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Abstract

Recent data support the view that epigenetic processes play a role in
memory consolidation and help to transmit acquired memories even
across generations in a Lamarckian manner. Drugs that target the
epigenetic machinery were found to enhance memory function in
rodents and ameliorate disease phenotypes in models for brain
diseases such as Alzheimer’s disease, Chorea Huntington, Depression
or Schizophrenia. In this review, I will give an overview on the
current knowledge of epigenetic processes in memory function and
brain disease with a focus on Morbus Alzheimer as the most
common neurodegenerative disease. I will address the question
whether an epigenetic therapy could indeed be a suitable therapeu-
tic avenue to treat brain diseases and discuss the necessary steps
that should help to take neuroepigenetic research to the next level.
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Memory formation via gene expression control

The human brain has about 100 billion neurons that are intercon-

nected via synapses, and this is believed to provide the basis for the

encoding, consolidation and retrieval of memories. How the brain

achieves such miraculous tasks is one of the greatest remaining

mysteries of our time. While various cellular mechanisms have been

linked to memory function, an often cited view suggests that de

novo protein synthesis is an absolute requirement for the consolida-

tion of long-term memories; hence, tightly regulated gene expres-

sion must be a key component of memory formation. The idea that

de novo protein synthesis is a requirement for memory formation is

based on studies in which inhibitors of mRNA translation were

found to impair memory formation in a time-dependent manner,

indicating that at least two different phases of memory consolidation

exist: an early phase that is de novo protein synthesis independent

and a later phase that critically depends on protein synthesis (Flexner

et al, 1962; Flexner et al, 1963; Davis & Squire, 1984; Igaz et al,

2002). The same principle has then been demonstrated for synaptic

plasticity. For example, long-term potentiation (LTP), which is often

referred to as the molecular correlate of learning and memory, can

also be distinguished into an early phase (E-LTP) and late phase

(L-LTP). Notably, L-LTP but not E-LTP can be blocked by de novo

protein synthesis inhibitors (Frey & Morris, 1998). It was also

shown that the induction of L-LTP induced molecular events that

appear to trigger de novo protein synthesis and gene expression

programs that can transform E-LTP into L-LTP (Frey & Morris,

1998). Those data led to the hypothesis of synaptic tagging and

capturing (Box 1), which was also confirmed on the behavioral

level (Moncada et al, 2011). However, pharmacological inhibition

of protein synthesis was also found to cause an accumulation of

mRNA transcripts which eventually leads to a super-induction of

gene expression (Tronson et al, 2009), suggesting that the amnestic

effect of de novo protein synthesis inhibitors is—at least in part—

due to the induction of transcriptional noise. Despite such different

views on the interplay and importance of synaptic events and learn-

ing-induced differential gene expression followed by de novo protein

synthesis, it is obvious that a tightly controlled gene expression

program provides the basis for memory encoding. This view is

further supported by the fact that de-regulated gene expression is

seen in brain diseases linked to memory impairment (Lu et al, 2004;

Liang et al, 2010; Ginsberg et al, 2010; Twine et al, 2011; Blalock

et al, 2011; Kim et al, 2012a; Arefin et al, 2012; Caldeira et al, 2013;

Mills et al, 2013). To understand the mechanisms that orchestrate

gene expression programs in brain cells is thus of utmost importance.

In addition to the activity of transcription factors, epigenetic (Box 1)

mechanisms are key processes that control gene expression at a

systems level (Allis et al, 2007) via DNA or nucleosome modifications.

Nucleosomes consist of the four core histones (H) around which

147 bp of DNA is wrapped. The histone tails are subjected to post-

translational modifications including acetylation, methylation,

phosphorylated, ubiquitination, sumoylation or ADP-ribosylation

(Vaquero et al, 2003). This is mediated by the counteracting activi-

ties of enzymes, so-called writers and erasers (Box 1). For example,

histone-acetylation and histone-methylation are mediated by histone

acetyltransferases (HAT) and histone-deacetylases (HDAC) or

histone-methyltransferases (HMTs) and histone-demethylases

(HDM). Such modifications affect the direct interaction of the DNA

with histones and thereby alter the chromatin state (Bannister &

Kouzarides, 2011).

The activity of such enzymes is also believed to gives rise to a

combinatorial pattern of chromatin-modifications, the so-called the

histone-code, that is recognized by protein complexes that

either activate or repress gene expression (Strahl & Allis, 2000).

Methylation of DNA at the C-5 atom of cytosine is probably the

1 Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
2 German Center for Neurodegenerative Diseases (DZNE) Goettigen Site, Göttingen, Germany

*Corresponding author. Tel: +49 5513910378; Fax: +49 551399836; E-mail: afische2@gwdg.de

ª 2014 The Author. Published under the terms of the CC BY NC ND license The EMBO Journal Vol 33 | No 9 | 2014 945



best-studied epigenetic modification and is mediated by DNA-meth-

yltransferases. DNA-methylation occurs often in cytosine-guanine-

rich regions of the genome (CpG islands) and is generally associated

with gene silencing. It is mediated by the action of DNA-meth-

yltransferases (DNMTs). Although there is by now clear evidence

that DNA-methylation can be dynamic, the precise mechanisms

how DNA is de-methylated are still not well understood. Recently, it

has been discovered that cytosine can also be hydroxymethylated

which occurs predominantly in brain tissue (Kriaucionis & Heintz,

2009) and is a critical step in the demethylation of DNA (Guibert &

Weber, 2013). In addition to coding RNAs, the majority of the tran-

scriptome consists of non-coding RNA species of various sizes. Best

studied are a group of small non-coding RNAs, the micro RNAs

(miRs) that are 19–22 nt long non-coding RNAs that catalyze gene

silencing by binding to a target messenger RNA that induces either

its degradation or inhibition of protein translation thereby regulating

protein homeostasis (Im & Kenny, 2012). Although such non-coding

RNAs are not considered to be part of classical epigenetic mecha-

nisms, there is evidence that they mediate epigenetic gene expres-

sion (Rassoulzadegan et al, 2006; Fatica & Bozzoni, 2013). Thus,

this review will also discuss the role of non-coding RNAs in brain

plasticity (Fig 1).

The emerging field of neuroepigenetics investigates the above-

mentioned epigenetic processes in the context of neuronal plasticity,

memory function and brain diseases. In the following, I will discuss

the current knowledge on neuroepigenetics with a focus on brain

plasticity that will be contrasted by the current knowledge on epige-

netics in brain disease such as Alzheimer disease (AD).

Histone-modifications in memory formation

Histone-acetylation

Already in 1979, it was found that acetylation of histones is altered

when rats undergo memory consolidation (Schmitt & Matthies,

1979). Such studies were later confirmed showing that specific

forms of learning correlate with increased HAT activity (Swank &

Sweatt, 2001) and histone-acetylation (Levenson et al, 2004). While

Schmitt and Matthies used C14-labeled acetate to study histone-acet-

ylation (Schmitt & Matthies, 1979), these later studies used immu-

noblotting to detect bulk levels of histone-modifications. The

mechanistic insight from such early observations is limited since

they do allow to identify the genomic regions in which altered

histone-acetylation takes place. The functional relevance of histone-

acetylation for memory formation was first demonstrated via genetic

mouse models in which the activity of the HAT CREB-binding

protein (CBP/KAT3A) was reduced (Alarcon et al, 2004; Korzus

et al, 2004). These mutant mice displayed impaired memory consol-

idation (Fig 2), a finding that has been reproduced in various mouse

models in which CBP activity was altered (Wood et al, 2005; Wood

et al, 2006; Chen et al, 2010a; Barrett et al, 2011). In addition, it

was found that pharmacological inhibition of HDACs in the hippo-

campus enhances the consolidation of associative memories in

rodents (Levenson et al, 2004; Fischer et al, 2007; Stefanko et al,

2009; Federman et al, 2009). Subsequent studies started to explore

the role of specific histone-modifications and the function of the

corresponding enzymes in greater detail. Insight into the role of

specific modifications is still limited which is also due to the fact

that most studies investigate bulk histone-modifications. To over-

come this issue, researchers have started to perform chromatin

immunoprecipitation (ChIP) followed by qPCR analysis to study the

chromatin architecture of selected genes. Surprisingly, data in which

ChIP-qPCR for specific histone-modifications was analyzed during

memory formation are sparse, and at least in the brain, there is also

evidence that transient changes in gene expression do not always

correlate with altered histone-modifications at differentially

expressed genes (Kenney et al, 2012). Such data suggest that the

Box 1.

Braak & Braak staging
Is a histological method that used staining for neurofibrillary tangels
to define the degree of AD pathology in a post-mortem brain. It ranges
from stage I (early stage) to stage VI (Severe stage).

Chip-Seq
DNA samples obtained after chromatin immunoprecipitation (ChIP)
are not used to study selected genes via qPCR but are subjected to
massive parallel sequencing. Albeit this method yields genome-wide
maps of a given chromatin mark, data analysis requires intensive
bioinformatic analysis. ChIP-Seq is routinely used in other research
areas (Wang et al, 2008b), but has not been applied extensively to the
learning and memory field.

Epigenetics
The term epigenetics has been introduced by Conrad Waddington to
describe heritable changes of a phenotype that do not depend on
altered DNA-sequence (Holliday, 1994). Especially in the neurosciences,
it is now more generally used to describe processes that are mediated
via the epigenetic machinery (Stilling & Fischer, 2011). Thus, when
neuroscientists nowadays refer to epigenetics, they discuss processes
that involve histone-modifications, DNA-methylation as well as the
more recently discovered DNA-hydroxymethylation and often also the
action of non-coding RNAs (Fig 1).

Environmental enrichment
Environmental enrichment is a behavioral method consisting of cogni-
tive and physical exercise (Nithianantharajah & Hannan, 2006) that
can ameliorate cognitive disease phenotypes in mice and humans
(Pajonk et al, 2010) but is mechanistically poorly understood.

