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Abstract
In	competition-	dominated	communities,	traits	promoting	resource	conservation	and	
competitive	ability	are	expected	 to	have	an	 important	 influence	on	species	 relative	
abundance	(SRA).	Yet,	few	studies	have	tested	the	trait-	abundance	relations	in	the	line	
of	species	trade-	off	in	resource	conservation	versus	acquisition,	indicating	by	multiple	
traits	 coordination.	We	measured	SRA	and	key	 functional	 traits	 involving	 leaf	 eco-
nomic	 spectrum	 (SLA,	 specific	 leaf	 area;	 LDMC,	 leaf	 dry	matter	 content;	 LCC,	 leaf	
carbon	concentration;	LNC,	 leaf	nitrogen	concentration;	LPC,	 leaf	phosphorus	con-
centration;	Hs,	mature	height)	for	ten	common	species	in	all	plots	subjected	to	addi-
tion	of	nitrogen	fertilizer	(N),	phosphorus	fertilizer	(P),	or	both	of	them	(NP)	in	a	Tibetan	
alpine	meadow.	We	test	whether	SRA	is	positively	related	with	traits	promoting	plant	
resource	conservation,	while	negatively	correlated	with	traits	promoting	plant	growth	
and	resource	acquisition.	We	found	that	species	were	primarily	differentiated	along	a	
trade-	off	axis	involving	traits	promoting	nutrient	acquisition	and	fast	growth	(e.g.,	LPC	
and	SLA)	versus	traits	promoting	resource	conservation	and	competition	ability	(e.g.,	
large	LDMC).	We	further	found	that	SRA	was	positively	correlated	with	plant	height,	
LDMC,	and	LCC,	but	negatively	associated	with	SLA	and	leaf	nutrient	concentration	
irrespective	of	fertilization.	A	stronger	positive	height-SRA	was	found	in	NP-	fertilized	
plots	than	in	other	plots,	while	negative	correlations	between	SRA	and	SLA	and	LPC	
were	 found	 in	N	or	P	 fertilized	plots.	 The	 results	 indicate	 that	 species	 trade-	off	 in	 
nutrient	acquisition	and	resource	conservation	was	a	key	driver	of	SRA	in	competition-	
dominated	 communities	 following	 fertilization,	 with	 the	 linkage	 between	 SRA	 and	
traits	depending	on	plant	competition	for	specific	soil	nutrient	and/or	light	availability.	
The	 results	 highlight	 the	 importance	 of	 competitive	 exclusion	 in	 plant	 community	 
assembly	following	fertilization	and	suggest	that	abundant	species	in	local	communi-
ties	become	dominated	at	expense	of	growth	while	infrequent	species	hold	an	advan-
tage	in	fast	growth	and	dispersals	to	neighbor	meta-	communities.
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1  | INTRODUCTION

One	of	the	central	goals	 in	ecology	is	to	understand	why	some	spe-
cies	are	common	and	others	are	rare	in	a	particular	habitat	(Preston,	
1948).	From	a	perspective	of	niche-	based	community	assembly,	abun-
dant	species	are	those	with	the	best	life	history	strategy	in	being	well-	
adapted	to	the	local	environmental	conditions	(Bazzaz,	1996;	Grime,	
2006;	Tilman,	1988).	As	species	life	history	strategy	could	be	quantified	
by	multiple	trait	dimensions	(Reich,	2014;	Violle	et	al.,	2007;	Westoby,	
Falster,	Moles,	Vesk,	&	Wright,	2002;	Wright,	Reich,	Westoby,	Ackerly,	
&	 Baruch,	 2004),	 plant	 functional	 traits	 are	 expected	 to	 determine	
species	relative	abundance	(SRA;	Grime,	2006;	Shipley,	2010;	Tilman,	
1988).	Indeed,	several	field	experiments	have	successfully	linked	func-
tional	traits	to	SRA	in	local	communities	by	taking	account	of	dispersal	
effect	(Cornwell	&	Ackerly,	2010),	demographic	stochasticity	(Shipley,	
Vile,	&	Garnier,	2006)	and	environmental	dependence	of	trait	combi-
nation	(Cornwell	&	Ackerly,	2010;	Yan,	Yang,	Chang,	&	Wang,	2013).	
However,	until	now	how	environmental	changes	affect	 the	 relation-
ships	between	traits	and	abundance	remains	uncertain,	especially	 in	
grassland	subject	to	fertilization	and	grazing.	In	addition,	most	studies	
have	investigated	the	relations	between	single	trait	and	SRA,	and	few	
studies	have	paid	attentions	to	the	covariations	among	multiple	traits	
reflecting	species	trade-	offs	in	life	history	strategy	in	a	changing	envi-
ronment	(Díaz	et	al.,	2016;	Laughlin,	2014;	Reich,	2014).	The	relations	
between	multiple	traits	and	SRA	may	be	very	different	from	the	sig-
nal	 trait-	abundance	 relation	because	 they	mirrored	more	aspects	of	
species	performance	under	changing	conditions	(Marks	&	Lechowicz,	
2006;	Reich,	2014).

