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Abstract: Evidence regarding the effect of the onlay preparation design for different CAD/CAM
restorative materials considering the preservation of cusps is lacking. Molars were 3D-modeled in
four preparation designs for onlay restoration: traditional design with functional cusp coverage (TFC),
non-retentive design with functional cusp coverage (NFC), traditional design with non-functional
cusp coverage (TNFC) and non-retentive design with non-functional cusp coverage (NNFC). The
restorations were simulated with two CAD/CAM restorative materials: LD—lithium disilicate (IPS
e.max CAD) and RC—resin composite (GrandioBloc). A 100 N axial load was applied to the occlusal
surface, simulating the centric contact point. Von Mises (VM) and maximum principal (Pmax) stress
were evaluated for restorations, cement layer and dental substrate. The non-retentive preparation
design reduced the stress concentration in the tooth structure in comparison to the conventional
retentive design. For LD onlays, the stress distribution on the restoration intaglio surface showed
that the preparation design, as well as the prepared cusp, influenced the stress magnitude. The
non-retentive preparation design provided better load distribution in both restorative materials and
more advantageous for molar structure. The resin composite restoration on thenon-functional cusp is
recommended when the functional cusp is preserved in order to associate conservative dentistry and
low-stress magnitude.

Keywords: dental materials; finite element analysis; prosthodontics; biomechanics

1. Introduction

In the last decade, restorations made using the CAD/CAM methodology have been
gaining attention. The lithium disilicate for dental restorations was introduced in 2006 and
is marketed in a pre-crystalline phase that, after machining, undergoes a firing process
to reach the final selected color [1]. Several clinical studies with full and partial overlay
restorations have been carried out with this material, showing promising results [2–4]. In
a literature review conducted by Pieger et al., including research conducted on lithium
disilicate glass-ceramic, a 97.8% survival rate was observed in the five-year follow-up [5].
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Although the success rates for dental ceramics are high, there are still some clinical
situations that require improvement. There are limitations in posterior teeth, where there is
a greater masticatory load than in the anterior teeth, which might compromise posterior
restoration, making them more vulnerable to failure [6]. The distribution of occlusal forces
in individuals with no occlusal changes is greater in the molar region, reaching an average
maximum force of 400 N, while in individuals with some parafunctional habits, as in
the cases of bruxism, this force can reach values up to 1000 N [7,8]. Some of the failures
that can occur due to the limitations of this type of material are cracks or catastrophic
fractures, inadequate marginal adjustment and wear of antagonistic teeth opposed to the
restoration [9,10].

The damage tolerance of lithium disilicate does not only depend on the manufacturing
method but on the fracture toughness presented by this material as well. The toughness
mechanism seems to be influenced by the size of the crystals, since they prevent the spread
of cracks that can lead to catastrophic failure [11]. This dental material presents a survival
rate of 96.3% in two years for 37 restorations, of which 5 restorations failed and 3 were
fractured [12].

A critical factor to consider when comparing the pressed and machined lithium
disilicate restorations is the marginal adjustment, which can present mismatch, leading to
deleterious effects such as marginal staining, cement degradation or secondary caries [5].
In a review of the two restoration techniques, it was concluded that the presses obtained
a smaller marginal crack than the machined ones [13]. In this way, the quality of the
preparation for CAD/CAM restorations must be more refined and uniform, with no
retentions that can prevent adaptation [14].

Making use of a material that works well with the tooth structure would be an
interesting alternative to circumventing the failures of restorations, since commercially
there are blocks such as hybrid type ceramics or nanoresins with a greater number of
fillers [15,16]. One of these types of blocks was launched in 2013 and is commercially
distributed by VOCO under the name of Grandio Blocs. The composition of this material,
which includes a 86% inorganic filler content, results in greater strength and stability [17,18].

According to the manufacturer, the elastic modulus of the composite nanoresins shows
values between the ceramic and indirect composite resins, thus having a flexural strength
of 330MPa [19]. These data led us to believe that this type of material could have a superior
clinical behavior in relation to catastrophic failures when compared to porcelain and even
glass-ceramics, in addition to reducing the need to wear antagonistic teeth. The indications,
according to the manufacturers, are for inlays, onlays, overlays, single crown restorations
and in some cases, they can be used in areas of greater stress [20].

Cavity preparation design can be one of the main reasons for tooth fracture or restora-
tion [21]. When the tooth loses more of its structure, especially the marginal ridge, the
cavity becomes more susceptible to deformations when stressed. Unlike metallic restora-
tions, ceramic restorations with traditional preparations, due to their fragile nature, do
not support occlusal loads when they involve the coverage of the cusp of the dental struc-
ture [22]. Several studies have offered different designs for the preparation of the cavity,
ideal for restorations of partial ceramic covering [23–25] as well as for the cement layer
polymerization kinetics [25,26].

