing re-
pository of the GWAS of PA measured by an accelerometer
(Fig. 1) (11). The objective assessment of PA was measured
for a 7-d period using an Axivity AX3 wrist-worn triaxial ac-
celerometer in the UK Biobank cohort (n = 103,702). The
nonwear time was detected and imputed by the expert working
group, resulting in a total PA calculated by averaging all worn
and imputed values (11,25). To obtain PRS for PA, we used a
Medicine & Science in Sports & Exercise® 281
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TABLE 1. Association analysis between polygenic score for PA and metabolic end points as well as selected control conditions.

Phenotype N Cases/Controls OR P β SE

Obesity 8,908/209,827 0.90 5.8 � 10−20 −0.1011 0.0108
Type 2 diabetes 29,193/182,573 0.91 4.1 � 10−42 −0.0906 0.0066
Type 2 diabetes without complications 14,622/183,185 0.91 1.0 � 10−27 −0.0978 0.0088
Type 2 diabetes with complications 24,133/183,185 0.91 1.9 � 10−42 −0.0984 0.0071
Type 2 diabetes with peripheral circulatory complications 1,049/183,185 0.91 0.0027 −0.0987 0.0310
Type 2 diabetes medication (all types) 32,897/185,820 0.92 5.3 � 10−40 −0.0822 0.0061
Type 2 diabetes medication (other than insulin) 28,493/185,895 0.91 2.7 � 10−44 −0.0938 0.0066
Diabetes, insulin treatment (Kela reimbursement) 29,071/189,721 0.92 2.8 � 10−36 −0.0820 0.0064
Hypothyroidism (congenital or acquired) 26,342/59,827 0.92 1.8 � 10−29 −0.0803 0.0085
Hypothyroidism, strict autoimmune 22,997/175,475 0.96 1.9 � 10−8 −0.0416 0.0072
Disorders of lipoprotein metabolism/other lipidemias 14,010/197,259 0.96 8.3 � 10−6 −0.0413 0.0090
Hyperlipidemia, other/unspecified 4,535/197,259 0.94 0.0004 −0.0566 0.0152
Nonalcoholic fatty liver disease 894/217,898 0.89 0.0014 −0.1128 0.0335
Cholelithiasis 19,023/195,144 0.93 3.7 � 10−18 −0.0689 0.0078
Statin medication 68,782/150,010 0.95 3.8 � 10−25 −0.0559 0.0053
Sleep apnea 16,761/201,194 0.93 3.7 � 10−20 −0.0762 0.0081
Osteopathies and chondropathies 9,217/209,575 1.00 0.69 −0.0050 0.0107
Osteoporosis 3,203/209,575 0.99 0.62 −0.0104 0.0180
Arthrosis 37,233/147,221 1.00 0.78 0.0020 0.0062
Gonarthrosis 22,796/147,221 0.99 0.12 −0.0128 0.0075
Smoking 29,961/66,872 0.95 2.8 � 10−9 −0.0507 0.0071

Logistic regression analysis. Model adjusted for age, sex, and 10 genetic principal components of population stratification. Kela, the Social insurance Institute of Finland.
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Bayesian approach, accounted for linkage disequilibrium
(LDPred) (27), and adjusted for the LD reference panel of un-
related Finnish individuals from the national FINRISK study
(n = 27,284) (26). The total number of variants used for risk
score calculation in our first analyses was 1,140,182.

Statistical analyses. Associations between PA PRS and
bodymass index (BMI), common diseases, and mortality were
analyzed with linear and logistic regression models adjusted
for age, gender, and the 10 principal components of ancestry.
An increase in risk was calculated per 1 SD change in PRS.
The distribution of 4 SD covered 95% of the population.
The number of diseased cases varied between 894 (nonalco-
holic fatty level disease) and 111,108 (cardiovascular diseases;
Tables 1–3). The false discovery rate was used to correct the
P values for multiple testing (28), and the significance thresh-
old was set to P < 0.05.

Ethics Approval

The patients and control subjects in FinnGen provided their
informed consent for biobank research based on the Finnish
Biobank Act. Alternatively, older research cohorts, collected
TABLE 2. Association analysis between polygenic score for PA and cardiovascular disease
(CVD) end points.