Synaptic tagging and capturing hypothesis
This theory suggests how activity initiates transient synaptic changes
that mark a given synapse for subsequent protein synthesis-dependent
long-lasting plasticity changes.

TAU pathology
The TAU protein is encoded by the mapt gene (microtubule-associated
protein tau). It is natively unfolded and best studied for its role in the
regulation of microtubule stability. During AD pathogenesis, TAU is
hyper-phosphorylated at multiple sites, which leads to the deregula-
tion of cellular homeostasis. Hyper-phosphorylated TAU protein even-
tually aggregates into intracellular neurofibrillary tangles (NFTs) that
are—next to amyloid plaques—a key hallmark of AD. The distribution
of NFTs in the brain is an important diagnostic tool for the Braak &
Braak staging.

Writers, erasers, readers
Writers and erasers add and remove epigenetic marks. Readers, as the
name suggest, read the epigenetic code for example by binding to
specific epigenetic modifications which initiates subsequent events
that control gene expression. A well-studied example are methylated-
DNA-binding enzymes (MDB) such as MeCP2 (Na et al, 2013).
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effect of HATs and HDACs in memory formation may involve also

other mechanisms than the regulation of gene expression. The

current state of the art method to study chromatin marks across the

entire genome is ChIP followed by next-generation sequencing

(ChIP-Seq, Box 1). A recent study performed a genome-wide analy-

sis of H4K5ac via ChIP-sequencing and found that H4K5ac correlates

with learning-induced gene expression (Park et al, 2013). This study

used however a fear conditioning protocol for associative learning

(Fig 2) in which mice received re-conditioning on consecutive days.

It thus appears that gene expression and histone-acetylation at the

corresponding genes correlate best in response to rather severe stim-

uli, as observed in disease situations or in the case of mutant mice

that lack specific enzymes of the epigenetic machinery (Peleg et al,

2010; Kerimoglu et al, 2013). Due to decreased costs and better

bioinformatic tools, the genome-wide analysis of histone-acetylation

using ChIP-Seq is likely to become a standard procedure also in the

neurosciences, which will allow for more mechanistic insight in the

future.

At the same time, there is already substantial data showing that

the enzymes regulating histone-modifications are essential for

memory function. Especially the role of HDCAs in the adult brain

has gained much attention since they have emerged as promising

drug targets for brain diseases (Fischer et al, 2010).

The 11 mammalian HDACs belong to an ancient protein family

and require a Zn2+ ion as cofactor (de Ruijter et al, 2003; Gregoretti

et al, 2004; Table 1). Under naı̈ve conditions, all HDAC genes are

expressed within the adult rodent brain (Broide et al, 2007). Mice

that lack HDAC1 or overexpress it in all neurons from early develop-

mental stages on show no impairments in contextual fear learning

or spatial memory formation (Guan et al, 2009; Fig 2), suggesting

that HDAC1 has no obvious role at least in the above-mentioned

types of memory function. HDAC1 was however found to be essen-

tial for fear extinction learning, a process that is important for the

treatment of neuropsychiatric diseases associated with aversive

behaviors as they occur in post-traumatic stress disorder (Bahari-

Javan et al, 2012). Here, the induction of immediate early genes

was suppressed via HDAC1-mediated de-acetylation of H3K9 and

subsequent H3K9 tri-methylation (Bahari-Javan et al, 2012).

Although HDAC1 and HDAC2 are close homologues that derived

from gene duplications, their roles in memory function differ. Over-

expression of HDAC2 in neurons impaired contextual fear learning

and spatial memory formation in mice, while deletion of HDAC2 in

neurons from early developmental stages on improved memory

function and synaptic plasticity (Guan et al, 2009). Notably,

enhanced learning behavior in HDAC2 knockout mice correlated

with increased hippocampal H4K12 acetylation, while H3K14 acety-

lation was not affected. Although the authors measured bulk

changes, these data are interesting taking into account that genome-

wide analysis of chromatin in the aging hippocampus suggested a

key role for H4K12 acetylation in age-associated memory impair-

ment (Peleg et al, 2010). On the structural level, loss of HDAC2

increased the number of synapses (Guan et al, 2009) which is in

line with a role of HDAC2—but also HDAC1—in synapse formation

during development (Akhtar et al, 2009). Loss of HDAC2 was also

found to improve fear extinction learning (Morris et al, 2013) which

is opposite to the function of HDAC1 (Bahari-Javan et al, 2012).

HDAC2 was found to bind promoter regions of genes linked to

memory formation, but the precise mechanisms by which HDAC2

acts as a memory repressor are not well understood (Guan et al,

2009). One study showed that HDAC2 is essential for the survival of

adult born neurons in the dentate gyrus (Jawerka et al, 2010). Since

adult neurogenesis has been linked to memory function, it is clear

that the role of HDAC2 in the adult brain awaits a more detailed

analysis. An important next step would be to understand the role of

HDAC1 and 2 in a cell-type-specific manner. A recent study suggests

that HDAC2 is produced in many neuronal cell types and in oligo-

dendrocytes, but not in astro- or microglia (Yao et al, 2013). Similar

to the data available for HDAC2, mice that lack HDAC3 in the

adult hippocampus show improved object recognition memory

(McQuown et al, 2011; Fig 2), but the underlying mechanisms are

not understood. The function of HDAC8 in adult brain has not been

addressed in detail, but a recent study found that an HDAC inhibitor

with some selectivity toward HDAC8 improves memory function in

rats (Yang et al, 2013). In conclusion, it appears that the class I

HDACs act as molecular inhibitors of memory formation.

As for the class II HDACs (Table 1), HDAC4 is known to shuttle

between the cytoplasm and the nucleus of cultured hippocampal

neurons in response to Calcium signaling and CamKII activity (Chawla

et al, 2003; Backs et al, 2006). In an C. elegans model, deletion of

HDAC4 gene increases long-term memory for thermosensation in an

CamKII-dependent manner (Wang et al, 2011). Specific expression

of mammalian HDAC4 in the nucleus was able to revert this pheno-

type, suggesting that nuclear export of HDAC4 is a critical process

for memory formation. In line with these data, cytoplasmatic

expression of HDAC4 increased memory formation in wild-type

worms (Wang et al, 2011), suggesting that during learning, HDAC4

regulates counteracting molecular processes in the nucleus and the

cytoplasm. In contrast to such findings, a recent study suggests that

HDAC4 is essential for memory function in mammalian systems.

Mice that lack HDAC4 in the adult forebrain exhibit impaired hippo-

campus-dependent memory formation and plasticity (Kim et al,

2012b). These data are in line with findings showing that haplo-

insufficiency of HDAC4 is linked to mental retardation in humans

(Williams et al, 2010). Another study confirmed that lack of HDAC4

in the adult brain results in impaired memory function and synaptic

plasticity in mice and could identify synaptic plasticity genes that

are regulated by nuclear HDAC4 (Sando et al, 2012). Loss of HDAC5

in the nucleus accumbens renders mice hypersensitive to chronic

cocaine (Renthal et al, 2007), while 2-month-old mice that lack

HDAC5 from the adult forebrain show no changes in hippocampus-

dependent memory formation (Kim et al, 2012b). A role of HDAC5

in memory formation may not only be brain region but also age-

related. To this end, 10-month-old mice that lack HDAC5 show

hippocampus-dependent memory disturbances (Agis-Balboa et al,

2013). HDAC6 has a unique position in the HDAC family in that its

main targets are cytoplasmatic proteins such as tubulin or heat-

shock protein 90 (Govindarajan et al, 2013). As will be discussed

below, HDAC6 is emerging as promising drug target in neurodegen-

erative diseases. However, loss of HDAC6 in mice has no overt

phenotype and does not impact on memory formation

(Govindarajan et al, 2013). The role of the remaining zinc-depen-

dent HDACs in the adult brain has not been investigated in great

detail.

Compared to the increasing numbers of studies that investigate

the role of HDACs in memory formation, there are comparatively

little data on the role of HATs. The mammalian genome encodes for
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at least 18 HATs that are subdivided into the GNAT (Gcn5 N-acetyl-

transferases) family, the MYST (MOZ, Ybf2/Sas3, Sas2, TIP60)

family, the p300/CBP family and several other HATs that cannot be

grouped into a certain family (Lee & Workman, 2007; Allis et al,

2007). The best-studied HATs belong to the p300/CBP family.

Multiple studies demonstrated a role for CBP/KAT3A in memory

consolidation (Alarcon et al, 2004; Korzus et al, 2004; Wood et al,

2005; Wood et al, 2006; Chen et al, 2010a; Barrett et al, 2011),

though it does not seem to be essential for all types of memory and

especially for the highly hippocampus-dependent Morris water maze

test, existing data are conflicting (Josselyn, 2005).

However, overexpression of a dominant negative form of P300/

KAT3B in the mouse brain impairs memory consolidation (Oliveira

et al, 2007), and similar data were observed for mice that lack one

allele of PCAF/KAT2B (Maurice et al, 2008), but mechanistic insight

is limited at present. There is evidence that CBP mediates its role in

brain plasticity via histone-acetylation-dependent gene expression

(Vecsey et al, 2007), and one study provided evidence that the role

of CBP/KAT3A during learning critically depends on its ability to

induce the expression of nuclear receptor 4a1 (Nr4a1; McNulty

et al, 2012). However, detailed genome-wide analysis of transcrip-

tional networks associated with CBP function in the adult brain is
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Figure 1. Epigenetic and non-coding RNA mechanisms.
(1) DNA is wrapped around the nucleosome which consists of the four core histones (H). Histone tails are subjected to post-translational modification including
acetylation and methylation, which give rise to the “histone-code” that affects gene expression. Histone acetylation and methylation are regulated by the counteracting
activity of histone acetyltransferases (HATs) and histone-deacetylases (HDACs) or histone-methyltransferases (HMTs) and histone-demethylases (HDMs), respectively.
(2) Methylation of DNA at the C-5 atom of cytosine is mediated by DNA-methyltransferases and often occurs in cytosine-guanine-rich regions of the genome (CpG islands).
DNA-methylation is generally associated with gene silencing. DNA-hydroxymethylation is mediated by ten-eleven translocation proteins and also regulates gene
expression. (3) Non-coding RNAs affect gene expression and protein function. The best-studied non-coding RNAs are micro RNAs (miRs) that catalyze gene silencing or
inhibition of protein translation. These processes are key regulators of genome–environment interactions and provide to a cell the molecular tools to transform the
variable combinations of genetic and environmental factors into long-term adaptive changes. There is now emerging evidence that the epigenome also regulates the
consolidation of processed information into long-term memories.