In	 competition-	dominated	 communities,	 abundant	 species	 are	
those	with	a	better	competitive	ability	for	 limited	resources	(Bazzaz,	
1996;	Grime,	2006;	Tilman,	1988).	In	contemporary	theory	to	explain	
the	 species	 coexistence	 and	 community	 assembly,	 SRA	 in	 local	 is	
driven	by	 the	balance	between	 stabilizing	niche	differences	and	 fit-
ness	 differences	 (Chesson,	 2000;	Hille	 Ris	 Lambers,	Adler,	Harpole,	
Levine,	&	Mayfield,	2012)	that	can	be	tied	to	variations	in	functional	
traits	 (Kraft,	 Godoy,	 &	 Levine,	 2015).	 Previous	 studies	 have	 shown	
that	nutrient	addition	decrease	species	diversity	through	competitive	
exclusion	(Borer	et	al.,	2014;	Demalach,	Zaady,	&	Kadmon,	2017).	In	
the	 competition-	dominated	 communities,	 traits	 promote	 fitness	 dif-
ferences,	which	are	associated	 to	SRA.	Specifically,	 traits	promoting	
resource	 conservation	 and	 competitive	 ability	 are	 expected	 to	 have	
an	important	 influence	on	SRA.	For	instance,	tall	plants,	and/or	with	
large	leaf	biomass	allocation,	usually	take	advantage	in	competing	lim-
ited	 light	 resource	and	would	be	abundant	 in	 fertilized	communities	
(Harpole	&	Tilman,	2006;	Hautier,	Niklaus,	&	Hector,	2009;	Liu	et	al.,	
2013;	Niu,	Luo,	Choler,	&	Du,	2008).	Accordingly,	we	expected	abun-
dant	species	do	better	when	they	use	fixed	N	efficiently	in	N-	limited	

community	when	P	fertilizer	was	added,	thus	resulting	in	a	significant	
relationship	 between	 SRA	 and	 traits	 that	 promote	 conserve	 use	 of	
fixed	N,	for	example,	low	leaf	nutrient	and	high	LDMC	(Reich,	2014).

Additionally,	any	particular	trait	in	turn	is	constrained	by	its	func-
tional	linkages	with	other	traits.	When	taking	into	account	covariation	
among	multiple	 traits,	 the	 relationship	 between	 SRA	 and	 individual	
trait	could	be	weakened	or	even	altered	(Marks	&	Lechowicz,	2006;	
Palmer,	Stanton,	&	Young,	2003;	Reich,	2014).	A	key	trade-	off	involved	
in	plant	competition	is	that	high	competitive	ability	and	resource	con-
servation	 often	 at	 the	 expense	 of	 resource	 acquisition	 for	 growth	
(Bazzaz,	1996;	Grime,	2006;	Tilman,	1988).	It	is	specifically	indicated	
by	coordination	among	multiple	traits	involved	in	leaf	economics	spec-
trum,	 that	 is,	 species	 primarily	 differentiated	 along	 a	 trade-	off	 axis,	
which	 corresponds	 to	 traits	 promoting	 rapid	 growth	 (e.g.,	 high	 leaf	
nutrient	and	SLA)	versus	those	promoting	long	leaf	life	(e.g.,	large	leaf	
dry	matter	content,	LDMC)	for	resource	conservation	(He	et	al.,	2009;	
Reich,	2014;	Wright	et	al.,	2004).

