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Abstract

Motivation: Principal component analysis (PCA) of genetic data is routinely used to infer ancestry and control for
population structure in various genetic analyses. However, conducting PCA analyses can be complicated and has
several potential pitfalls. These pitfalls include (i) capturing linkage disequilibrium (LD) structure instead of popula-
tion structure, (ii) projected PCs that suffer from shrinkage bias, (iii) detecting sample outliers and (iv) uneven popu-
lation sizes. In this work, we explore these potential issues when using PCA, and present efficient solutions to these.
Following applications to the UK Biobank and the 1000 Genomes project datasets, we make recommendations for
best practices and provide efficient and user-friendly implementations of the proposed solutions in R packages
bigsnpr and bigutilsr.

Results: For example, we find that PC19–PC40 in the UK Biobank capture complex LD structure rather than popula-
tion structure. Using our automatic algorithm for removing long-range LD regions, we recover 16 PCs that capture
population structure only. Therefore, we recommend using only 16–18 PCs from the UK Biobank to account for
population structure confounding. We also show how to use PCA to restrict analyses to individuals of homogeneous
ancestry. Finally, when projecting individual genotypes onto the PCA computed from the 1000 Genomes project
data, we find a shrinkage bias that becomes large for PC5 and beyond. We then demonstrate how to obtain unbiased
projections efficiently using bigsnpr. Overall, we believe this work would be of interest for anyone using PCA in their
analyses of genetic data, as well as for other omics data.

Availability and implementation: R packages bigsnpr and bigutilsr can be installed from either CRAN or GitHub (see
https://github.com/privefl/bigsnpr). A tutorial on the steps to perform PCA on 1000G data is available at https://pri
vefl.github.io/bigsnpr/articles/bedpca.html. All code used for this paper is available at https://github.com/privefl/
paper4-bedpca/tree/master/code.

Contact: florian.prive.21@gmail.com or bjv@econ.au.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Principal component analysis (PCA) has been widely used in genetics
for many years and in many contexts. For instance, adding PCs as
covariates is routinely used to adjust for population structure in
Genome-Wide Association Studies (GWAS) (Novembre and
Stephens, 2008; Price et al., 2006). PCA has also been used to detect
loci under selection (Galinsky et al., 2016; Luu et al., 2017;

Privé et al., 2020) and in heritability analyses (Loh et al., 2015a;
Yang et al., 2010). Recently, the advent of large population-scale
genetic datasets, such as the UK Biobank data, has prompted re-
search on developing scalable algorithms to compute PCA on very
large data (Bycroft et al., 2018). It is now possible to efficiently ap-
proximate PCA on very large datasets thanks to software such as
FastPCA (fast mode of EIGENSOFT), FlashPCA2, PLINK 2.0
(approx mode), bigstatsr/bigsnpr, TeraPCA and ProPCA (Abraham
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et al., 2017; Agrawal et al., 2019; Bose et al., 2019; Chang et al.,
2015; Galinsky et al., 2016; Privé et al., 2018).

However, in practice, conducting PCA on genotype data to
capture population structure consists of more steps than simply
performing singular value decomposition (SVD) on the genotype
matrix. These steps include removing related individuals, pruning
variants in linkage disequilibrium (LD), and excluding outlier sam-
ples that can suggest poor genotyping quality or distant related-
ness. Some genetic analyses may also require to restrict to
individuals of homogeneous ancestry. Many pitfalls related to
PCA of genotype data have been documented and none of the cur-
rently available software address all of these. In the following, we
outline these pitfalls and explain when they are relevant. First,
some of the PCs may capture LD structure rather than population
structure (Abdellaoui et al., 2013; Price et al., 2008; Privé et al.,
2018; Zou et al., 2010). Including PCs that capture LD as covari-
ates in genetic analyses can lead to reduced power for detecting
genetic associations within these LD regions (Zou et al., 2010).
Second, another issue may arise when projecting a new study
dataset to the PCA space computed from a reference dataset: pro-
jected PCs are shrunk toward 0 in the new dataset (Lee et al.,
2010; Wang et al., 2015; Zhang et al., 2020). This shrinkage
makes it potentially dangerous to use the projected PCs for analy-
ses, such as PC regression, ancestry detection and correction for
ancestry. This same issue also arises when projecting individuals
from the same dataset that were discarded from the PCA compu-
tation (e.g. related individuals). Third, PC scores may capture out-
liers that are due to family structure, population structure or
other reasons; it might be beneficial to detect and remove these
individuals to maximize the population structure captured by PCA
(in the case of removing a few outliers) or to restrict analyses to
genetically homogeneous samples (e.g. ‘White British’ people in
the UK Biobank). Finally, efficient methods for PCA use approxi-
mations, which can results in some lack of precision of computed
PCs. This potential issue has been demonstrated for software such
as FastPCA and PLINK 2.0, but not for FlashPCA2 and bigstatsr/
bigsnpr (Abraham et al., 2017; Privé et al., 2018). An overview of
existing methods with their respective advantages and limitations
is presented in Table 1.