Figure 2. Analyzing memory function in rodents.
This image illustrates three commonly used tests to study memory formation in rodents. (A) The Morris water maze Test measures spatial reference memory that is
highly hippocampus-dependent. A mouse or rat is placed in a pool that contains opaque water and an escape platform that is located underneath the water surface. During
the training, the rodent learns to locate the hidden platform based on spatial orientation. Such memory is normally acquired gradually throughout multiple training
sessions on subsequent days (e.g., 10 days of training). (B) The Pavlovian fear conditioning is used to assess associative memory. The rodent is allowed to explore the test box
representing a novel context for about 3 min before it receives a mild electric foot shock. When placed back into the context 24 h later, the animal shows freezing, inborn
behavior that rodents express in response to threatening situations. The amount of freezing is quantified and reflects learning ability. In contrast to the water maze,
fear conditioning is successfully acquired after a single training session, and memory can be tested even 1 year later. (C) In the novel object recognition paradigm, the
animal is habituated to the test arena and eventually presented with two objects that it explores equally. After a delay that can vary from minutes (short-term memory) to
24 h (long-term memory), the animal is re-exposed to the arena that now contains one novel object. Based on the previous training session, the animal remembers the
object that has already been explored and will show a preference for the novel object. (D) To elucidate the mechanisms that underlie memory consolidation, a suitable
approach is to subject animals to a training session and isolate afterward at distinct time points tissue for molecular analysis. Especially paradigms such as fear conditioning
are often used since memory is acquired within a distinct time window after a single training session allowing for a “molecular snapshot” of memory consolidation. Based on
such results, hypothesis can be formed and suitable gain- and loss-of-function mouse models are generated that are then again tested for memory function.
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sparse and gene array approaches thus far linked CBP function to

calcium signaling, transcription and synaptic plasticity (Chen et al,

2010a) and de-regulated gene expression in response to environ-

mental enrichment training (Lopez-Atalaya et al, 2011).

In conclusion, there is substantial evidence that HATs and

HDACs are critical for memory formation. Based on their general

role in the regulation of cellular processes, it is tempting to specu-

late that they coordinate gene expression programs linked to long-

term memory consolidation, but a major effort in future research

will be to understand the mechanisms by which HATs and HDACs

regulate plasticity in specific brain cells.

Histone-methylation in memory formation

In addition to acetylation, histone proteins can be methylated, phos-

phorylated, ubiquitinated, sumoylated, biotinylated or ADP-ribosy-

lated (Vaquero et al, 2003). While histone-phosphorylation and

histone 1 ADP-ribosylation has been linked to memory training

(Chwang et al, 2006; Fontán-Lozano et al, 2010), the best studied

histone-modification in the brain next to acetylation is histone-

methylation. Similar to histone-acetylation, it is regulated by the

counteracting activity of HMTs and HMDs. However, in contrast to

acetylation, the lysine residues of histones can be either mono-, di-

or tri-methylated which is catalyzed by specific enzymes. As such

there are more HMTs and HDMs than there are HATs and HDACs,

and their general role has been discussed in a number of recent

review articles (Shi, 2007; Shi & Whetstine, 2007; Badeaux & Shi,

2013). Early studies found that histone-methylation is implicated

with neuronal plasticity and memory formation. Especially H3K4-

trimethylation (H3K4me3), a mark for active gene promoters, has

been studied. For example, H3K4me3 correlates with the expression

of glutamate receptors in the human brain (Stadler et al, 2005).

Moreover, bulk levels of hippocampal H3K4me3 were found to

increase in response to fear conditioning training (Gupta et al,

2010). H3K4me3 is regulated by at least 10 different enzymes that

catalyze mono-, di and tri-methylation (Badeaux & Shi, 2013). Mice

that lack one allele of the H3K4 HMT Mll1/KMT2A display impaired

memory formation (Gupta et al, 2010). A recent study also demon-

strated a role for the H3K4 specific HMT Mll2/KMT2B in memory

function. Mice that lack KMT2B in the dorsal dentate gyrus of

hippocampal region show memory impairment that is linked to

deregulation of learning-relevant genes (Kerimoglu et al, 2013).

Loss of KMT2B not only affected H3K4me3 at the promoter regions

of learning-regulated genes but also reduced H3K9 acetylation,

while H4K16 acetylation and H3K4me1 was unaffected at the same

gene promoters (Kerimoglu et al, 2013). Such data further confirm

the view that histone-methylation and histone-acetylation are tightly

linked, and also demonstrate the need to better understand the

protein complexes that regulate chromatin plasticity in the adult

brain. Other H3K4 HMTs or HDMs have not been tested for a role in

memory formation, but an inhibitor of the H3K4 HMD LSD1/KDM1a

was found to impair memory formation when injected to mice

(Neelamegam et al, 2012). These data would suggest that increased

H3K4me3 in the brain causes cognitive impairments, which is in

contrast to the data obtained from the knockout studies of H3K4

HMTs KMT2A and KMT2B. However, at present, it is unclear which

gene expression programs are controlled by H3K4me3 and which

HTMs and HDMs are indeed involved in the regulation of such

learning-relevant genes. Moreover, LSD1/KDM1a also affects H3K9

methylation. H3K9 methylation is linked to heterochromatin forma-

tion and gene silencing. Interestingly, the H3K9 di-methylation-

specific HMT G9a/KMT1C was found to play a key role in neuronal

integrity. In fact, mice that lack G9a/KMT1C in the adult forebrain

develop mental retardation-like phenotypes (Schaefer et al, 2009).

However, loss of G9a/KMT1C in the nucleus accumbens increases

cocaine-induced neuronal plasticity (Maze et al, 2010), and yet

another study found that pharmacological inhibition of G9a in the

entorhinal cortex facilitated memory function, while administration

of the same inhibitor into the hippocampus resulted in impaired

memory function in mice (Gupta-Agarwal et al, 2012). A critical role

for G9a/KMT1C in memory formation is also supported from studies

in Drosophila, where loss of G9a/KMT1C impaired memory forma-

tion (Kramer et al, 2011). Another H3K9 methyltransferase is

SETDB1/KMT1E. Increased expression of SETDB1/KMT1E in the

forebrain of mice reduced depressive-like behavior via a mechanism

that involved regulation of NMDA receptor subunit 2B (Jiang et al,

2010). As for the HDMs, there are even less data investigating the

role of such enzymes in memory formation. Recent studies could

link mutations in JARID1C/KDM5C, an H3K4 demethylase, to

Table 1. HDACs in the adult brain

Protein Subcellular localization Potential function in memory formation

CLASS I HDAC1 Mainly nuclear, cyoplasmatic in response to axonal damage Regulates fear extinction

HDAC2 Mainly nuclear Negative regulator of memory formation mice

HDAC3 Nuclear/cytoplasmatic Negative regulator of memory formation mice

HDAC8 Mainly nuclear Unclear

CLASS II HDAC4 Cytoplasmatic/nuclear/Synaptic Required for memory formation in mice

HDAC5 Cytoplasmatic/nuclear Required for memory formation in mice

HDAC6 Cytoplasmatic/centrosomal Not required for memory formation in mice but inhibition reinstates
memory function in Alzheimer disease mouse models

HDAC7 Cytoplasmatic/nuclear Unclear

HDAC9 Cytoplasmatic/nuclear Unclear

HDAC10 Cytoplasmatic/nuclear Unclear

CLASS IV HDAC11 Cytoplasmatic/nuclear Unclear

This table illustrates the current classification of the 11 mammalian HDACs and points to their role in memory formation (for further information see text).

The EMBO Journal Vol 33 | No 9 | 2014 ª 2014 The Author

The EMBO Journal Epigenetic memory: the Lamarckian brain Andre Fischer

950



short-term memory deficits in female humans (Simensen et al,

2012) and to mental retardation (Rujirabanjerd et al, 2012). As for

the H3K9 demethylases, JMJD2A/KDM4A was found in a complex

with HDAC1 and protein phosphatase 1 (PP1) which was required

for memory formation (Koshibu et al, 2009). In conclusion, the

current data suggest that histone-methylation, as well as the activity

of HMTs and HDMs, plays a role in memory formation, but a clear

picture is not yet emerging.

Histone-modifications in Alzheimer’s disease

An increasing number of studies show that targeting the epigenetic

machinery in neurodegenerative diseases could be a novel and

promising therapeutic avenue (Fischer et al, 2010). Especially,

inhibitors of HDAC proteins have gained much attention in brain

disorders such as AD (Sananbenesi & Fischer, 2009). AD is a debili-

tating disease that arises on the pathological background of

amyloid-beta plaques, neurofibrillary tangles and severe neuronal

loss, eventually leading to dementia (Haass & Selkoe, 2007). About

5% of all AD cases are caused by mutations in genes that regulate

processing of the amyloid precursor protein (Haass & Selkoe, 2007).

More common is however the late onset form (loAD) of AD that

comprises 95% of all cases and is driven by variable combinations

of genetic and environmental risk factors (Sananbenesi & Fischer,

2009; Goate & Hardy, 2012). Despite intensive research and increas-

ing molecular insight to the patho-mechanisms underlying loAD, no

effective therapy is currently available (Mangialasche et al, 2010).