In	short,	we	hypothesize	that	SRA	should	be	positively	associated	
with	 traits	 promoting	 resource	 conservation	 and	 competitive	 ability	
(e.g.,	plant	height	and	LDMC),	but	negatively	related	to	traits	promot-
ing	resource	acquisition	and	fast	growth	 (e.g.,	high	 leaf	nutrient	and	
SLA)	 in	 competition-	dominated	 communities	 following	 fertilization.	
The	 specific	 relationship	 between	 SRA	 and	 traits-	abundance	would	
be	 revised	 after	 the	 fertilizer	was	 applied	 because	 the	most	 limited	
resource	for	plants	would	change.	For	instance,	soil	nutrient	limitation	
may	be	relieved	when	both	N	and	P	are	added,	the	most	limiting	re-
source	for	plants	is	light	in	these	fertilized	communities	(Li,	Tian,	Ren,	
Huang,	&	Zhang,	2013;	Yang,	Guo,	Zhang,	&	Du,	2013.	To	test	these	
hypothesis,	we	conducted	a	short-	term	factorial	experiment	subjected	
to	addition	of	nitrogen	fertilizer	(N),	phosphorus	fertilizer	(P),	or	both	
of	them	(NP)	in	a	Tibetan	alpine	meadow.	We	measured	six	traits	in-
cluding	leaf	economics	spectrum	(SLA,	specific	leaf	area;	LDMC,	leaf	
dry	matter	content;	LCC,	 leaf	carbon	concentration;	LNC,	 leaf	nitro-
gen	concentration;	LPC,	 leaf	phosphorus	concentration),	 the	mature	
height	 (Hs)	 and	 the	 species	 above-	ground	biomass	 for	 ten	 common	
species	in	each	plot.	This	was	because	(1)	the	diversity	of	these	indi-
vidual	traits	indicate	plant	competition	for	different	resources	(Mason	
et	al.,	2012;	Niu,	He,	Zhang,	&	Lechowicz,	2016;	Niu,	Messier,	He,	&	
Lechowicz,	 2015),	 (2)	 abundance	 of	 common	 species	 reflect	 biotic	
and	abiotic	selection	while	occurrence	of	infrequent	species	is	mostly	
controlled	by	various	stochastic	processes,	for	example,	random	drift	
and	seed	dispersal	(Shipley,	2010;	Wang,	Wiegand,	Kraft,	Swenson,	&	
Davies,	2016);	(3)	intraspecific	variability	resulted	from	the	response	
of	 traits	 to	 fertilization	 even	 exceeds	 interspecific	 variability,	 espe-
cially	for	plant	height	and	 leaf	nutrient	content,	which	suggests	that	
traits	should	be	measured	in	each	treatment	or	even	each	plot	(Albert,	
Grassein,	Schurr,	Vieilledent,	&	Violle,	2011;	Niu	et	al.,	2014).