2 Approach

For this article, we derive implementations of truncated PCA and
other useful functions for e.g. performing LD thinning and comput-
ing various statistics. We make these available in a new release of R
package bigsnpr (v1.0.0); what differs from previously available
functions presented in Privé et al. (2018) is that these new functions
can be used directly on PLINK bed/bim/fam files with some missing
values. We use these new functions to analyze the UK Biobank data,
and show that these functions are both very fast and easy to use. We
also point out that many PCs currently reported by the UK Biobank
capture LD structure instead of population structure. Interestingly,
subsetting the UK Biobank data enables to get more PCs that cap-
ture population structure than when using the whole sample (�40
instead of �16). Then, we project the other individuals that were
not used in the PCA calculation, show that this projection is biased
and provide an efficient solution to get unbiased projections instead.
Finally, we explore options to detect outlier samples in PCA, either
a few outlier samples that may correspond to e.g. batch effects or
distant family structure, or when the goal is to restrict the data to
individuals of homogeneous ancestry.

3 Materials and methods

3.1 Efficient implementation of PCA for genotype data
When there is no missing value, we compute the truncated SVD

UDVT of the scaled genotype matrix of diploid individuals

~Gi;j ¼ Gi;j�2f̂jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f̂j ð1�f̂j Þ

p , where Gi;j is the allele count (genotype) of individ-

ual i and variant j, and f̂j is the estimated allele frequency of variant

j (2f̂j is the mean allele count of variant j). Then, UD is the first K
PC scores and V is the first K PC loadings, where K is the number of
PCs computed (e.g. K¼20).

When there are some missing values, we compute the partial
SVD similarly, except that missing values are replaced by the variant

means (i.e. Gi;j � 2f̂j ¼ 0 when Gi;j is missing) and the f̂j for each
variant are estimated using only non-missing genotypes. Note that

Table 1. Overview of existing methods

Analysis Method and/or software Citation Advantages Current limitations

PCA bigstatsr/bigsnpr Privé et al. (2018) Fast and accurateþhandle

dosagesþthinning

options directly

included

Own format without missing val-

ues (fast functions are avail-

able for converting and

imputing)

FlashPCA2 Abraham et al. (2017) Fast and accurate Not parallelized

PLINK 2.0 (reimplementation of

FastPCA)

Galinsky et al. (2016) and

Chang et al. (2015)

Fast Possible lack of accuracy

(Abraham et al., 2017; Privé

et al., 2018)

Detection of outlier

samples

‘6 SDs from the mean’ in

EIGENSOFT

Patterson et al. (2006) Simple Assumes a Gaussian distribution

Detection of homoge-

neous samples

R package aberrant Bellenguez et al. (2012) Robust Uses only two statistics at once

Projection of new individ-

uals onto reference

PCA space

Simple projection (multiplication

by loadings)

Dey and Lee (2019) Simple Shrinkage biased

Bias-adjusted projection in R

package hdpca

Independent of new

samples

Assumes same shrinkage for all

individualsþmodel-base-

dþneed all eigenvalues of

reference

Augmentation, Decomposition

and Procrustes (ADP) trans-

formation in LASER 2.0

Wang et al. (2015) Accurate Slow (a new PCA for each new

sample)

Online ADP (OADP) in python

package FRAPOSA

Zhang et al. (2020) Much faster than ADP Does not work for related indi-

viduals (Section 4.3)
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this decomposition is equivalent to the decomposition presented
above after imputation by the variant means.