When the surface of the cavity preparation is flat, even the restoration of the cavity
with high adhesive strength material cannot guarantee a stable restoration. The creation
of retention can reduce the interfacial adhesive strength and increase the survival rate
of the restorations, thus decreasing the probability of early detachment. However, the
preparation of the retention grooves sacrifices much of the remaining tooth structure [27];
for this reason, conventional preparations must adopt minimally invasive approaches
that avoid restoration failures [28], although preparations for partial restoration lead to
considerable enamel loss [22].

With the continuous development of dental materials and ceramics with innovative
manufacturing processes such as CAD/CAM, the question that arises is whether the



Polymers 2021, 13, 3831 3 of 9

preparation guidelines for partial ceramic restorations could be adapted for minimally
invasive approaches while preserving more healthy tissue. Therefore, the aim of the present
study was to biomechanically analyze various preparation designs for lithium disilicate
ceramic and resin composite onlays under simulated tensions induced by chewing. In
particular, we aimed to determine if the risk of fracture is greater with lithium disilicate
ceramic restorations than with CAD/CAM resin restorations.

2. Materials and Methods

A three-dimensional geometry was obtained with the aid of CAD (Computer Aided
Design) software (Rhinoceros® version 4.0; McNeel North America, Seattle, WA, USA). The
3D teeth were obtained from a scan of preparations made in resin models, in which the teeth
presented anatomy based on the literature [15]. In this step, the models were generated
from lines drawn over the image in STL, in which the main anatomical landmarks are
chosen, with lines generated over them that referenced the surface. Molars were modeled
in 4 preparation designs of onlay restoration: traditional with functional cusp coverage
(TFC), non-retentive with functional cusp coverage (NFC), traditional with non-functional
cusp coverage (TNFC) and non-retentive with non-functional cusp coverage (NNFC).

The design for the traditional onlay preparation was created with a 2.7 mm depth,
2.3 mm opening of the isthmus and a 1.2 mm opening of the gingival wall. The cavity walls
of the preparation were tapered from 6 to 10◦. The functional (2 mm) and non-functional
(1.5 mm) cusps were reduced considering the specific design of each group. The non-
retentive preparation following the natural tooth morphology (2 mm on functional cups,
1.5 mm on non-functional cusp), all angles and walls smooth and rounded [23–27].

After forming the surfaces, they were transformed into solids to provide delimitation
of the structures that were studied. These volumes were exported in STP format (Standard
for the Exchange of Product Model Data) so that the software (ANSYS 17.2, ANSYS Inc.,
Houston, TX, USA) for pre- and post-processing of finite element analysis could be used.
The designed structures were tooth with onlay preparation (functional or non-functional
cusp), onlay, resin cement layer, periodontal ligament and alveolar bone composed by
cortical and cancellous bone tissues (Figure 1).
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After importing the geometries, the meshes were made, and the density was adjusted
to obtain sufficient and accurate results. For that, the Ansys 19.2 Software (ANSYS Inc.,
Houston, TX, USA) was used, in which meshes of quadratic tetrahedral elements are used,
characterized by pyramids with a triangular base, with a knot in each vertex and another in
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the center of each edge, totaling 10 nodes per element. This type of volume element is the
most suitable for reproducing complex and curved geometries such as dental structures,
as it adapts better spatially, thus being a very powerful tool for representing volumes of
anatomical geometries.

After editing the models, their specific properties were assigned. At this stage, it is
important to check the consistency of the physical quantities used in the model together
with the homogeneity of metric systems. In this study, the proper analysis to represent the
fracture test was performed by structural static analysis, in which at least w properties,
among them the elastic modulus (E) in GPa and Poisson’s ratio (V), must be informed.
Thus, each geometry has specific properties that characterized its behavior for an assay
within the limits of linearity (Table 1) [18,28–32].

Table 1. Materials properties considered in the present study.

Material Elastic Modulus (GPa) Poisson Ratio Reference

Enamel 84.1 0.33 [28]

Dentin 18.6 0.32 [28]

Lithium Disilicate (e.max CAD) 102.7 0.21 [29]

Resin Composite (Grandio Blocs) 18 0.26 [18]

Resin cement (Multilink N) 8.3 0.7 [18,30]

Periodontal Ligament 0.050 0.49 [31]

Cortical Bone 12.6 0.25 [32]

Cancellous bone 1.14 0.32 [32]

The relationship between the geometries determines the transmission of the existing
tensions from one element to other at the interface region; thus, it is necessary to define the
contacts. In this study, they were all considered bonded.

For the simulation of the boundary conditions in all models, the displacement in all
directions was restricted and the load was applied by simulating a force of 100 N [33]. A
vertical load on the occlusal surface perpendicular to the load axis simulating the centric
contact point was applied.

3. Results

The visualization of the results of analysis by finite element method was performed
qualitatively using a color stress map, in which each fringe represents a range of stress
or deformations generated in the evaluated structures. For the analysis of the results, the
maximum principal stress (MPa) was used to assess the stress distribution and magnitude
in the restoration, cement layer and dental substrate.