K E Y W O R D S
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2  | METHODS

2.1 | Study site

The	 study	was	 carried	 out	 at	 the	 Haibei	 National	 Field	 Research	
Station	 of	 Alpine	 Grassland	 Ecosystem	 (Haibei	 Station,	 37°37′N,	
101°12′E)	in	China,	located	in	the	northeastern	part	of	the	Tibetan	
Plateau	at	3200	meters	above	sea	level.	The	mean	annual	tempera-
ture	 is	−1.7°C,	 ranging	from	−37.1°C	to	27.6°C.	The	mean	annual	
precipitation	ranges	from	426	to	860	mm,	occurring	mainly	during	
the	growing	season	from	May	to	September.	The	annual	mean	air	
temperature	and	annual	 rainfall	were	6.5°C	and	461.4	mm	during	
the	growing	season	of	2011	and	were	6.7°C	and	339.9	mm	during	
the	 growing	 season	of	2012	 (Wang,	 Liu,	Chung,	Yu,	&	Mi,	 2014).	
The	soil	is	classified	as	Mat–Gryic	Cambisol	(Chinese	Soil	Taxonomy	
Research	 Group,	 1995).	 The	 alpine	 meadow	 community	 is	 domi-
nated	 by	Kobresia humilis,	 Festuca ovina,	 Elymus nutans,	 Poa prat-
ensis,	 Carex scabrirostris,	 Scirpus distigmaticus,	Gentiana straminea,	
Gentiana lawrencei,	 Leontopodium nanum,	 Blysmus sinocompressus,	
Potentilla nivea,	and	Dasiphora fruticosa	(Luo	et	al.,	2009).

2.2 | Experimental design

A	 flat	 area	 was	 fenced	 by	 wire	 netting	 in	 May	 2011	 to	 prevent	
grazing	by	 livestock	 in	 the	enclosure.	All	 visible	 animal	wastes	pro-
duced	by	grazing	were	cleaned	up	before	 the	experiment	was	con-
ducted	 in	 order	 to	 exclude	 the	 effect	 of	 animal	 wastes.	 Sixteen	
3	m	×	3	m	plots	 (separated	by	1	m)	were	 randomly	assigned	 to	 four	
treatments	 (four	 replicates	 each	 treatment).	 The	 four	 treatments	
were	 as	 follows:	 no	 fertilizer	 control,	 addition	 of	 N	 fertilizer	 (urea,	
100	kg	N·ha−1·year−1),	 addition	 of	 P	 fertilizer	 (granular	 triple	 super	
phosphate,	50	kg	P·ha−1·year−1),	and	addition	of	NP	 (combination	of	
N	and	P	fertilizer,	100	kg	N·ha−1·year−1	and	50	kg	P·ha−1·year−1).	Each	
plot	was	divided	into	four	parts:	for	long-	term	observation,	for	plant	
individual	trait	sampling,	for	plant	abundance	measurement,	and	for	a	
possible	additional	treatment.	The	fertilizers	were	distributed	by	hand	
onto	each	plot.	To	make	the	fertilizers	dissolve	 into	the	soil	 rapidly,	
we	applied	them	in	15	July	2011	and	in	22	June	2012	before	the	fine	
rain	started.

2.3 | Species trait and abundance measurements

Based	on	the	experimental	design	from	previous	studies	(Niu,	He,	&	
Lechowicz,	2016a;	Niu	et	al.,	2015),	we	chose	ten	common	species	in	
all	plots	to	measure	the	key	functional	traits.	These	species	accounted	
for	43%~76%	of	the	above-	ground	biomass	in	these	communities.	In	
each	plot,	we	randomly	measured	the	maximum	height	of	five	mature	
individuals	 (Hs)	and	sampled	20	mature	undamaged	 leaves	 for	each	
species	to	measure	LDMC,	SLA,	and	leaf	nutrient.	The	ten	leaves	for	
each	species	 in	each	 treatment	were	scanned	to	measure	 leaf	area,	
weighed	to	measure	fresh	mass	and	dry	mass	before	and	after	dried	at	
65°C	with	a	10−4	g	accuracy.	For	each	leaf,	SLA	was	calculated	as	the	
ratio	of	each	leaf	area	to	its	dry	mass,	and	LDMC	was	calculated	as	the	

ratio	of	dry	mass	to	fresh	mass.	Finally,	for	each	species	in	each	plot,	
the	dried	leaves	were	ground	up	to	measure	leaf	carbon	concentra-
tion	(LCC)	and	leaf	nitrogen	concentration	(LNC)	using	an	elemental	
analyser	(2400	II	CHN	elemental	analyser;	Perkin-	Elmer,	USA)	and	leaf	
phosphorus	concentration	(LPC)	with	a	molybdate/stannous	chloride	
method	(He	et	al.,	2009).