To compute this decomposition easily and efficiently, we imple-
ment an accessor that memory-map the PLINK bed file to use it dir-
ectly as if it were a standard matrix. Then, we apply the same
algorithm for partial SVD that is used in R packages bigstatsr and
FlashPCA2, namely the implicitly restarted Arnoldi method
(Abraham et al., 2017; Lehoucq and Sorensen, 1996; Privé et al.,
2018). This algorithm, implemented in R package RSpectra,
requires a function that computes the matrix-vector multiplication
of the scaled genotype matrix with a given vector. We implement
such multiplication in parallel from a PLINK bed file.

3.2 Robust Mahalanobis distance

Mahalanobis distances are computed as dðxÞ2 ¼ ðx� lÞTR�1ðx�
lÞ; where l and R are (robust) estimators of location and covari-
ance. We use these distances for many applications in this paper.
When x is multivariate Gaussian data with K dimensions, the

squared distances follow a v2ðKÞ distribution. If x represents PC
scores of centered data and if we use standard estimates, then l¼0
and R ¼ IK. Yet, here we use the pairwise orthogonalized
Gnanadesikan–Kettenrin robust estimates of these parameters
(Gnanadesikan and Kettenring, 1972; Maronna and Zamar, 2002;
Yohai and Zamar, 1988). We implement the estimation of these ro-
bust parameters in function covrob_ogk of R package bigutilsr, and
the direct computation of these robust distances in function
dist_ogk.

3.3 Detecting LD structure in PCA
For detecting outlier variants in PCA that are due to long-range LD
regions, we use a similar procedure as described by Privé et al.
(2018). Note that this procedure does not require removing any
known long-range LD region a priori. We first apply a first round of
clumping at e.g. r2>0.2, prioritizing variants by higher minor allele
count. Then, we compute K PC scores and loadings (Section 3.1).
To summarize the contribution of each variant in all K PC loadings,
we compute the robust Mahalanobis distances of these PC loadings
(Section 3.2). To capture consecutive outliers that correspond to
long-range LD regions, we apply a Gaussian smoothing to these sta-
tistics (moving average with a Gaussian filter over a window with a
radius of 50 variants by default).

Finally, to choose the threshold on the previously described sta-
tistics above which variants are considered outliers, we use a modi-
fied version of Tukey’s rule, a standard rule for detecting outliers
(Tukey, 1977). The standard upper limit defined by Tukey’s rule is
q75%ðxÞ þ 1:5 � IQRðxÞ, where x is the vector of computed statistics
and IQRðxÞ ¼ q75%ðxÞ � q25%ðxÞ is the interquartile range. One as-
sumption of Tukey’s rule is that the sample is normally distributed;
we account for skewness in the data using the medcouple as imple-
mented in function adjboxStats of R package robustbase (Brys et al.,
2004; Hubert and Vandervieren, 2008). Standard Tukey’s rule also
uses a fixed coefficient (1.5) that does not account for multiple test-
ing, which means that there are always some outliers detected when
using 1.5 for large samples. To solve these two potential issues, we
implement tukey_mc_up in R package bigutilsr and use it here,
which accounts for both skewness and multiple testing by default.

We remove the detected outlier variants, compute the PC scores
and loadings again, and iterate until there is no detected outlier vari-
ant anymore. This procedure is implemented in function
bed_autoSVD of R package bigsnpr.