The therapeutic potential of HDAC inhibitors in AD was first

tested in a mouse model that overexpresses the p25 protein—a

pathological activator of cyclin-dependent kinase 5—in a region

and time-restricted manner (Fischer et al, 2007). Inducible over-

expression of p25 causes amyloid and tau pathology, severe

neurodegeneration and memory impairment (Cruz et al, 2003;

Fischer et al, 2005; Cruz et al, 2006). Intra-peritoneal (ip) adminis-

tration of the HDAC inhibitor sodium butyrate for 4 weeks was able

to reinstate learning behavior and synaptic plasticity in this mouse

model even after the onset of severe synaptic and neuronal loss

(Fischer et al, 2007). In this experimental setting, the rational to

apply an HDAC inhibitor to an AD mouse model was based on the

hypothesis that environmental enrichment (EE, Box 1) is mediated

via changes in neuronal histone-acetylation (Fischer et al, 2007;

Sananbenesi & Fischer, 2009).

The therapeutic effect of HDAC inhibitors in AD was also

observed in mouse models for amyloid deposition. HDAC inhibitors

such as trichostatin A, phenylbutyrate, valproate, sodiumbutyrate or

suberoylanilide hydroxamic acid (SAHA, Vorinostat) have been

administered mainly via i.p. injections to APP/PS1, Tg2576 and

APPPS1-21 mice (Francis et al, 2009; Ricobaraza et al, 2009;

Ricobaraza et al, 2010; Kilgore et al, 2010; Govindarajan et al,

2011). All these studies found that HDAC inhibitors improved

memory function, and in some cases, increased bulk levels of

histone-acetylation in brain regions were observed. One study also

investigated hippocampal spine density and found it to be enhanced

after phenylbutyrate treatment (Ricobaraza et al, 2010), while

another studies observed a reduction in pathological phospho-Tau

levels (Ricobaraza et al, 2009) or a reinstatement of gene expression

(Govindarajan et al, 2011). The work of Govindarajan et al is of

note since the HDAC inhibitor sodiumbutyrate was only applied

after the onset of severe AD pathology and was still able to improve

memory function. Equally important is the fact that none of the

above studies could demonstrate an effect of HDAC inhibitor treat-

ment on amyloid pathology itself. Since all of the above-described

HDAC inhibitors show different pharmacological profiles and affect

multiple HDAC proteins, it is still possible that other HDAC inhibi-

tors may alter amyloid pathology, probably via regulation of genes

linked to APP processing or clearance mechanisms. In line with this

view, a recent study found that orally administered MS-275

(Entinostat), a class I HDAC inhibitor that shows selectivity toward

HDAC1 (Hu et al, 2003; Khan et al, 2008; Bahari-Javan et al, 2012),

improved dysregulated nesting behavior in APPPS1-21 mice and

reduced neuroinflammation and also amyloid plaque deposition

(Zhang & Schluesener, 2013). Another study found that a new class

II HDAC inhibitor lowered Aß40, Aß42 and Thr181 phospho-TAU

levels and improved memory function when administered for

4 weeks to 3xTG AD mice (Sung et al, 2013).

It has to be mentioned that one recent study reported that the

HDAC inhibitor SAHA facilitates hippocampal long-term potentia-

tion (LTP) in wild-type mice but failed to improve cognitive func-

tion in Tg2567 mouse model for Alzheimer’s disease (Hanson

et al, 2013). As an explanation the authors demonstrate poor

brain availability of SAHA after i.p. injection. This could explain

why improved memory function was observed in the same mouse

model when phenylbutyrate was administered (Ricobaraza et al,

2009) and the fact that SAHA could rescue age-associated memory

impairment in mice when injected directly into the hippocampus

(Peleg et al, 2010). However, the same dose of SAHA that was

used in the Hansson et al study was found effective in APP/

PS1delta9 mice when administered i.p. for only 3 weeks (Kilgore

et al, 2010) and the discrepancy for these data is not clear at

present.

Importantly, most of the data on HDAC inhibitors in AD were

obtained using mouse models that recapitulate amyloid deposition

and are based on the rare familial form of AD. Thus, it is interesting

to note that a number of studies found that HDAC inhibitors also

improve memory function in aged rodents (Fontán-Lozano et al,

2008; Peleg et al, 2010; Reolon et al, 2011).

A role for histone-acetylation and the zinc-dependent HDACs in

models for TAU pathology (Box 1) has not been investigated in

detail. I predict that this will be a very interesting line of future

research, taking into account that reduction of TAU expression has

emerged as a promising therapeutic strategy in AD (Roberson et al,

2007) and findings showing that the epigenetic state of the mapt

gene (which encodes the TAU protein) as well as the app gene

(which encodes APP) is altered in human AD brains (Iwata et al,

2013). Furthermore, the function of TAU itself was found to be regu-

lated via acetylation. TAU acetylation was found to inhibit the turn-

over of phosphorylated TAU species via a mechanism that involves

the HAT p300/KAT3B and the class III HDAC SIRT1 (Min et al,

2010), indicating that increased TAU acetylation contributes to

disease pathogenesis. In contrast to this view, recent studies suggest

that targeting TAU acetylation or related processes could be a bene-

ficial strategy to treat AD. For example, TAU interacts with HDAC6

(Ding et al, 2008; Perez et al, 2009) which has been linked to Tau

clearance (Cook et al, 2012). It was furthermore shown that

HDAC6-mediated loss of Tau acetylation renders the protein
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vulnerable to toxic phosphorylation events (Cook et al, 2013).

Further evidence that inhibition of HDAC6 might attenuate TAU

pathology in AD stems from a Drosophila model (Xiong et al, 2013).

Here, hyper-phosphorylated Tau protein resulted in microtubule

instability and neurodegeneration which was rescued by knock-

down of HDAC6 (Xiong et al, 2013). Such findings are supported by

recent data showing loss of HDAC6 rescues memory function in a

mouse model for Alzheimer’s disease (Govindarajan et al, 2013).

In conclusion, there is substantial evidence that HDAC inhibitor

treatment can improve memory function in mouse models for AD

even at an advanced stage of pathology. This phenomenon is mech-

anistically however not well understood.

Two questions need to be addressed in future research: (i) Via

which cellular mechanisms do HDAC inhibitors ameliorate AD-

related cognitive decline? and (ii) through which specific HDAC

proteins do HDAC inhibitors mediate their therapeutic effects? Obvi-

ously, these questions are closely linked to research that aims to

better understand the role of HATs and HDACs during memory

formation. It is also critical to elucidate the question whether target-

ing the epigenome is symptomatic or whether indeed disease-caus-

ing epigenetic mechanisms are affected by therapeutic strategies

such as HDAC inhibitors.

The best evidence that altered histone-acetylation is mechanisti-

cally linked to memory decline stems from a study in which age-asso-

ciated memory impairment was investigated in mice (Peleg et al,

2010). Here, the onset of cognitive decline during aging was linked to

deregulated acetylation of H4K12 (H4K12ac). While memory training

induced a transient increase in various histone-acetylation marks in

the hippocampus of young and aged mice, H4K12ac did not respond

anymore to such a stimulus in old animals. ChIP-Seq was combined

with transcriptome analysis, and the data suggest that H4K12ac is

critical for the initiation of a learning-induced gene expression

program via mechanisms that involved transcriptional elongation

(Peleg et al, 2010). Intrahippocampal injection of SAHA to aged mice

was able to partially restore H4K12ac-linked gene expression and

memory function (Peleg et al, 2010).

Several HDAC proteins have been linked to cognitive decline. For

example, HDAC1 has been implicated with AD, but the current data

do not yet allow for a conclusion if inhibition of HDAC1 would be

detrimental or beneficial for AD pathology. Recent data suggest that

HDAC1 activity contributes to AD pathology since it appears to be a

critical mediator of genome stability. Loss of HDAC1 has been

linked to DNA damage (Kim et al, 2008; Wang et al, 2013; Dobbin

et al, 2013), which represents most likely a loss of nuclear HDAC1

function. Such data suggest that future therapeutic approaches using

HDAC inhibitors should avoid targeting HDAC1. However, it was

found that in response to axonal damage, which is also a hallmark

of AD, HDAC1 is exported from the nucleus to the cytoplasm where

it dysregulates mitochondrial transport. In this context, inhibition of

HDAC1 was beneficial and could reinstate axonal transport (Kim

et al, 2010). In contrast, the role of HDAC2 is better understood.

HDAC2 expression was found to increase in AD patients and in AD

mouse models. Reducing HDAC2 levels in AD mouse models via

siRNA approaches was able to reinstate memory function (Gräff

et al, 2012).

As for the class II HDACs, it was shown that loss of HDAC5

accelerated memory decline in APPPS1-21 mice (Agis-Balboa et al,

2013). A recent study found that HDAC5 plays a role in axonal

regeneration (Cho et al, 2013). Upon axonal damage HDAC5 is

transported out of the nucleus which allows the expression of genes

that orchestrate a neuronal regeneration program. The only other

HDAC that has been studied for its role in AD is HDAC6, which is

elevated in post-mortem brain tissue from AD patients (Ding et al,

2008). Reducing HDAC6 levels in mice rescues memory impairment

in an AD mouse model via a mechanism that involves mitochon-

drial transport (Govindarajan et al, 2013).

In summary, the knowledge of HDAC proteins in learning and

brain diseases has significantly increased in the last 5 years. It is

however obvious that more research is needed. For example, HDACs

mediate their biological function as components of larger complexes

that include transcription factors and other proteins, offering another

layer for pharmacological interventions. The question how chroma-

tin-modifying enzymes act in the context of protein complexes in the

adult brain will be an interesting question for future research.