In	late	August	2012,	that	is,	at	the	peak	of	plant	biomass,	stand-
ing	 biomass	 was	 harvested	 by	 species	 in	 a	 0.5	×	0.5	m	 quadrat	 in	
each	plot.	The	harvested	biomass	was	oven-	dried	at	65°C	and	 then	
weighted	with	a	0.1	g	accuracy.

2.4 | Data analysis

In	each	quadrat,	we	calculated	SRA	as	the	biomass	ratio	of	given	spe-
cies	to	the	total	above-	ground	biomass	of	all	species.	For	each	species	
in	each	treatment,	we	averaged	traits	value	and	SRA,	with	20	repli-
cates	(five	individuals	for	each	of	four	plots)	for	mature	height	and	ten	
replicates	for	SLA	and	LDMC,	but	only	four	replicates	for	leaf	nutrient	
and	SRA	from	four	plots.

A	principal	component	analysis	(PCA)	was	used	to	visualize	the	in-
terrelationships	among	the	five	leaf	economic	traits	and	plant	height	
for	the	common	species	in	each	treatment.	Statistical	significances	of	
the	correlations	among	traits	were	tested	by	Pearson	correlation,	and	
treatment	effects	were	tested	by	ANOVA.	Standard	major	axis	(SMA)	
regressions	were	performed	to	test	the	relationship	between	SRA	and	
individual	trait	(log-	transformed)	in	each	treatment.	A	generalized	lin-
ear	model	was	also	used	to	further	evaluate	the	relationship	between	
SRA	and	combinations	of	different	traits	in	each	treatment.

For	each	species,	we	estimated	the	response	of	SRA	and	individ-
ual	 trait	 to	 fertilization	with	 a	 log	 response	 ratio	 [=log	 (SRAfertilized/ 
SRAcontrol)]	and	relative	trait	change	[=(Traitfertilized	−	Traitcontrol)/Traitcontrol)],	
respectively,	 where	 SRAfertilized	 (or	 Traitfertilized)	 and	 SRAcontrol	 (or	
Traitcontrol)	are	 the	mean	SRA	 in	plots	with	and	without	 fertilizer	ad-
dition,	 respectively.	Thus,	a	positive	value	 indicates	 that	 fertilization	
increases	 relative	 abundance	 (or	 trait)	 of	 a	 given	 species	 and	 vice	
versa	(Li	et	al.,	2013;	Niu	et	al.,	2008).	Statistical	significances	of	the	
response	of	SRA	and	traits	were	tested	by	pair	t-test	on	mean	differ-
ence	between	fertilized	and	control	 treatment.	All	variables	met	the	
assumption	of	 normality	 tested	with	 Shapiro–Wilk	 tests	 and	homo-
geneity	of	variances	tested	with	Bartlett	tests.	All	statistical	analyses	
were	performed	in	the	software	R	(v	3.21,	www.r-project.org).

3  | RESULTS

3.1 | Relationships among leaf economic traits and 
plant height

The	first	axis	of	PCA	explained	up	41%	of	the	total	variability	in	leaf	
economic	traits	and	plant	height	while	the	second	axis	explained	up	
22%	of	 that	 (Figure	1).	The	ordination	diagram	clearly	 reflected	 the	
divergence	 among	 species	 in	 leaf	 economic	 traits	 and	 plant	 height.	
As	 expected,	 mature	 height,	 LDMC,	 and	 LCC	were	 negatively	 cor-
related	with	SLA	and	LPC	(Figure	1),	 indicating	species	trade-	offs	 in	

http://www.r-project.org
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resource	 conservation	 and	 competition	 versus	 resource	 acquisition	
for	 rapid	 growth.	 SLA	 was	 positively	 correlated	 with	 LNC	 (r	=	.75,	
p < .01,	 Figure	1)	 and	 LPC	 (r	=	.49,	p < .01,	 Figure	1),	while	 statured	
plant	height	was	positively	correlated	with	LDMC	(r	=	.39,	p < .01)	and	
LCC	(r	=	.51,	p < .01).