3.4 Detecting outlier samples in PCA
For detecting outlier samples in PCA, we use a modified version of
the Probabilistic Local Outlier Factor statistic on PCs (Kriegel et al.,
2009). Using K nearest neighbors (KNN), this consists in comparing

the distance from a point j to its KNNs (pdj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

PK
k¼1

d2
j$jk

s
, where jk

is the k-th NN of j) with the distances from its KNNs to their

respective KNNs 1
K

PK
k¼1

pdjk

 !
. Intuitively, an outlier should be far

from all other points, and is even more outlier if its KNNs are in a

very dense cluster. Here, we use pdj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

PK
k¼1

pdjk

s
as statistic to detect

individual outliers in PCA. Note that the square root, as it otherwise
detects as outlier any point that is next to a very dense cluster. We
implement (the two parts of) this statistic in function prob_dist of R
package bigutilsr. To make it fast, we use the fast KNN implementa-
tion of R package nabor (Elseberg et al., 2012) and parallelize it in
function knn_parallel of package bigutilsr. Automatic outlier detec-
tion is difficult; therefore, we recommend users to choose a thresh-
old for this statistic to define outliers based on visual inspection
(using the histogram of these statistics and the PC scores colored by
these statistics; see e.g. Fig. 2).

As for detecting samples that have a different ancestry from most
of the samples in the data, i.e. for restricting to homogeneous sam-
ples, we compute the pairwise orthogonalized Gnanadesikan–
Kettenrin robust Mahalanobis distances on PC scores (Section 3.2).
We then restrict to individuals whose log-distance (alternatively P-
value) is smaller (larger) than some threshold determined based on
visual inspection.

3.5 Projecting PCs from a reference dataset
To project a target genotype dataset to the PCA space from a ref-
erence dataset (e.g. the 1000 Genomes data), we implement the
following three steps in function bed_projectPCA of package
bigsnpr: (i) matching the variants of each dataset, including
removing ambiguous alleles [A/T] and [C/G], and matching
strand and direction of the alleles; (ii) computing PCA of the ref-
erence dataset using the matched variants only and (iii) projec-
ting computed PCs to the target data using an optimized
implementation (see Supplementary Material) of the Online
Augmentation, Decomposition, and Procrustes (OADP) trans-
formation (Zhang et al., 2020). To project individuals from the
same dataset as the individuals used for computing PCA, we pro-
vide function bed_projectSelfPCA. Note that the new individuals
to be projected should not be related to the ones used for com-
puting PCA (cf. Section 4.3).

3.6 Data
We provide and use a subsetted version of the 1000 Genomes
(1000G) project data (1000 Genomes Project Consortium et al.,
2015; Meyer, 2019). Variants are restricted to the ones in com-
mon with HapMap3 or UK Biobank (Bycroft et al., 2018;
International HapMap 3 Consortium et al., 2010). Moreover, we
apply some quality control filters; we remove variants having a
minor allele frequency <0.01, variants with P-value of the

Hardy–Weinberg exact test <10�50, and non-autosomal variants.
To remove related individuals with second-degree relationship or
more, we apply KING-relatedness cutoff of 0.0884 to the data
using PLINK 2.0 (Chang et al., 2015; Manichaikul et al., 2010).
This results in 2490 individuals and 1 664 852 variants of the
1000G project (phase 3) in PLINK bed/bim/fam format. Resulting
PLINK files and R code to generate these files are made available
at https://doi.org/10.6084/m9.figshare.9208979.v3. To easily
download this data, we provide function download_1000G in R
package bigsnpr.

In this paper, we also analyze the UK Biobank data (https://
www.ukbiobank.ac.uk/). We apply some quality control filters; we
remove individuals with >10% missing values, variants with >1%
missing values, variants having a minor allele frequency <0.01, var-

iants with P-value of the Hardy–Weinberg exact test <10�50 and
non-autosomal variants. This results in 488 371 individuals and
504 139 variants. When removing related individuals, we use the list
of individual pairs reported by the UK Biobank.
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Fig. 1. PC loadings 1–40 reported by the UK Biobank. Column indices of variants in the data, ordered by chromosome and physical position, are represented on the x-axis,

and the value of loadings is represented on the y-axis. Points are hex-binned. (a) Distribution of statistics (S). (b) PC scores 13–20 of 1000G, colored by the statistic (S) used to

define outliers. A few points with higher values for this statistic S appear as outliers in PC17–PC20. (c) PC scores 13–20 of 1000G, colored by being detected as an outlier.

Threshold of being an outlier is determined based on histogram (a) (Color version of this figure is available at Bioinformatics online.)