Taking into account that deregulated acetylation of histone and

non-histone proteins is implicated with memory decline and AD, in

addition to the role of HDACs, it is important to elucidate the role of

HATs in brain diseases. Most of the current knowledge is focused on

CBP/KAT3A. Mutations in CBP cause Rubinstein–Taybi syndrome

(RTS, see Box 1), and there is some evidence that CBP is implicated

in AD pathogenesis, since it was found that phosho-levels of CBP/

KAT3A are down-regulated in a mouse model for amyloid deposi-

tion. Overexpression of CBP/KAT3A ameliorated memory impair-

ment in this model (Caccamo et al, 2010). Further evidence stems

from findings suggesting that CBP/KAT3A and the close homologue

P300/KAT3B are activated by wild-type presenilin 1, but not by the

AD-associated presenilin 1 mutant protein (Francis et al, 2007).

Whether CBP/KAT3A or P300/KAT3B control gene expression

programs that might mirror the deregulation seen in AD has not

been addressed in detail, but novel computational approaches might

help to shed light on such questions (Poirel et al, 2013). Data for

other HATs in neurodegenerative disease are sparse. Loss of PCAF/

KAT2B was found to ameliorate the phenotypes induced by the

injection of amyloid-beta peptides injected into lateral ventricles

(Duclot et al, 2010). Moreover, TIP60/KAT5 activity can rescue

amyloid-beta-induced neurotoxicity (Pirooznia et al, 2012) and

axonal transport deficits in a Drosophila model (Johnson et al,

2013). There is evidence that TIP60/KAT5 mediates such effects by

regulating gene expression, especially of genes linked to apoptotic

cell death (Pirooznia et al, 2012) and axonal transport (Johnson

et al, 2013). However, unbiased approaches to decipher the gene

expression program controlled by TIP60/KAT5 in the adult brain are

missing. A direct link of TIP60/KAT5 to AD pathogenesis is

suggested by findings showing that TIP60/KAT5 regulates gene

expression in a complex with the amyloid precursor protein intra-

cellular domain (AICD; Cao et al, 2004; Müller et al, 2013).

Moreover, TIP60/KAT5 plays a critical role in orchestrating the

cellular response to DNA damage (Kaidi & Jackson, 2013) which is

emerging as another critical player in AD pathogenesis (Mao &

Reddy, 2011; Herrup et al, 2013). There is also evidence that

TIP60 mediates microtubule-acetylation (Sarthi & Elefant, 2011),

suggesting that it might act as a counterplayer of HDAC6, which has

however not been tested so far.

While the role of HATs in neurodegenerative disease is only

emerging and from a pharmacological point of view it might be

easier to inhibit rather than to activate an enzyme, there is an
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increasing body of literature pointing to the potential of HAT activa-

tors as a therapeutic avenue in brain diseases (Selvi et al, 2010;

Schneider et al, 2013). A recent study employed a novel HAT activa-

tor and found that this compound crosses the blood–brain barrier,

increased neuronal plasticity and memory function in wild-type

mice (Chatterjee et al, 2013). It will be interesting to see how such a

compound may affect pathology in mouse models of AD.

In conclusion, the recent literature suggests that it is important to

further understand the counteracting roles of HATs and HDACs in

AD pathogenesis before such findings can be translated into thera-

peutic approaches. With respect to other histone-modifications,

increased histone-phosphorylation was observed in post-mortem

tissue from AD patients (Rao et al, 2012), but in general little is

known on other histone-modifications and their corresponding

enzymes in AD or other brain diseases (Box 2).

DNA-methylation in memory formation

The best-studied epigenetic modification is DNA-methylation. There

is evidence that DNA-methylation is dynamically regulated during

memory formation. For example, neuronal activity altered the DNA-

methylation in granule neurons of the dentate gyrus (Guo et al,

2011). Moreover, fear conditioning training in mice induced hippo-

campal expression of DNMT3a and DNMT3b which correlated with

increased DNA-methylation of the PP1 and the reeling gene within

1 h after memory training (Miller & Sweatt, 2007). Administration

of DNA-methylation inhibitors such as 5-deoxycytidine (5-aza) or

zebularine into the hippocampus impaired associative learning and

the regulation of PP1 and reeling genes upon memory training

(Miller & Sweatt, 2007). Later studies confirmed these findings used

enzymatic DNMT inhibitors rather than the base analogs 5-aza or

zebularine (Lubin et al, 2008).

Nevertheless, the fact that a base analog such as 5-aza, which

has to be incorporated into DNA in order to affect DNA-methylation,

impairs memory function is fascinating considering that DNA in

post-mitotic neurons normally does not undergo replication. It

cannot be excluded that such drugs unspecifically impair memory

formation by mechanisms other than DNA-methylation. Moreover,

the hippocampus undergoes adult neurogenesis. However, such

Box 2.

Histone-modifying enzymes in other neurodegenerative diseases
A number of chromatin-modifying enzymes have been linked to other
neurodegenerative diseases than AD, of which the most important
ones are briefly mentioned here. For more information on the role of
such enzymes in psychiatric diseases, the reader is referred to some
recent review articles on this topic (Labrie et al, 2012; Jakovcevski &
Akbarian, 2012; Mahgoub & Monteggia, 2013).

HDAC1
A recent study found that HDAC1 levels are increased in mouse
models for Chorea Huntington and in CK-p25 mice and showed that
elevated HDAC1 induces neuronal cell death in a HDAC3-dependent
manner (Bardai et al, 2012). However, the same study provides
evidence that HDAC1 promotes cell survival via interaction with
histone deacetylase-related protein (HDRP), suggesting that rather
than inhibiting HDAC1 activity it could be a suitable therapeutic
approach to block HDAC1–HDAC3 interactions. Nevertheless, a recent
study employed the HDAC1/HDAC3 inhibitors 4b and 136 and found
that these compounds were able to ameliorate disease phenotypes in
drosophila and mouse models for Huntington’s disease (Jia et al,
2012). Taking also into account that HDAC1 is required for specific
forms of learning (Bahari-Javan et al, 2012; Jakovcevski et al, 2013)
and is deregulated in schizophrenia patients (Sharma et al, 2008)
suggests that more research is needed to evaluate the potential of
this HDAC as a drug target in brain diseases.

HDAC9
Genome-wide association studies identified HDAC9 as a genetic risk
factor for ischemic stroke (Traylor et al, 2012; Markus et al, 2013).
Moreover, hemizygous loss of HDAC9 has been linked to schizophrenia
(Lang et al, 2011). Another study found that an intronic single nucleo-
tide polymorphism in the HDAC9 genes was linked to male-pattern
baldness (Brockschmidt et al, 2011), which is undeniably a disease of
the head, but clearly more research on HDAC9 is needed to evaluate
its role in memory function and brain diseases. An issue not discussed
yet is alternative splicing. It is thus interesting to note that histone-
deactylase-related protein (HDR) is an alternative splice version of the
HDAC9 gene that gives rise to a truncated HDAC9 protein linked to
neuroprotection (Zhang et al, 2008).

HDAC10 and HDAC11
These HDACs have not been linked to a neurodegenerative diseases yet,
but there are in general only very little data available for these enzymes.

An interesting observation was made in mice subjected to caloric restric-
tion, which is known to improve synaptic plasticity and learning in mice.
Fasting led to a down-regulation of the hdac10 and hdac11 genes in
the hypothalamus (Funato et al, 2011). Similar explorative studies
reported increased levels of HDAC11 in the cingulate cortex and the
striatum of mice after cocaine self administration (Host et al, 2011)
and in the cortex of mice in a ischemic stroke model (Chen et al,
2012).

CBP/KAT3A
Rubinstein–Taybi syndrome (RTS) is an autosomal dominantly inher-
ited form of mental retardation that affects 1 in 125,000 individuals
(Petrij et al, 1995; Oike et al, 1999). It is caused by mutations in CBP/
KAT3A and in line with these data, mice that lack CBP show RTS-like
phenotypes (Bourtchouladze et al, 2003) which can partially be
restored by administration of an HDAC inhibitor (Alarcon et al, 2004).
CREB-binding protein/KAT3A also appears to play a role in the patho-
genesis of Huntington’s disease (HD), where it was found that mutant
Huntingtin protein interacts with CBP/KAT3A and thereby deregulates
gene expression (Steffan et al, 2000; Steffan et al, 2001; Cong et al,
2005; Jiang et al, 2006). Although CBP/KAT3A and P300/KAT3B are close
homologues, the available data suggest that P300/KAT3B does not
bind to mutant huntingtin (Cong et al, 2005).
In line with impaired CBP/KAT3A function in HD, decreased histone-
acetylation and corresponding gene expression were found in HD
patients and in HD mouse models (Sadri-Vakili et al, 2007; McFarland
et al, 2012; Yeh et al, 2013). Mice that lack CBP/KAT3A show
accelerated pathology when crossed to a Huntington’s disease model
(Klevytska et al, 2010), while loss of CBP/KAT3A by itself does not
cause neuronal cell death (Valor et al, 2011). Moreover, administration
of sodiumbutyrate or suberoylanilide hydroxamic acid, phenylbutyrate
or sodium butyrate ameliorated disease phenotypes in a mouse model
for HD (Hockly et al, 2003; Ferrante et al, 2003; Gardian et al, 2005).
Data from a C. elegans model suggest that especially inhibition of
HDAC3 might counteract the loss of CBP/KAT3A in the presence of
mutant huntingtin (Bates et al, 2006).

Mll2/Mll4/KMT2D
Mutations in Mll2/Mll4/KMT2D have been linked to Kabuki syndrome,
a rare disease that is accompanied by cognitive impairment (Ng et al,
2010). Aberrant H3K4me3 was also observed in post-mortem human
brain tissue from autistic individuals (Shulha et al, 2012a).
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newborn neurons normally need to mature at least for 2 weeks

before they contribute to plasticity and memory function, which is

too long to explain the immediate effect of 5-aza and zebularine

when injected into the hippocampus (Ge et al, 2005; Agis-Balboa

et al, 2011). Thus, these data indicate that DNA in post-mitotic

neurons might be less stable than generally assumed and base pair

analogs can integrate to DNA during DNA repair. In fact, neurons

are particular sensitive to reactive oxygen species, and it is esti-

mated that each neuron has to repair at least 40,000 single- and

double-strand breaks every day (Martin, 2008). Moreover, a recent

study found that neuronal activity induces DNA damage in the

hippocampus and cortex of mice, which is rapidly repaired. The

authors hypothesize that DNA double-strand breaks occur in

response to relevant stimuli and contribute to neuronal plasticity,

possibly by facilitating chromatin changes at dynamically regulated

genes (Suberbielle et al, 2013). Since stimulus-induced DNA

damage occurred rapidly within 2 h after a stimulus, such a process

could explain indeed how 5-Aza or zebularine would impact on

memory formation and DNA-methylation in neurons.