Although	 individual	 trait	 significantly	 responded	 to	 fertilization	
(Fig.	S1),	the	relationships	among	multiple	traits	did	not	significantly	
change	with	 fertilization	 (p > .05,	 Figure	1).	 In	 response	 to	 fertiliza-
tion,	mature	height	increased,	but	LDMC	and	LCC	decreased,	for	most	
species	 (e.g.,	Aster diplostephioides; Potentilla saundersiana; Stipa ali-
ena;	Fig.	S1).	N	and	P	addition	increased	SLA,	LNC,	and	LPC	for	most	
species	 (e.g.,	 Aster diplostephioides; Potentilla saundersiana; Elymus 
nutans).

The	responses	of	SRA	to	fertilization	depended	on	species	attri-
butes	 (Fig.	 S2).	 Overall,	 relative	 abundance	 of	 grasses	 species	 (e.g.,	
Stipa aliena; Elymus nutans)	tended	to	increase,	but	forbs	and	legumes	
species	(e.g.,	Melilotoides archducis-nicolai; Tibetia himalaica)	decreased	
following	N	addition	(Fig.	S1).

3.2 | Relationships between species relative 
abundance and functional traits

Irrespective	 of	 fertilized	 treatments,	 SRA	 was	 positively	 correlated	
with	plant	height	(R2	=	0.16,	p = .021,	Figure	2a)	and	LDMC	(R2	=	0.26,	
p = .001,	 Figure	2b),	 but	 negatively	 correlated	 with	 SLA	 (R2	=	0.30,	

p < .001,	 Figure	2d),	 LNC	 (R2	=	0.13,	 p = .03,	 Figure	2e),	 and	 LPC	
(R2	=	0.14,	p = .02,	Figure	2f).

When	 different	 treatments	 were	 separated,	 neither	 LDMC	 nor	
LCC	or	LNC	were	significantly	correlated	with	SRA,	but	a	stronger	pos-
itive	correlation	between	height	and	SRA	was	found	in	NP-	fertilized	
plots,	while	negative	relationships	between	SRA	and	SLA	or	LPC	were	
found	in	N	or	P	fertilized	plots	(Table	S1;	Figure	2).

4  | DISCUSSION

4.1 | Species trade- off in resource conservation and 
acquisition drives SRA

Our	results	showed	that	species	were	primarily	differentiated	along	
a	trade-	off	axis	involving	leaf	economic	traits	and	plant	height.	These	
findings	were	consistent	with	previous	reports	(He	et	al.,	2009;	Reich,	
2014;	Wright	 et	al.,	 2004).	 As	 repeatedly	 documented	 in	 previous	
studies,	 larger	 SLA	 and	 higher	 leaf	 nutrient	 concentrations	 suggest	
higher	rates	of	resource	uptake	and	faster	growth,	while	larger	LDMC	
and	longer	lifespan	indicate	higher	nutrient-	use	efficiency	and	better	
competition	for	limited	resources.	Our	results	supported	that	a	trade-	
off	 between	 nutrient	 acquisitions	 versus	 conservation	 reflected	 by	
leaf	traits	existed	among	common	species	within	local	communities.