Phenotype Cases/Controls OR P β SE

CVD, all 111,108/107,684 0.96 9.5 � 10−19 −0.0445 0.0049
Coronary atherosclerosis 23,363/195,429 0.95 4.4 � 10−11 −0.0514 0.0076
Ischemic heart diseases 30,952/187,840 0.96 1.1 � 10−10 −0.0447 0.0068
Angina pectoris 18,168/200,624 0.95 2.5 � 10−10 −0.0540 0.0083
Myocardial infarction 11,622/207,170 0.96 1.3 � 10−5 −0.0450 0.0100
Major CVD event 21,012/197,780 0.95 1.2 � 10−9 −0.0491 0.0079
Hard CVD 29,350/189,442 0.96 4.9 � 10−10 −0.0441 0.0069
Coronary revascularization 12,271/206,521 0.93 4.7 � 10−13 −0.0685 0.0099
All-cause heart failure 23,397/194,811 0.94 2.7 � 10−14 −0.0576 0.0074
Stroke 18,661/162,201 0.95 6.4 � 10−8 −0.0466 0.0084
Hypertension 55,955/162,837 0.93 2.7 � 10−44 −0.0777 0.0055
Antihypertensive medication 107,287/111,505 0.94 2.4 � 10−34 −0.0616 0.0050

Logistic regression analysis. Model adjusted for age, sex, and 10 genetic principal compo-
nents of population stratification.
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before the start of FinnGen (in August 2017), were collected
based on study-specific consent and later transferred to the
Finnish biobanks after approval by Fimea, the National Super-
visory Authority for Welfare and Health. The recruitment pro-
tocols followed the biobank protocols approved by Fimea.
The Coordinating Ethics Committee of the Hospital District
of Helsinki and Uusimaa (HUS) approved the FinnGen study
protocol Nr HUS/990/2017.

The FinnGen study is approved by the Finnish Institute for
Health and Welfare (permit nos. THL/2031/6.02.00/2017, THL/
1101/5.05.00/2017, THL/341/6.02.00/2018, THL/2222/6.02.00/
2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019, THL/
1524/5.05.00/2020, and THL/2364/14.02/2020), Digital and
Population Data Service Agency (permit nos. VRK43431/
2017-3, VRK/6909/2018-3, VRK/4415/2019-3), the Social
Insurance Institution (permit nos. Kela 58/522/2017, Kela
131/522/2018, Kela 70/522/2019, Kela 98/522/2019, Kela
138/522/2019, Kela 2/522/2020, and Kela 16/522/2020),
and Statistics Finland (permit nos. TK-53-1041-17 and
TK-53-90-20).

The Biobank Access Decisions for FinnGen samples and the
data used in FinnGen Data Freeze 6 include the following: THL
Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34,
BB_2018_67, BB2018_71, BB2019_7, BB2019_8, BB2019_26,
TABLE 3. Association analysis between polygenic score for PA, dementia end points, and
death.

Phenotype Cases/Controls OR P β SE

Dementia, all 7,284/209,487 1.01 0.4743 0.0108 0.0128
Alzheimer disease 3,899/214,893 1.05 0.0112 0.0462 0.0170
Alzheimer’s disease, atypical

or mixed
800/214,893 1.09 0.0262 0.0863 0.0361

Alzheimer’s disease, early onset 587/111,471 1.08 0.1199 0.0724 0.0419
Alzheimer’s disease, late onset 2,670/111,471 1.02 0.3794 0.0218 0.0216
Vascular dementia 859/211,300 0.99 0.7712 −0.0120 0.0346
Any death 15,152/203,640 0.97 0.0003 −0.0335 0.0088

Logistic regression analysis. Model adjusted for age, sex, and 10 genetic principal compo-
nents of population stratification.
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FIGURE 1—Study design and workflow. PRS for device-based measures of overall PA volume was derived from recent GWA study (11) and a linkage
disequilibrium reference panel of 27,284 unrelated Finnish individuals (26). Out-of-sample predictive value was tested using two independent Finnish co-
horts and several PA phenotypes (7). Association analysis was conducted in a FinnGen cohort of 218,792 Finnish participants. The clinical end points used
in the analysis were derived from Finnish nationwide digital health registers.