In any case, there is now convincing evidence that DNA-methyla-

tion in the adult brain is quite dynamic. For example, DNA-methyla-

tion was linked to bdnf expression within 2 h after memory

training, while no difference in DNA-methylation was detectable

24 h later (Lubin et al, 2008). Pharmacological inhibition of DNA-

methylation also affects reward learning in the ventral tegmental

area (Day et al, 2013), and there is also evidence that during

memory formation, DNA-methylation and histone-acetylation are

linked (Miller et al, 2008). A role for DNA-methylation in memory

formation has also been suggested using genetic approaches. Mice

that lack DNMT1 and DNMT3a from the adult forebrain show

impaired memory formation, while mice lacking only DNMT1 or

DNMT3a did not show any memory deficits (Feng et al, 2010).

Notably, DNMT3a is expressed from different promoters giving rise

to the two variants DNMT3a1 and DNMT3a2, which lacks 219

amino acids at the N-terminus (Chen et al, 2002). DNMT3a2 was

found to be an immediate early gene that is generally decreased in

the hippocampus of 18-month-old mice (Oliveira et al, 2012).

Increasing the expression of DNMT3a2 in the hippocampus of cogni-

tively impaired aged mice rescued memory function (Oliveira et al,

2012). While this confirms a role of DNA-methylation in memory

formation, the precise role of DNMTs in learning and memory needs

to be further investigated.

It was recently found that DNA is not only methylated but can be

hydroxymethylated (5hmC) and that this process is particularly

prominent in brain tissue (Kriaucionis & Heintz, 2009). Hydroxyme-

thylation of DNA is mediated by the ten-eleven translocation (TET)

proteins TET1, TET2 and TET3 that convert 5-methylcytosine to

5-hydroxymethylcytosine and further to 5-formylcytosine and

5-carboxylcytosine and thereby eventually mediate active

DNA-demethylation (Pastor et al, 2013). All TET proteins are

expressed in the adult brain (Kriaucionis & Heintz, 2009; Szulwach

et al, 2011). A recent study found that constitutive deletion of

TET1 results in a minor decrease of bulk 5 hydroxy-methylation in

the adult brain. Mice that lack TET1 are viable and able to form

new memories. However, fear extinction learning was impaired

in TET1 knockout mice which correlated with the hyper-methyla-

tion of selected genes such as Npas4 (Rudenko et al, 2013). In a

similar study, viral-mediated overexpression of TET1 in the

hippocampus impaired associated learning measured by contextual

fear conditioning. Interestingly, overexpression of a catalytical inac-

tive TET1 mutant had the same effect (Kaas et al, 2013). Neither of

these two studies investigated 5-hydroxymethylation at target genes,

and although 5-hydroxymethylation of DNA has been implicated

with active and inactive DNA-demethylation, 5-hydroxymethylcyto-

sine appears to be more than a simple intermediate in DNA-demethy-

lation. For example, a recent study found a number of proteins that

distinctly bind either 5-methyl- or 5-hydroxy-methylcytosine (Spruijt

et al, 2013). It will be critical for future research to generate genome-

wide data for the methylation and hydroxyl-methylation of DNA

during brain plasticity to further understand the role of this novel

epigenetic mark.

DNA-methylation in Alzheimer’s disease

There are a number of studies that have investigated DNA-methyla-

tion in post-mortem tissue from AD patients and in corresponding

mouse models (Coppieters & Dragunow, 2011) using a variety of

approaches such as measurement of global DNA-methylation

(Mastroeni et al, 2009), PCR arrays (Siegmund et al, 2007; Silva

et al, 2008), bisulfide sequencing (Brohede et al, 2010) or

methylated DNA immunoprecipitation (Agbemenyah et al, 2013) of

target genes linked to AD pathogenesis including the mapt gene

coding for TAU and the genes for app or presenilin’s (Fuso et al,

2012a; Iwata et al, 2013). Also genome-wide approaches using array

technology have been used to study DNA-methylation in AD

(Bakulski et al, 2012). Most but not all studies (Barrachina & Ferrer,

2009) found differences between controls and AD patients or AD

models. Generally the current picture suggests that AD correlates

with hypomethylation of target genes. Interestingly, AD-related

changes in DNA-methylation also occur within non-coding regions

such as transposable elements (Bollati et al, 2011).

It cannot be excluded that genetic risk may explain part of the

DNA-methylation changes observed in AD. However, genes linked

to DNA-methylation were not found in GWAS studies. Two func-

tional polymorphisms within the promoter of DNMT3B have been

investigated, but no altered risk for sporadic AD was detected

(Coppedè et al, 2012). On the other hand, there is substantial

evidence that environmental factors such as diet impact on DNA-

methylation. This is explained by the fact that s-adenosylmethionine

(SAM) is the major methyl-donor for DNA-methylation and SAM

production within the methionine-homocysteine cycle is strongly

affected by dietary factors such as folate or vitamine B12. Indeed,

folate deficiency in late life has been associated with an increased

risk to develop AD, and AD patients with low baseline folate levels

appear to benefit from vitamin B treatment (Hinterberger & Fischer,

2013). Such findings have to be however interpreted with care due

to differences in clinical trial design and the fact that not all studies

observed improvement in cognitive function (Dangour et al, 2010;

Hinterberger & Fischer, 2013). However, research in animal models

supports a key role of methionine-homocysteine metabolism in AD.

For example, a diet rich in folic acid ensures high level of the

methyl-donor SAM. In fact, it was found that a folic acid-rich diet

could further ameliorate disease pathology in a mouse model for

amyloid pathology that was treated with memantine (Chen et al,

2010b) or in mice that suffer from memory impairment due to
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vitamin deficiency (Fuso et al, 2012b). Thus, there is a picture

emerging in which dietary factors impact on epigenetic mechanisms

such as DNA-methylation, altering the risk of AD. This also implies

that not everybody would benefit from a corresponding therapeutic

approach, but that such knowledge has to be transformed into suit-

able biomarker signatures that would then allow to stratify patients

for specific treatments. It will also be interesting to see how diet

affects other epigenetic mechanisms.

The role of DNA-hydroxymethylation in AD has not been

addressed in great detail by now. There is evidence from immuno-

histochemical analysis that DNA-hydroxymethylation changes in

the mouse hippocampus in response to age or amyloid pathology

(Chouliaras et al, 2012; van den Hove et al, 2012), but clearly more

research in this direction is needed.

Non-coding RNAs in memory formation

Next-generation sequencing approaches have identified non-coding

RNAs that represent a novel mechanism to orchestrate gene expres-

sion programs. Such RNAs are currently distinguished on the basis

of their length in that RNAs below 200 bases are considered small

non-coding RNAs, while RNAs above 200 bases are referred to as

long non-coding RNAs. One of the best-studied small non-coding

RNAs is microRNAs (miRs).

A role for miRs in the nervous system is recently emerging as

a number of studies found that miRs are critical regulators of

synaptic plasticity (Schratt et al, 2006; Karr et al, 2009; Schratt,

2009; Siegel et al, 2009; Rajasethupathy et al, 2009; Edbauer et al,

2010; Impey et al, 2010; Fiore et al, 2011; Lippi et al, 2011; Im &

Kenny, 2012; Saba et al, 2012; Lee et al, 2012a). Moreover, in

vivo manipulation of miRs leads to changes in memory consolida-

tion. For example, in an Aplysia model, miR124 controls seroto-

nin-induced synaptic plasticity and memory formation via the

regulation of CREB (Rajasethupathy et al, 2009). In the mouse

brain, miR134 was found to control CREB levels, and increased

expression of miR134 causes memory impairment (Gao et al,

2010). Loss of miR-processing protein DICER in the developing

neocortex of mice leads to lethality soon after birth (De Pietri

Tonelli et al, 2008). When DICER was deleted from excitatory

forebrain neurons of the adult mouse brain, animals initially

exhibited enhanced memory formation and hippocampal synaptic

plasticity but eventually developed severe neurodegenerative

phenotypes (Konopka et al, 2010). Such data suggest that miRs

may represent a molecular brake to memory formation processes,

which is critical for neuronal homeostasis. This view is supported

by a study that identified the microRNAome of the mouse hippo-

campus via next-generation sequencing and correlated the expres-

sion of miRNAs to the expression of learning-induced genes

(Zovoilis et al, 2011). MiR34c was one of the miRs increased

following learning and the induction of gene expression, and it

was subsequently shown that chronic elevation of miR34c in the

mouse hippocampus impairs memory formation, while inhibition

of miR34c enhances learning and memory (Zovoilis et al, 2011).

This finding is also interesting since miR34c levels are elevated in

the hippocampus of AD patients and in mouse models for amyloid

deposition (Zovoilis et al, 2011). Similar findings were obtained

for miR206 (Lee et al, 2012b). In vivo manipulation of miR34c,

miR128, mir182 or miR132 were also found to be essential for the

stress-induced plasticity, cued fear conditioning or recognition

learning in mice (Haramati et al, 2011; Lin et al, 2011; Scott et al,

2012).