Fig. 2. Outlier detection in the 1000 Genomes (1000G) project, using prob_dist (Section 3.4)
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4 Results

4.1 Application to the UK Biobank
To demonstrate that we provide very fast implementations of the
different methods presented in this paper, we apply them to the UK
Biobank (UKBB). We use 20 physical cores for most of the computa-
tions [CPU: Intel(R) Xeon(R) Silver 4114, 2.20 GHz]. It takes
22 min to perform a first phase of clumping on 406 545 unrelated
individuals genotyped over 504 139 variants, which reduces the
number of variants to 261 307. It then takes 34 min to compute the
first 20 PCs using these 261 307 variants. When performing the
automatic procedure for LD detection, it takes 5 h to perform the
initial clumping step, 6 rounds of computation of PCs and 5 rounds
of outlier variant detection (i.e. five iterations of outlier detection
and one final computation of PCs).

When applying our automatic procedure to remove long-range
LD regions, it does not converge after five iterations for the UK
Biobank, i.e. it keeps detecting long-range LD regions at each iter-
ation (represented by peaks in PC loadings). Therefore, we are able
to capture only 16 PCs that show stratification that is not LD struc-
ture (Supplementary Figs S8–S10). Similarly, PC loadings reported
by the UK Biobank clearly show that PC19–PC40 capture LD struc-
ture, which is also the case for PC16 and PC18, although less pro-
nounced (see peaks in Fig. 1). These include e.g. one region on
chromosome 6 (70–91 Mbp) that is captured in PC19
(Supplementary Fig. S10) and that was not previously reported in
Price et al. (2008).

As for other analyses, it takes 8 min to match the 1000G data to
the UKBB data and compute 20 PCs of the 1000G data using the
automatic LD detection technique. It takes 12 min more to perform
the OADP projection of all 488 371 UKBB individuals onto the PCA
space computed using the 1000G data. Finally, it takes only 6 min to
compute the 30-nearest neighbors of 20 PC scores for 406 545 UK
Biobank individuals, which is the most computationally demanding
step when computing the statistics used to detect individual outlier
samples (Section 3.4).

4.2 Outlier sample detection
To detect a few outlier samples, we compare the standard rule of ‘6
SDs from the mean’ (6SD) used in e.g. EIGENSOFT to the statistic
we propose in Section 3.4. Our statistic identifies only isolated

samples or isolated pairs that seems to be outliers driving structure
of PC17–PC20 of 1000G (Fig. 2). All but one outlier are distantly
related pairs that disappear if using a more stringent threshold on re-
latedness (i.e. using a KING-relatedness cutoff of �0.0442 instead
of �0.0884, see tutorial in section ‘code availability’). In contrast,
rule 6SD identifies a lot of outliers, of which some are part of a rela-
tively large cluster (Supplementary Fig. S1). We recall that, if all PCs
are normally distributed, after correcting for multiple testing of
2500 individuals and 20 PCs, the probability of detecting one outlier
or more using 6SD is only of 0.0001.

As for restricting to homogeneous samples, we compare the use
of the robust Mahalanobis distance we propose here to the use of R
package aberrant, which was used to report the homogeneous
‘White British’ subset in the UKBB (Bellenguez et al., 2012; Bycroft
et al., 2018). We visually choose a threshold of 5 on the log-distance
and show that this gives a similar subset of individuals than the
‘White British’ subset reported by the UK Biobank (Supplementary
Fig. S2). Moreover, when using this threshold, only 3 out of 10 936
people of self-reported Asian ancestry (1 ‘Chinese’ and 2 ‘Indian’)
are kept, and 1 ‘African’ out of 7622 people with Black background
is kept (Supplementary Table S1). In contrast, 416 492 out of
431 090 ‘British’ (96.6%) and 12 620 out of 12 759 ‘Irish’ (98.9%)
are kept. Results are very similar to the set of ‘White British’ made
using R package aberrant (Supplementary Fig. S2).