EPID
BB2020_1, Finnish Red Cross Blood Service Biobank 7.12.2017,
Helsinki Biobank HUS/359/2017, Auria Biobank AB17–5154,
Biobank Borealis of Northern Finland_2017_1013, Biobank of
Eastern Finland 1186/2018, Finnish Clinical Biobank Tampere
MH0004, Central Finland Biobank 1–2017, and Terveystalo
Biobank STB 2018001. The study conducted in accordance
with the declaration of Helsinki.
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RESULTS

We observed that a high PA PRS, a genetic inheritance that
supports higher volumes for PA, systematically predicted a
lower risk for diseases that typically develop later in life or
not at all among highly active individuals.

Polygenic risk, BMI, and obesity. High PA PRS pre-
dicted lower BMI (β = −0.025 kg·m−2 per SD of PA PRS,
SE = 0.013, P = 1.87 � 10−80, n = 160,334) and body weight
(β=−0.876 kg per SDof PAPRS, SE=0.041,P=3.69� 10−102,
n = 164,964). Higher PA PRS also predicted a decreased risk
for obesity (Table 1).

Polygenic risk, type 2 diabetes, and other meta-
bolic diseases.Genetically active participants were at a sig-
nificantly lower risk for developing type 2 diabetes (odds ratio
[OR] per SD of PA PRS = 0.91, P = 4.1� 10−42). Similar OR
values were observed in both uncomplicated type 2 diabetes
cases and cases where peripheral complications were present
(Table 1).

Higher PA PRS values were also associated with lower
odds of diabetes medication and insulin treatment end points
(based on Kela reimbursement). Genetically active participants
PRS FOR PA AND CARDIOMETABOLIC DISEASES
also exhibited lower risk for several diseases related to fat
metabolism, such as disorders of lipoprotein metabolism,
lipidemias, nonalcoholic fatty liver disease, and use of statin
medication (OR= 0.89 to 0.96). Lower odds for hyperthyroidism
were also observed among the genetically active participants
(OR = 0.96, P = 1.8� 10−29). However, associations between
PA PRS and bone metabolism phenotypes (arthrosis, osteopo-
rosis, etc.) were not found. High PA PRS value was associated
with lower odds for smoking.

Polygenic risk and cardiovascular diseases. High
PA PRS systematically associated with smaller cardiovascular
disease (CVD) risk (Table 2). The genetically active participants
had fewer overall CVD (OR = 0.96, P = 9.5� 10−19). They also
had a lower risk of ischemic heart disease (OR = 0.96,
P = 1.1� 10−10), stroke (OR = 0.95,P = 6.4� 10−8), and hyper-
tension (OR = 0.93, P = 2.7 � 10−44), and they also used fewer
antihypertensive medications (OR = 0.94, P = 2.4 � 10−34).

Polygenic risk, mortality, and dementia. In FinnGen
cohort, which included 15,152 deaths, a 1 SD increase in the
PA PRS was found to be associated with lower odds for all-
cause mortality (OR = 0.97, P = 0.0003). The risk of
Alzheimer’s disease was, however, increased (OR = 1.05,
P = 0.0112), although the number of cases in the FinnGen data
was rather modest (n = 3,899). The PA PRS value was not as-
sociated with vascular dementia (Table 3).
DISCUSSION

We adapted a polygenic score for device-based overall PA
volume (7) and showed that genetically less physically active
Medicine & Science in Sports & Exercise® 283
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persons are at higher risk of developing several CMD and phe-
notypes when compared with persons with a genetic predispo-
sition for high PA. Furthermore, the risk of all-cause mortality
was higher among genetically less active individuals. Our
results suggest that genetic pleiotropy, i.e., the same genes
affecting both PA behavior and CMD risk, may partly explain
the associations between low PA and higher disease and mor-
tality risk that have frequently reported in literature. In addi-
tion, possibly because genetically active persons tend to live
longer, it was observed that they are at higher risk of develop-
ing Alzheimer’s disease.

There is a substantial amount of literature on the associa-
tions between higher PA and a lower risk of common CMD.
Moreover, PA has been reported to reduce disease risk in a
dose–response manner (29). However, adjusting for genetic
confounders in these designs has been impossible except for
in twin studies. PA is a multifactorial behavioral and physio-
logical trait influenced by hundreds—if not thousands—of
genes that exhibit variation due to hundreds of thousands of
genetic variants, most of which are single-nucleotide variants.
To our knowledge, this is the first study that has used PA PRS
to demonstrate that a genetic predisposition for PA is associ-
ated with several cardiometabolic traits. The results are in line
with a few twin studies, which have shown that genetic inher-
itance strongly mediates the association between PA and dis-
ease risk and mortality (30,31) and genetically informative
studies suggesting a bidirectional relationship with PA and ad-
iposity and CMD (11,32). Our study design cannot distinguish
between horizontal pleiotropy and vertical pleiotropy, i.e., the
mediating role of PA in association between PA genotype and
CMD. This does not essentially change our conclusion on that
genetic predisposition may partly explain the association seen
between the traits in observational follow-ups. However, our
findings should not be interpreted as not to recommend exer-
cise to patients as exercise therapy provides many health ben-
efits (33).