In addition to micro RNAs, a number of other small and long

non-coding RNAs such as endogenous small interfering (endo-si)

RNAs, PIWI-interacting (pi)RNAs or long intergenic non-coding

(linc)RNAs have been identified and the diversity of such RNAs

appears to be particularly prominent in the brain (Qureshi & Mehler,

2012). There is at present very limited knowledge on the role of

such non-coding RNAs in the adult brain. One interesting finding is

that piRNAs, which were originally thought to be only present in

germ cells, regulate learning in an Aplysia model (Rajasethupathy

et al, 2012) and might be important regulators of brain plasticity

that counteract the function of miRs (Landry et al, 2013). Tsx is a

long non-coding RNA that has been linked to germ cell function, but

interestingly mice that lack Tsx show enhanced short-term memory

function (Anguera et al, 2011).

In conclusion, non-coding RNAs are a fascinating new research

area in the neurosciences that may help to further understand how

the brain orchestrates gene expression during memory formation.

Non-coding RNA in Alzheimer’s disease

The best-studied non-coding RNAs in brain disease are miRs that

have gained increasing interested as potential biomarker and novel

therapeutic strategies. A number of studies identified miRs that are

up or down-regulated in post-mortem brain tissue from AD patients

or in AD mouse models. While most of these studies are descriptive,

there is also evidence that miRs deregulated in AD are mechanisti-

cally linked to the pathogenesis. For example, there is now substan-

tial evidence that the miR29 cluster is down-regulated in AD brains

(Hébert et al, 2008). The beta-secretase BACE1 is a direct target of

miR29 and thus decreased miR29 levels lead to elevated BACE1

levels that promotes amyloid pathology (Hébert et al, 2008). Inter-

estingly, other miRs that target BACE1 such as miR107, miR298,

miR328 have also been linked to AD (Wang et al, 2008a;

Boissonneault et al, 2009; Nelson & Wang, 2010). Moreover, SNPs

located within miR29 binding sites of the bace1 gene correlated with

sporadic AD (Bettens et al, 2009). Notably, such SNPs were also

found for the app gene (Bettens et al, 2009) and also other miRs

such as miR16 and miR101 were linked to app expression (Vilardo

et al, 2010; Long & Lahiri, 2011; Liu et al, 2012a,b). However, since

one miR targets multiple mRNAs, it will be important to further

understand the role of the gene expression and protein networks

controlled by individual miRs.

Unbiased screening approaches were employed to identify miRs

that are affected by amyloid pathology. For example, treatment of

hippocampal neurons with Aß42 peptides led to altered levels of 21

miRs. Cross-correlation with data from a mouse model for amyloid

deposition and human brain tissue identified miR9, Mir181c, let7i,

miR30c, miR148b and miR20 to be key miRs affected by amyloid

(Schonrock et al, 2010). Another study could confirm elevated

expression of miR146a in five different mouse models for amyloid

deposition (Li et al, 2011b). Notably, miR146a was also found to be

down-regulated in hippocampal neurons after Aß42 treatment in the

Schonrock study (Schonrock et al, 2010)—albeit not in the APP

mouse model—indicating the need to link screening approaches

with subsequent mechanistic studies.
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Another miR cluster that has been repeatedly linked to AD patho-

genesis and age-associated memory impairment is miR34. Cortical

miR34a was found to be up-regulated in a mouse model for amyloid

deposition. It was furthermore shown that miR34a controls caspase

activity via the expression of BCL2, thereby contributing to AD

pathogenesis (Wang et al, 2009). miR34c was also identified as a

key regulator of learning-induced gene expression and is increased

in hippocampal tissue from AD patients and in AD mouse models

(Zovoilis et al, 2011). Targeting the miR34 cluster was able the rein-

state memory function in a mouse model for amyloid deposition

which was linked to the regulation of the SIRT1 protein (Zovoilis

et al, 2011), a class III HDAC implicated with life span and brain

diseases (Donmez, 2013). Moreover, miR34a was linked to the

down-regulation of TREM2 in human AD brains (Zhao et al, 2013;

Alexandrov et al, 2013), a gene that has been recently identified as

a risk factor for sporadic AD (Guerreiro et al, 2013), further pointing

to an important role of miR34 in AD. While the above-described

data suggest that elevated miR34 levels contribute to AD pathogene-

sis, a recent study found that inhibition of miR34a led to elevated

TAU expression, suggesting that in such a context increasing rather

than inhibiting miR34a should have therapeutic potential in AD

(Dickson et al, 2013). Moreover, up-regulation of miR34a extends

median life span in the fruit fly (Liu et al, 2012a,b), indicating that

more research is needed to fully appreciate the role of this miR in

the adult mammalian brain.

The use of miRs as biomarker is of particular interest in AD

research because pathogenesis begins about 20 years before the

onset of clinical symptoms (Bateman et al, 2012). miRs are very

stable compared to other potential biomarker such as proteins or

mRNAs. Thus, a number of studies started to investigate miRs in

cerebrospinal fluid (CSF) or in blood samples from AD patients and

animal models. For example, levels of miR34a were elevated in

serum obtained from aged rats when compared to young animals

(Li et al, 2011a). An early study by Cogswell et al used a TaqMan

PCR array to study miRs in brain and CSF from AD patients and

non-demented controls (Cogswell et al, 2008). Interestingly, among

other miRs, miR34a and 29a/b levels were increased AD brain

tissue. The same study also analyzed miR levels in post-mortem

CSF samples from individuals with B&B stage 1 (Braak & Braak stag-

ing, Box 1) compared to B&B stage 5. Notably, no CSF changes were

observed for miR34 or miR29a/b, and the overall correlation

between brain and CSF changes was rather poor. Nevertheless,

some interesting observations were made. For example, the miR30

cluster was increased in CSF and decreased in the hippocampus,

while miR125b was increased in both, brain and CSF (Cogswell

et al, 2008). Another recent study used a similar approach and

investigated eight selected miRs in post-mortem human hippocampus

and CSF from AD patients and controls (Müller et al, 2014). Altered

levels of miR16, miR34c, miR107, miR128a and miR146a were

detected in the hippocampus, which correlates well with previous

studies. Analysis of CSF samples was hindered by detection limits

and blood contamination, but reliable detection of lower miR146a

levels in AD was reported (Müller et al, 2014). In a targeted

approach, let7-b was found to be increased in the CSF from AD

patients (Lehmann et al, 2012). These data indicate the changes in

miR levels can be detected in CSF, but that the methodological

approaches need to be improved and the presently available data

should be considered as being preliminary. A recent study employed

the array-based nano-string technology to study miR levels in CSF

from AD patients and identified miR27-3p to be reduced in the CSF

from AD patients (Sala Frigerio et al, 2013) while its levels increase

in the hippocampus of individuals that suffered from AD (Lau et al,

2013). The use of next-generation sequencing to study the entire

small non-coding RNAome in CSF from AD patients and controls

would be another option that may allow for a complete unbiased

and quantitative measurement of CSF miRs. One important issue

that needs to be solved is the source of miRs detected in human

CSF. For example, miRs can be bound to lipoproteins (Vickers et al,

2011) or Argonaute (Arroyo et al, 2011) but are also found in cell-

derived small vesicles named exosomes or microvesicles (Valadi

et al, 2007).

A few studies have analyzed miRs in blood samples from AD

patients. Using micro array technology, 462 miRs were analyzed in

mononuclear blood cells (MBCs) comparing AD patients to healthy

controls (Schipper et al, 2007). Notably miR34a and miR181b were

found to be increased in AD patients (Schipper et al, 2007), which is

interesting since both have been linked to memory function or AD

pathogenesis (Cogswell et al, 2008; Wang et al, 2009; Zovoilis et al,

2011; Saba et al, 2012; Zhao et al, 2013). Another miR that has been

linked to AD and was found to be down-regulated in MBCs from AD

patients is miR29b (Villa et al, 2013).

In comparison with the data available for micro RNAs, there is

limited knowledge on the role of other non-coding RNAs in AD. But

not too surprisingly, changes in lincRNAs have been observed in

AD. For example, it was found that the non-coding RNA BC200,

which is believed to regulate dendritic protein synthesis, is

increased in AD patients, while it decreases with normal aging (Mus

et al, 2007). It has to be mentioned that an early study found down-

regulation of BC200 in Brodman area 22 of AD patients (Lukiw et al,

1992). Other studies found increased levels of lncRNAs that affect

genes linked to amyloid metabolism (Faghihi et al, 2008; Ciarlo

et al, 2013) or neurotransmission (Massone et al, 2011). Moreover,

SNPs in lincRNAs have been associated with brain structure and

cognitive function (Chen et al, 2013). While mechanistically little is

known on the role of lncRNAs or small RNAs in AD, especially the

lncRNAs might be interesting for future research, since they can

modulate protein function and at the same time interact in a

sequence-dependent manner with DNA or RNA.

Meeting the future in neuroepigenetics

How do chromatin plasticity and the underlying enzymatic machin-

ery contribute to memory formation in health and disease? The

current data suggest that, for example, the regulation of gene

expression via histone-acetylation or DNA-methylation plays a role,

but conclusive data are still lacking. Future approaches must study

the genome-wide distribution of enzymes such as HATs and

HDACs, as well as other regulators of chromatin structure via ChIP-

sequencing, and correlate such data with gene expression, histone-

modifications or DNA-methylation. While the basal level of gene

expression or gene expression changes linked to chronic disease

states often, but not always correlate well with the chromatin state

of a given gene (Wang et al, 2008b; Peleg et al, 2010; Valor et al,

2013; Vashishtha et al, 2013; Ng et al, 2013; Lopez-Atalaya et al,

2013; Crepaldi et al, 2013), there are little genome-wide data to

support the view that transient changes in gene expression as

they are, for example, seen in response to memory training indeed
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correlate with altered histone-modifications at the corresponding

genes in brain cells.