The numerical results are plotted in colorimetric stress maps in Figures 2–4, and the
highest values of the Tensile Stress (MPa) are summarized in Table 2.

The stress on the tooth structure (enamel and dentin) was calculated using the Maxi-
mum probe detected by the Mechanical APDL (ANSYS 19.2, ANSYS Inc., Houston, TX,
USA). Observing the stress distribution on the restoration’s intaglio surface (Figure 2), LD
onlays (130–95 MPa) showed higher tensile stress concentration in the center of restora-
tion (Figure 2A,C,E,G) than RC. For RC models, the stress peaks were higher (130 MPa)
when TFC preparation design was considered. For LD onlays, the stress distribution
on the restoration’s intaglio surface showed that the preparation design influenced the
stress distribution as well as the prepared cusp. Regardless of the restorative material,
the non-retentive preparation design improved the distribution of the stress concentration
to the tooth structure in comparison to the conventional retentive design. However, for
conventional preparation, the stress concentration was higher than the restoration itself.
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Table 2. Stress peaks (MPa) measured for each geometry according to the preparation and restorative
material combination.

Material Design Tooth Cement Layer Onlay

Lithium Disilicate

Traditional
32.3 0.6 130.1
43.1 0.8 95.9

Non-retentive
25.1 0.6 103.6
41.1 0.5 109.1

Resin Composite
Traditional

36.2 1.2 130.4
42.1 1.6 95.5

Non-retentive
26.1 1.1 105.2
38.3 0.6 103.4
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4. Discussion

The traditional retentive onlay preparation protocols and guidelines were based on
classic studies [34,35], in which healthy tissue was often not preserved and cusp coverage
was needed if the cavity extension was two-thirds or greater than the distance from any
primary groove to the tip of the cusp. Based on the results of the finite element analysis of
this study, the non-retentive preparation design showed a more favorable behavior and
reduced the concentration of stress on the tooth structure compared to the conventional
retentive design.

Restorative dentistry has currently experienced a dramatic increase in minimally
invasive restorations. Dentists, in order to preserve as much dental structure as possible,
are constantly changing the traditional guidelines for the design of non-retentive prepa-
rations [23]. In addition, scientific evidence on enamel and dentin adhesion techniques
are reliable, and studies have shown adequate mechanical behavior for non-retentive
preparations under load [36]. These data corroborate the present study, considering that
the non-retentive preparation presented the lowest stress concentration values in all the
analyzed structures. The less retentive preparation usually has a greater amount of enamel,
and the tissue has better adhesion.

Dental adhesive systems play a vital role in today’s restorative dentistry practices [37].
These adhesive restorations substantially decrease the amount of tooth reduction required
during the cavity preparation process, since adhesive restorations do not require extensions
for retention [22–25]. It is important to note that most of the margin of the restoration is
placed on the enamel, which serves as an excellent bonding surface for the adhesive system.
Therefore, the present study’s results suggest that the retention longevity and functionality
of the restoration can therefore be increased.

The decision to cover the functional or non-functional cusp in partial coverage prepa-
rations may be due to the amount of remaining dental structure [24,38]. In the present
study, the reduction of functional or non-functional cusps was compared; the results
demonstrated that when the non-functional cusp was prepared, the stress on the func-
tional cusp increased regardless of the type of preparation. From a clinical point of view,
when restoring teeth that have already loose the non-functional cusp, a non-retentive
preparation associated with composite resin can be an alternative treatment in order to be
more conservative.
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The use of ceramics is needed in dental treatments where the traditional form of
mechanical retention is limited and may allow non-retentive dental preparations, as shown
in the stress distribution values on the internal surface of the restoration in this study. As
the technologies and CAD/CAM materials have been improved and are being further
developed, the design of the preparation margin will not present a significant difference
during the manufacturing process [39,40].

As no consensus has been reached on how much to wear in onlay preparations today,
the guidelines should be geared towards making decisions about how to prepare and what
type of material is most appropriate. In line with this clinical philosophy, resin and ceramic
onlays are now considered viable alternatives to full-coverage crowns, with a success rate
exceeding 90% in 10 years [41]. However, manufacturers fail to provide guidance on when
cusp coverage with ceramic material is needed.

The design of this study focused on covering the functional or non-functional cusp
with two types of preparation of the lower first molar tooth; the results are applicable only
for this type of case. The designs of non-retentive preparations used in this study can,
theoretically, minimize the concentration of stress on the tooth structure; however, this is
transferred to the restoration, so it is important to follow those restorations while in service.

5. Conclusions

Despite the limitations of this study, which considers only the stress magnitude, it is
possible to conclude that:

1. For the first molar rehabilitation, both restorative materials present a suitable applica-
bility during onlay treatments; however, preferable non-retentive preparation designs
should be performed.

2. The resin composite restoration on non-functional cusp is recommended when
functional cusp is preserved in order to associate conservative dentistry and low
stress magnitude.
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