The PA PRS, derived from over million single nucleotide
polymorphisms, does not reflect a genetic predisposition to
single underlying mechanism but rather the combined influ-
ence of multiple pathways. Genetic risk can lead to activity be-
havior through multiple distinct social-behavioral factors (34).
In addition, complex biological systems regulated by genetics,
but also influenced by external environment and epigenetic
regulation, also play a significant role in regulating PA levels
(35). These systems—for example, the brain, the cardiorespi-
ratory system, and the muscles—also interact within the hu-
man body. The optimal function of these organs and systems
that participate in energy production predicts higher aerobic
capacity among individuals representing all age-groups. Aero-
bic capacity is a highly heritable phenotype according to twin
studies (22). By contrast, many pathological conditions related
to these functions, such as impaired heart and liver function,
vascular structure, and circulatory and metabolic systems, en-
compass in CMD. It is therefore reasonable to suggest that
shared genetic factors that regulate both PA and CMD may
have a physiological basis.
284 Official Journal of the American College of Sports Medicine
Recent studies using newly discovered genetic variants for
CMD as well as novel methods of generating PRS that use
genomewide variation rather than only a handful of genomewide
significant variants have shown the polygenic nature of CMD
and better performance for predicting disease onset (5). Improved
risk prediction over commonly used clinical estimates has
been especially found among high-risk individuals represent-
ing genetic extremities (36). The role that PRS will play in
clinical care is currently unclear, but it has been constantly
suggested that lifestyle interventions, including PA, might be
one treatment option for high-risk CMD individuals (36).
Yet, it is not known how high-risk individuals accept and re-
spond to lifestyle treatment. In terms of BMI, it has been
shown that the effects of an unhealthy diet, PA, and sedentary
behavior on BMI are pronounced in those with a genetic pre-
disposition for a high BMI (37,38). We observed here that the
prevalence of CMD increased linearly with decreasing PA
PRS. We hypothesize that it is likely that individuals who
have high genetic or clinical risk for CMD may also have a
“low activity genotype.” This suggests that it can be challeng-
ing to intervene with formerly inactive individuals to prevent
cardiometabolic diseases that typically develop over decades.
The first lifestyle studies that have informed participants about
their genetic risk for CMD have resulted in conflicting find-
ings. Information about genetic risk for type 2 diabetes did
not result in increases in PA even in short term intervention
(39). On the contrary,Web page communication about genetic
and traditional atherosclerotic cardiovascular disease risk mo-
tivated 42.6% of the high-risk individuals to improve their
health behavior, which resulted in clinically significant im-
provement of lipid profiles and lower systolic blood pressure
during a 1.5-yr follow-up (40). The number of individuals that
took some actions to improve their health during the follow-up
was significantly higher compared with the individuals who
were at average or lower risk (33.5%). It was observed that
both traditional and genetic risk contributed to the change in
health behavior independently. It must also to be noted that ex-
ercise training intervention effects on intermediate CMD risk
factors are highly individual and suggested to originate from
genetic diversities (17,41). Future studies investigating life-
style interventions among individuals representing genetic ex-
tremities may reveal how genetic inheritance affects interven-
tion responses or lifestyle modifications.