Another key issue the field needs to address in the future is cell

type specificity. Most studies still investigate epigenetic processes in

heterogenous brain tissue, which can be particularly misleading

when interpreting data obtained from AD models or human brain

tissue in which the glia/neuron ration is changed due to inflamma-

tory processes and neuronal cell death. There are different options

to overcome such problems. Cell type specificity can be obtained,

for example, via established methods to isolate cells from complex

tissue via fluorescence-activated cell sorting (FACS). Such

approaches are especially powerful when fluorescent markers such

as GFP are expressed in the cell type of interest, for example, in

dopaminergic neurons, which has been successfully used to study

epigenetic processes in distinct populations of brain cells (Jordi

et al, 2013). A disadvantage of isolating intact cells from brain

tissue via FACS is the fact that cells need to be dissociated before

sorting which usually involves prolonged incubation at 37°C in the

presence of proteases such as trypsin or papain. Such protocols are

only successful if fresh tissue from early developmental stages is

used and even here a substantial amount of cells do not survive the

procedure. Taking into account that memory training was found to

induce epigenetic changes already within 30–60 min (Levenson

et al, 2004; Miller et al, 2007; Zovoilis et al, 2011; Peleg et al,

2010), it is difficult to judge whether results obtained by such

methods truly reflect the in vivo situation. Another approach is of

course to isolate cells via laser capture microdissection, which is

however very time consuming.

An alternative strategy is to directly sort nuclei using endogenous

marker proteins (Jiang et al, 2008). This method has the advantage

that cells do not need to be dissociated during long incubation

times. For example, nuclei sorting via staining for the neuronal

marker protein NeuN was found suitable to study neuronal versus

non-neuronal chromatin marks via ChIP-PCR or NGS analysis (Jiang

et al, 2008; Shulha et al, 2012b). Advanced protocols such as the

batch-isolation of tissue specific chromatin for immunoprecipitation

(BiTS-ChIP) have been successfully used to isolate chromatin even

from fixed nuclei thereby allowing a direct view at the chromatin at

the time of tissue isolation (Bonn et al, 2012a; Bonn et al, 2012b).

There is no reason to believe that such an approach should not

work for brain tissue. In conjunction with next-generation sequenc-

ing technologies and advanced bioinformatics analysis, these meth-

ods will allow for an unprecedented insight to cell-type-specific

chromatin dynamics in the adult brain. Machine learning

approaches appear to be particularly suitable to decipher the epige-

netic code from data obtained via genome-wide analysis (Bonn

et al, 2012a). However, even the most sophisticated bioinformatics

analysis of next-generation sequencing data will only describe epige-

netic networks. In order to understand such networks, subsequent

steps must involve hypothesis-driven mechanistic research (Fig 3).

How much Lamarck is in our memories?

Epigenetic processes are dynamic yet persistent at the same time,

and DNA does not replicate in post-mitotic neurons. Thus, there is

little chance for altering the genetic code other than by transposon

activity or mutations (Muotri et al, 2007), which are rare events.

DNA-methylation provides another layer to encode information

in DNA without changing its nucleotide sequence. Patterns of

1   Epigenome analysis Cell type specific

epigenome analysis 

using NGS approaches

Hypothesis driven

mechanistic research

in model systems

2   Epigenetic signatures

3   Computational modeling4   Mechanisms

Figure 3. Understanding the epigenome of learning and memory.
1. Experimental approaches to test memory function in model systems should be employed to define the epigenetic landscape of memory formation. Well-studied examples
are mice that are subjected to hippocampus-dependent memory training such as contextual fear conditioning. 2. In order to understand how the epigenome shapes
neuronal circuitries, it will be essential to isolate distinct cell types for epigenome analysis. This could be achieved in a meaningful manner via fluorescence-activated cell
sorting of nuclei that will then be subjected to epigenome profiling using next-generation sequencing (NGS) approaches. 3. Bioinformatic analysis and computational
modeling will be an essential tool to understand the molecular networks linked to memory formation in health and disease. 4. This will allow researchers to formulate
novel hypothesis about the underlyingmechanisms that shall then be tested using suitablemodels systems. For example, mutantmice that lack or overexpress the hubwithin
a given network. The effect of such manipulation and the epigenetic network can then be tested again using cell-type-specific epigenome profiling.
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DNA-methylation can be very persistent and are maintained across

generations, yet they are not irreversible, and especially in neurons

there is increasing evidence showing that in some genomic regions

DNA-methylation is quite dynamically regulated during memory

formation. An interesting example of DNA-methylation transmitting

acquired information across generations stems from studies that

investigate the effect of early life stress on cognitive function. Early

life stress is a prominent risk factor for neuropsychiatric diseases,

and in rodents it leads to increased anxiety and depressive-like

behavior that can be observed even in the offspring, albeit this

second generation was never exposed to such stress (Franklin et al,

2010). This effect has been linked to altered DNA-methylation of the

corticotropin-releasing factors receptor 2 in the brain and in the

germ line. Another recent study investigated the consolidation of

fear memories for specific odors. This type of learning correlated

with neuroanatomical changes in the olfactory system and altered

expression of the relevant odor-receptor (Dias & Ressler, 2013).

Notably, such changes were also observed in the subsequent gener-

ation that consequently showed enhanced odor learning. Mechanis-

tically, this phenotype was linked to altered DNA-methylation of the

relevant odor-receptor (Dias & Ressler, 2013).

The same principle is true for histone-modifications that can be

dynamically regulated in response to environmental stimuli, and

changes in histone-modifications have been linked to the transmis-

sion of phenotypes across generations. For example, liver damage in

rats initiates a hepatic wound healing program that eventually leads

to changes in histone-methylation and DNA-methylation in genes

linked to fibrosis (Zeybel et al, 2012). Notably such changes were

also observed in sperm, and indeed the offspring of such rats could

better adapt to liver damage (Zeybel et al, 2012). An interesting

observation of this study was the fact that serum transfer from

animals that were exposed to liver damage to a control group

caused the same transgenerational phenotypes, suggesting that a

factor present in blood must mediate epigenetic changes in the germ

cells (Zeybel et al, 2012).

How such environmental stimuli mediate epigenetic changes in

brain cells and in germ cells is however not well understood.

Similarly, non-coding RNAs are affected by learning processes

but can also mediate phenotypic changes across generations. A

fascinating example is paramutations that have been well studied,

for example, in plants (Cuzin et al, 2008) but also occur in

mammals. In mice, it was found that presence of miR 221 and miR

222 in germ cells was responsible for the transfer of a specific

phenotype linked to tail color to the subsequent generation

(Rassoulzadegan et al, 2006).

There are other remarkable examples in which epigenetic processes

define in a stable yet reversible manner an organisms behavior (Herb

et al, 2012), and although not all of the above-discussed examples are

directly linked to memory formation as we understand it, such find-

ings illustrate that epigenetic processes are in a bona fide position

when it comes to long-term information storage. Namely, they allow

the compromise between the competing needs for flexibility of a

system to update existing memories and the necessary stability that is

required to maintain a once consolidated memory trace.

In fact, there is a substantial amount of literature investigating

how epigenetic processes mediate long-term memory formation in

other organisms such as plants that can for example “remember”

the previous winter. Vernalization describes the ability of a plant to

flower in the spring depending on a cold period during the previous

winter. This process critically involves histone-modifications (He

et al, 2003), DNA-methylation (Bastow et al, 2004) but also the

action of non-coding RNAs such as the lncRNAs coolair and coldair

(Heo & Sung, 2011; He & Amasino, 2005; Swiezewski et al, 2009)

that orchestrate the corresponding gene expression programs.

It is thus tempting to speculate that an epigenetic code could be

part of the engram. The nature of the engram is still a mystery, but

the predominant view suggests that structural changes occurring at

synapses which represent specific neuronal networks recruited

during memory consolidation are an essential part of it (Routtenberg,

2013). Could it be possible that part of the information processed in

such networks is permanently stored within the chromatin of the

corresponding cells? Although this is pure speculation, in favor of this

view it was shown that formerly lost memories could be reinstated in

Life-experiences Risk factors for AD

Genetic

Non-genetic

Transmission of disease risk

to the next generation?

Gene-expression profile

linked to memory formation

or disease risk

Epigenetic
signature

Figure 4. The epigenome as a read out for life experience and
disease risk.
Throughout lifetime an organism is exposed to variable environmental stimuli
that can initiate memory consolidation processes. On the basis of the existing
data, it can be speculated that consolidation of such life experiences into
memories critically involve long-term epigenetic changes. Such epigenetic
signatures may even be transmitted to the next generation thereby influencing
the phenotype of the coming generations. Part of such life experiences represents
the interaction of genetic and non-genetic risk factors for brain diseases such as
Alzheimer disease. I hypothesize that also such risk factors lead to a disease-
specific epigenetic signature and a corresponding gene expression profile that
may even affect disease risk in the next generation. As such epigenetic signatures
may serve as bona fide biomarkers and therapeutic strategies to target, the
epigenome may turn out to be more beneficial than directly targeting the
multiple risk factors that are believed to contribute to disease pathogenesis.
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a mouse model for severe neurodegeneration when mice received an

epigenetic drug, in this case an HDAC inhibitor (Fischer et al, 2007).

It will therefore be important in future studies to investigate the

mechanism by which the synapse within a particular neuronal

circuitry communicates to the corresponding nucleus and to under-

stand how the nucleus integrates such signals on the level of the

chromatin. Moreover, in order to address such questions, it will be

essential to study only the cells that contribute to such networks. This

will also be important in the context of brain disease such as loAD

that are caused by variable combinations of genetic and environmen-

tal risk factors. If the epigenome indeed serves as a molecular read

out for life experience—including the exposure to AD risk factors—it

might be possible to develop powerful epigenetic biomarkers and

disease modifying therapies for such devastating diseases without the

necessity to identify or target all possible risk factors directly (Fig 4).

In conclusion, to study epigenetic processes in memory forma-

tion during health and disease is a fascinating novel area of research

that still offers great challenges but also a unique chance to further

understand how the brain stores information and to develop novel

therapeutic approaches to treat patients in which memory function

is disturbed.
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