4.3 Projecting onto the PCA space from a reference

dataset
We use 60% of individuals in the 1000G data (Section 3.6) to com-
pute K¼20 PCs. Then, we project the remaining 40% individuals
using three methods: 1/ simply multiplying the genotypes of these
individuals by the previously computed loadings; 2/ correcting the
simple projections using asymptotic shrinkage factors as determined
by R package hdpca v1.1.3 (Dey and Lee, 2019), with all eigenval-
ues derived from the genetic relationship matrix computed with
bed_tcrossprodSelf, one of the new functions of R package bigsnpr;
and 3/ the OADP projection (Section 3.5). When simply projecting
using loadings, there is negligible shrinkage for PC1 and PC2, a
small shrinkage for PC3 and PC4 and a large shrinkage for PC5–
PC8 (Fig. 3). In contrast, there is no visible shrinkage when projec-
ting new individuals with OADP (Fig. 3). Simple projection is
affected even more by this shrinkage for PC9–PC20, while OADP

Fig. 3. PC scores 1–8 of the 1000 Genomes project. Black points are the 60% individuals used for computing PCA. Red points are the 40% remaining individuals, projected by

simply multiplying their genotypes by the corresponding PC loadings. Blue points are the 40% remaining individuals, projected using the OADP transformation. Estimated

shrinkage coefficients for these eight PCs are 1.01 (PC1), 1.02, 1.06, 1.09, 1.50 (PC5), 1.69, 1.98 and 1.39. (Color version of this figure is available at Bioinformatics online.)
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still appears free of this bias (Supplementary Fig. S3). We show the
same results when projecting the full UK Biobank data onto PCA
computed using 1000G data (Supplementary Fig. S6). When correct-
ing projected PC scores with asymptotic shrinkage factors, bias is
smaller than with simple projection, yet, there is a visible bias for
PC7–PC8 (Supplementary Fig. S4). Finally, to assess if OADP could
be used to project individuals that are related to some individuals
that were used to compute PCA, we projected these 60% individuals
(as if we were projecting their monozygotic twins) using OADP.
Projections of related individuals using OADP suffers from some
bias in reverse direction (Supplementary Fig. S5).

When computing the PCs on the UK Biobank using 406 545 un-
related individuals and 171 977 variants, and projecting the 1000G
data onto this reference PCA space, shrinkage is much smaller
(� 1:08 for all 20 first PCs, Supplementary Fig. S7). Overall, this
shrinkage for simple projection decreases with an increased sample
size (Table 2).

4.4 Capturing subtle population structure in the UK

Biobank
We recomputed PCA in the UK Biobank after restricting the individ-
uals included in the computations: we randomly subsampled UKBB
data to use only 10 000 British individuals (out of 431 029) and

5000 Irish individuals (out of 12 755), while keeping all individuals
with other or unknown self-reported ancestry. We further removed
all pairs of related individuals reported by the UKBB (i.e. both indi-
viduals in each pair). This resulted in 48 942 individuals that we
used to compute 50 PCs, which took <3 h using function
bed_autoSVD (that converged after four iterations of automatic LD
removal). We show that we are able to capture more PCs (at least
40 instead of 16–18) that display visual population structure (Fig. 4
and Supplementary Fig. S12). We then projected all 439 429 remain-
ing individuals from UKBB onto this PCA space in 21 min only using
our implementation of the OADP projection (function
bed_projectSelfPCA). Note that these individuals should not be
related to any of the 48 942 individuals used for training PCA be-
cause we removed both individuals from each pair of related individ-
uals in the UKBB. Projection of new individuals show again a clear
shrinkage when using simple projection (between 1.00 for PC1 and
1.80 for PC50), but no visible bias when using OADP projection
(Supplementary Fig. S13).

4.5 PCA and missing value imputation
As we compute PCA on data with missing values, although we re-
strict to variants with <1% missing values, we analyze hereinafter
the effect of imputation of missing values before computing PCA.

Fig. 4. PC scores 27–50 computed on the UK Biobank using 48 942 individuals of diverse ancestries. These individuals are the ones resulting from removing all related individ-

uals and randomly subsampling the British and Irish individuals. Different colors represent different self-reported ancestries. (Color version of this figure is available at

Bioinformatics online.)