Taller	species	with	larger	LDMC	and	LCC,	but	lower	SLA,	LNC,	and	
LPC,	tends	to	be	more	abundant	in	fertilized	communities.	This	result	
supported	 that	 species	with	higher	 resource	conservation	and	com-
petitive	ability	promote	species	abundance	in	competition-	dominated	
communities	(Craine,	Froehle,	Tilman,	Wedin,	&	Chapin,	2001;	Sonnier,	
Navas,	 Fayolle,	 &	 Shipley,	 2012).	More	 importantly,	 this	 result	 also	
suggested	that	abundant	species	are	often	at	the	expense	of	resource	
acquisition	and	fast	growth	with	low	SLA	and	leaf	nutrients	(Arendonk	
&	Poorter,	1994).	Contrastingly,	 infrequent	species	may	hold	an	ad-
vantage	for	dispersal	to	meta-	community	or	low	competitive	patch	by	
seed	and/or	by	clonal	production	(Liu	et	al.,	2013;	Niu,	Schmid,	Choler,	
&	Du,	2012),	because	these	species	have	higher	capacity	in	uptaking	
limited	resources	and	faster	growth	rate	(indicating	by	high	SLA	and	
leaf	nutrients).	This	partly	 explains	why	 fast	 growth	 infrequent	 spe-
cies	diversity	loss	in	fertilized	communities	but	not	in	neighbor	meta-	
communities	(Vellenda	et	al.,	2013).	Hence,	it	is	possible	that	species	
occupy	different	positions	along	these	trade-	offs	in	resource	conser-
vation	versus	acquisition	and	contribute	to	biodiversity	maintenance	
in	local	communities	or	even	to	region	scale.

4.2 | The linkage between SRA and traits depends on 
competition for specific resource

Overall,	our	results	show	that	the	significance	of	trait-	abundance	re-
lationships	depends	on	which	fertilizer	was	added	in	community.	This	
indicates	 that	 the	 importance	 of	 individual	 trait	 to	 SAR	was	 tightly	
related	with	competition	among	species	for	most	limited	resource	in	
communities.	 For	 instance,	 in	 both	N	 and	P	 fertilized	 communities,	
light	availability	becomes	the	most	limited	resource	and	competition	
for	light	drives	SRA	(Craine	&	Dybzinski,	2013),	resulting	a	significant	

F IGURE  1 Principal	component	analysis	correlation	biplot	
(type-	II	scaling)	showing	the	relationships	among	five	traits	(black	
vectors)	and	plant	height	for	common	species	in	fertilized	and	control	
communities.	SLA,	specific	leaf	area;	LDMC,	leaf	dry	matter	content;	
LCC,	leaf	carbon	concentration;	LNC,	leaf	nitrogen	concentration;	
LPC,	leaf	phosphorous	concentration.	CK,	unfertilized	control;	N,	N	
fertilizer	addition;	P,	P	fertilizer	addition;	NP,	addition	of	both	N	and	P	
fertilizer.	Sa,	Stipa aliena	Keng;	En,	Elymus nutans	Griseb.;	Kh,	Kobresia 
humilis	(C.	A.	Mey.	ex	Trautv.)	Sergiev;	Ma,	Medicago archiducis-nicolai 
Sirj.; Th,	Tibetia himalaica	(Baker)	H.	P.	Tsui;	Gs,	Gentiana straminea 
Maxim;	Sp,	Saussurea pulchra	Lipsch;	Mc,	Morina chinensis	(Bat.)	Diels;	
Ad,	Aster diplostephioides	(DC).	C.	B.	Clarke.,	Ps,	Potentilla saundersiana 
Royle
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height-	abundance	relationship.	Similarly,	when	N	fertilizer	was	added	
in	plant	communities,	competition	for	soil	available	P	and/or	light	re-
source	 become	more	 important	 to	 community	 assembly,	 leading	 to	
significant	correlations	between	SRA	and	SLA	(and	LPC).	These	cor-
relations	also	supported	hypothesis	of	grazing-	induced	P-	limitation	in	
this	meadows	(Niu	et	al.,	2016a),	which	further	explain	why	we	find	
significant	LPC-	abundance	relation	in	these	Tibetan	alpine	meadows:	
Abundance	 species	 in	 grazing	 rangeland	 are	 these	with	 high	 leaf	 P	
content	and	fast	growth	rate	(Niu,	He,	&	Lechowicz,	2016b).