In our study, a higher PA PRS, which suggests a genetically
active genotype, was associated with a higher risk for develop-
ing Alzheimer’s disease. This association was evident espe-
cially in atypical or mixed Alzheimer’s diseases diagnosis,
but associations with all dementia diagnoses or vascular de-
mentia were not found. In general, PA has typically been sug-
gested to reduce the risk of Alzheimer’s disease and its brain-
related complications (42). A healthy lifestyle has been found
to be associated with lower dementia risk—independent of
one’s genetic risk level (43). However, some recent findings
are better in line with our results. For example, a 28-yr
follow-up study by Sabia et al. (44) found no evidence about
the neuroprotective effect of PA and states that earlier findings
http://www.acsm-msse.org
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showing a lower risk of dementia in physically active people
may be attributable to reverse causation. The risk of Alzheimer’s
disease increases strongly with increasing age, but it has been
probably overall decreasing in recent years as the overall
health of the elderly population has improved globally (45).
In the Finnish population, 15%–20% of those over 85 yr of
age have received an Alzheimer’s diagnosis. We suggest that
the association between PA PRS and Alzheimer’s disease
may partially be explained by improved survival of genetically
physically active individuals because of the lower risk of early-
onset cardiovascular death. However, a formal competing-risk
analysis is needed to demonstrate whether this association is ro-
bust. Another potential explanation to our findings about increased
Alzheimer risk among genetically active individuals is the genetic
overlap of PA and neurodegenerative diseases. The potential
causal association between different PAestimates andAlzheimer’s
disease has previously been tested by Doherty et al. (11) using
comprehensiveMendelian randomization design andUK biobank
data. These results did not suggest causal associations.

Thus far, PRS values have been established for various
traits and diseases, but their development for behavioral traits
has been limited (46,47). Moreover, earlier studies have not
assessed how behavioral PRS predict future major health
events—except with regard to alcohol consumption (48). In
this study, we investigated associations between the polygenic
score for PA and the multiple register-derived disease end
points in a large population-based sample (n = 218,792). The
Finnish personal identity numbers, unique for each individual
and used in all national digital health care registers, enabled
linking the genotyped FinnGen study participants into differ-
ent health registers. This, in turn, allowed us to test the PA
PRS with multiple validated ICD end points simultaneously.
Our study provides novel information regarding associations
between PA and common diseases and contributes to the inter-
pretation of sports and exercise science studies.

The polygenic score for PA used in this study was derived
using the UK biobank population representing European an-
cestry. UK biobank subjects are volunteers and somewhat
healthier compared with the general population (49). How-
ever, in the original UK biobank GWAS data, there were
many individuals with chronic diseases who were not ex-
cluded when constructing the PA PRS. It is known that
chronic diseases are a common reason for one’s reduction in
PA (50); thus, the constructed PA PRS may include genetic
variants that are primarily predictors of chronic diseases. This
needs to be taken into account when interpreting our results.
PA PRS value was validated using Finnish cohorts (7), and
our current association analyses were performed among Finnish
citizens. In general, Finns differ from other Europeans primarily
in terms of the frequency of less common and rare variants be-
cause of genetic isolation and bottlenecks (51). This different
genetic ancestry may limit the generalizability of the PA PRS
to Finns. Although the PA PRS value was strongly associated
with cardiometabolic traits in our study, the UK Biobank
data used to derive PRS for PA may have resulted in an
underestimation of the associations between PRS for PA and
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CMD. By contrast, a fraction of FinnGen individuals were col-
lected through hospital biobanks, which may lead to the over-
estimation of risk (5). The PRS for PA and its associations with
CMD needs to also be tested in non-European samples.

Today, PRS for common diseases and lifestyle behavior can
be simultaneously and inexpensively calculated for individuals at
birth. The usefulness as well as potential harms of this knowledge
needs to be carefully considered before this information is rou-
tinely used in health care, i.e., for screening subjects who are at
an extreme risk of developing a disease. It is important to consider
how absolute and relative risks are assessed and communicated at
different stages of life. In addition, there is a need for studies inves-
tigating the potential genetic overlap between disease risk and
health behavior in longitudinal settings as well as to increase
knowledge regarding how potential interventions and treatments
work depending on individuals’ polygenic risk. Like any other ge-
netic risk information, PRS values are not deterministic. This is
demonstrated by studies of monozygotic twins, who have the
same genomic sequence and hence identical polygenic scores
for any trait or disease. Yet, even the identical twin pairs are
more discordant than concordant for all common diseases, in-
dicating the roles of the environment, lifestyle, and chance.

CONCLUSIONS

In conclusion, in this study, a higher PA PRS value was associ-
ated with a lower risk for several CMD and all-cause mortality.
These findings highlight the fact that shared genetic factors may
modify both health-related behavior, such as PA, and disease risk.
The practical applications of polygenic risk information in disease
screening aswell as for guiding lifestyle andmedical interventions
remain to be investigated in further studies. An understanding of
the individuals’ genetic predisposition to diseases as well as life-
style factors may help destigmatize individuals who cannot ful-
fill public lifestyle recommendations.
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