Table 2. Shrinkage coefficients when projecting new individuals onto reference PCA space

Dataset Sample size (�1000) Number of variants (�1000,

after LD removal)

Shrinkage (PC 1–5–10–20)

1000G 1.5 393 1.01–1.50–3.14–6.70

1000G 2.5 229 1.01–1.36–2.84–6.75

UKBB 49.0 282 1.00–1.04–1.12–1.43

UKBB 406.5 172 1.00–1.01–1.04–1.08

Note: We list the dataset, the sample size and number of variants used to compute the final PCA. As expected, the shrinkage bias only becomes negligible if the

PCA is conducted on large samples.
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We compare four different imputation methods and two different
sets of individuals. In the UK Biobank imputed data, �1000 individ-
uals have been removed because of a high number of missing values
or a high heterozygosity, as compared to the genotyped data
(Bycroft et al., 2018). When computing PCA with mean imputation
and using all genotyped individuals, PC16 captures individuals with
very high heterozygosity (Supplementary Fig. S11). When restricting
to imputed individuals only, i.e. after removing individuals with
very high heterozygosity, PC16 completely disappears and new
PC16–PC19 correspond to previous PC17–PC20 (Supplementary
Table S2). When using dosage data instead of genotype data with
mean imputation, PCA is globally unchanged (Supplementary Table
S3). Overall, if we choose to use either one of the following four im-
putation methods: mean imputation, random imputation according
to allele frequencies, using reported dosage data from BGEN files,
or imputation of genotyped data based on machine learning using
function snp_fastImpute of R package bigsnpr (Privé et al., 2018),
resulting PCs are always very similar (absolute correlation larger
than 0.99 for the 20 computed PCs; results partially shown in
Supplementary Tables S2 and S3). This justifies performing PCA
with mean imputation directly on PLINK bed files with a few miss-
ing values; this has the advantage to be much faster than having to
impute genotyped data using snp_fastImpute, which took 4 days for
406 545 individuals and 240 444 variants, or based on external ref-
erence datasets.

5 Discussion

In this work, we have compiled different pitfalls that can arise with
PCA of genetic data. Then, we have investigated possible solutions
to these pitfalls and selected the ones that we found most advanta-
geous, both with respect to properties such as accuracy and robust-
ness, but also computational efficiency and ease of use. We then
implemented these solutions in R packages bigsnpr and bigutilsr.
The new functions we provide in R package bigsnpr can be directly
applied to genotypes stored as PLINK bed/bim/fam files with some
missing values. This contrasts with previous releases of package

bigsnpr that could only use format ‘bigSNP’. This data format can
store both genotype calls and dosages, but requires conversion from
other formats and imputation of missing values using functions pro-
vided in the package (Privé et al., 2018). As PCA is a useful tool on
its own and does not require extensive imputed data, we therefore
decided that operating directly on PLINK files with a few missing
values would be more practical for users.

We summarize our work into several recommendations for com-
puting PCA, and propose the pipeline shown in Figure 5. Note that
we have not included standard steps such as initial quality control
filters and post-analysis checks (e.g. visual inspection of different
plots). This pipeline requires removing all related individuals, for
which we provide an R wrapper to PLINK’s implementation of
KING robust kinship coefficients (Chang et al., 2015; Manichaikul
et al., 2010). Note that one should remove both individuals in each
pair of related individuals. This ensures that the projected individu-
als are not related to the ones used for computing PCA, since we
showed that relatedness is a problem when using the OADP projec-
tion (Supplementary Fig. S5). After selecting a subset of individuals,
we apply several steps of outlier detection, one for outlier variants
that capture long-range LD variation (automatic), and one for
detecting outlier samples (semi-automatic and visual). To make
these steps more computationally efficient, we explored solutions
for not recomputing PCA from scratch when removing a few sam-
ples or a few variants. Using educated guesses in R package
PRIMME based on low-rank approximations of the updated PCA
seemed to be a promising approach but did not reduce computation
time by much, so we did not pursue this idea (Brand, 2003; Wu
et al., 2017).