In	short,	 significance	of	 trait-	abundance	 relationships	mainly	de-
pends	on	traits	involved	in	competition	for	the	most	limited	resource	
(Stanley	Harpole	&	Tilman,	2006).	Hence	 it	 is	 not	 surprising	 to	 find	
no	significant	trait-	abundance	relationship	when	we	combined	several	

traits	to	predict	SRA	(Stanley	Harpole	&	Tilman,	2006;	Niu	et	al.,	2012;	
Yang	et	al.,	2013).	Further	work	should	pay	more	attentions	on	explor-
ing	the	dependence	of	trait-	abundance	relationship	on	environmental	
selection	(Yan	et	al.,	2013;	Shipley	et	al.,	2016)	rather	than	assigning	
an	unclear	relation	to	neutral	assembly	(Clark,	2009).

4.3 | Conclusion remark and limitation of our study

In	short,	our	study	found	that	species	trade-	off	in	nutrient	acquisition	
versus	conservation	is	a	key	driver	of	SRA	in	Tibetan	alpine	meadow	
communities,	while	the	linkage	between	SRA	and	traits	depended	on	
the	most	limited	resources	for	plants	(soil	nutrient	and/or	light	avail-
ability).	The	results	support	the	 importance	of	competitive	exclusion	

F IGURE  2 Relationships	between	
species	relative	abundance	and	functional	
traits	over	common	species	in	fertilized	and	
unfertilized	communities.	R2	and	p	values	
were	estimated	from	standard	major	axis	
(SMA)	regressions	(detailed	in	Table	S1).	
SLA,	specific	leaf	area;	LDMC,	leaf	dry	
matter	content;	CK,	unfertilized	control;	N,	
N	fertilizer	addition;	P,	P	fertilizer	addition;	
NP,	addition	of	both	N	and	P	fertilizer
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among	 species	 in	 determining	 SRA	 especially	 in	 fertilized	 commu-
nity.	More	 importantly,	 to	 our	 best	 knowledge,	we	 highlighted	 that	
common	 species	 have	 a	 higher	 competition	 resources	 ability	 at	 the	
expense	 of	 growth,	 while	 infrequent	 species	 hold	 an	 advantage	 in	
fast	growth	and	contribute	to	biodiversity	maintenance	from	local	to	
meta-	community.	However,	balancing	among	complex	operability	 in	
field	experiment	results	in	several	limitations	in	our	study.	These	are	
as	 follows:	 (1)	 although	 our	 hypothesis	 are	 applied	 to	 competition-	
dominated	 communities,	 we	 selected	 fertilized	 communities	 rather	
than	 a	 controlled	 plant	 competition	 experiment	 and/or	 undisturbed	
“natural”	 community.	 This	 is	 mainly	 because	 previous	 studies	 have	
documented	that	competitive	exclusion	for	light	or	soil	nutrient	drives	
community	 assembly	 occurred	 worldwide	 following	 nutrient	 addi-
tions	 (Rajaniemi,	 2003);	 ii)	 as	 plant	 height	 and	 leaf	 traits	 (especially	
leaf	 nutrient)	 significantly	 responded	 to	 fertilization,	we	 considered	
trait	variations	within	species,	and	selected	several	common	species	
in	each	treatment,	which	necessarily	at	the	expense	of	sampling	more	
infrequent	species	that	are	very	rare	in	fertilized	communities;	(3)	al-
though	our	previous	studies	found	that	the	nutrient	content	in	roots	is	
strongly	correlated	with	that	in	leaves	for	common	species	in	Tibetan	
alpine	habitats	(Geng,	Wang,	Jin,	Liu,	&	He,	2014),	it	is	still	necessary	
to	measure	root	traits	for	inferring	plant	competition	for	soil	nutrient,	
which	suggests	that	 indications	from	leaf	traits	to	plant	competition	
for	soil	nutrient	remain	uncertain.
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