Once PCA is done, one should check the PC scores (scores of
each individual for each PCA dimension) and PC loadings (weights
for each variant for each PCA dimension). We differentiate PCs in
three broad types: the ones capturing LD structure, the ones captur-
ing population structure and noise. We expect population structure
to be evenly distributed along the genome so that loadings are nor-
mally distributed around 0 (with small effect sizes). In contrast,
long-range LD structure is essentially capturing the variation inside
one long-range LD region (so localized in the genome), so that we
expect the loadings to be very large in that region only (one peak).
Therefore, PCs capturing LD structure can be identified by looking
for peaks in PC loadings (e.g. PC17–PC20 in Supplementary Fig.
S10). To identify which PCs capture population structure, and
which ones are probably just noise, one should also look at PC
scores (colored by ancestry if possible). PCs with no visible popula-
tion stratification, i.e. where all individuals are normally distributed
around 0, can be considered as noise. As in many applications, we
believe a compromise between signal and noise should be preferred.
Therefore, we recommend using only PCs that show structure (e.g.
PC1–PC16 in Supplementary Fig. S9) and excluding PCs that do not
seem to capture any population structure (e.g. PC17–PC20 in
Supplementary Fig. S9).

When analyzing a dataset that is composed mainly of one popu-
lation (e.g. British people in the UK Biobank), we found that it is
useful to subset these individuals to reduce the imbalance between
the different population sizes. Likewise, previous works have shown
that uneven population sizes can distort PCs (McVean, 2009;
Novembre and Stephens, 2008). Indeed, when subsetting British and
Irish people in the UK Biobank data, we are able to capture a lot
more PCs that show population structure with <50 K individuals
compared to when using >400 K individuals who are mostly com-
posed of British and Irish people. Determining how much overdomi-
nant populations should be subsampled to maximize population
structure captured by PCA is a direction of future work. The remain-
ing individuals can then be projected onto the resulting PCA space
using the OADP projection we recommend in this paper. This sug-
gests that designs such as the 1000 Genomes project, which gathered
around 100 people for each of 26 different populations, are highly
relevant for capturing population structure (1000 Genomes Project
Consortium et al., 2015).

In contrast, a common strategy in genetic analyses is to restrict
the analysis to a homogeneous sample to reduce risk of confounding

Fig. 5. Proposed pipeline for computing PCs using R packages bigsnpr and bigutilsr
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due to population stratification. For that purpose, we show that
using the Mahalanobis distance on PC scores can efficiently achieve
this goal, which we used in previous analyses (Privé et al., 2019).
When the homogeneous sample is not predominant in the dataset,
one solution is to compute the center and covariance of the robust
Mahalanobis distance using only the population of interest, and
then computing the distances for all individuals using these robust
estimates.

The ubiquitous use of PCA in a wide variety of genomic analyses
makes it difficult to establish universal guidelines for such analysis.
Although we have tackled many problems related to computing
PCA on genotype data in this paper, we do not answer other import-
ant problems, such as how to best control for population structure
in genomic analyses. For example, when conducting a GWAS,
should one restrict to a homogenous sample, or is it enough to just
include PCs that capture population structure as covariates, or
should one also use PCs as covariates in mixed linear models (Loh
et al., 2015b; Price et al., 2010)? Similarly, in some analyses, it may
be beneficial to include PCs that capture long-range or even inter-
chromosomal LD. More work is needed to understand these funda-
mental problems, and to provide precise guidelines for conducting
successful GWAS, heritability and other genomic analyses where
PCA is used. These are directions of future work.

Finally, although we have focused on PCA of genotype data in
this paper, we believe most of the results presented here are not in-
herent to genotype data, and can be transferred to e.g. other omics
data as well. For example, PCs can be used to account for confound-
ing in other data as well (Pickrell et al., 2010). Then, outlier and
homogeneous sample detection can be used on PCs of other types of
data. Moreover, projection of scores will also be a problem for other
omics data where the number of variables used is larger than the
number of samples used for computing PCA. Finally, using ‘popula-
tions’ with approximately the same size is relevant for other bio-
logical data as well. However, other pitfalls might apply when using
other types of data; e.g. methylation data can be confounded by fac-
tors such as age and sex, and it might be beneficial to remove the
methylation probes that are associated with these confounding fac-
tors before computing PCA (Decamps et al., 2020).
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