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Abstract. The occurrence and development of acute cerebro-
vascular diseases involves an inflammatory response, and high 
mobility group box protein 1 (HMGB1) is a pro‑inflammatory 
factor that is expressed not only in the early‑injury stage of 
disease, but also during the post‑repair process. In the initial 
stage of disease, HMGB1 is released into the outside of the cell 
to participate in the cascade amplification reaction of inflam-
mation, causing vasospasm, destruction of the blood‑brain 
barrier and apoptosis of nerve cells. In the recovery stage of 
disease, HMGB1 can promote tissue repair and remodeling, 
which can aid in nerve function recovery. This review summa-
rizes the biological characteristics of HMGB1, and the role 
of HMGB1 in ischemic and hemorrhagic cerebrovascular 
disease, and cerebral venous thrombosis.
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1. Introduction

High mobility group box protein 1 (HMGB1) is the non‑chro-
mosome‑related group of proteins. It was first isolated in 
1973 by Goodwin et al (1), and it is named after its rapid 
rate of electrophoresis in a polyacrylamide gel. HMGB1 is 
expressed in the nucleus of almost all eukaryotic cells and is 
encoded by the human HMGB1 gene (13q12) (2). HMGB1 is 
involved in stabilizing chromosomal structure in the nucleus, 
and in regulating the transcription of genes that are critical 
for maintaining basic life processes. When released from 
the cell, HMGB1 binds to its specific receptor under specific 
pathological or physiological conditions, which can mediate 
multiple inflammatory and autoimmune diseases (3).

In recent years, the high incidence of cerebrovascular 
disease has markedly affected the lives of patients (4). 
According to recently released data, in hospitalized patients 
aged between 55 and 63 years in the United States, the inci-
dence of acute ischemic stroke is 202.5/10,000, the incidence 
of subarachnoid hemorrhage (SAH) is 11.9/10,000 and the 
incidence of intracerebral hemorrhage is 22.6/10,000 (4). 
Although treatment methods have improved over time, treat-
ment remains invasive (5,6). Therefore, it is important to 
investigate the pathogenesis of cerebrovascular disease and to 
identify non‑invasive treatment methods.

An increasing number of studies have demonstrated that 
the inflammatory response involving HMGB1 serves an 
important role in the course of acute cerebrovascular disease. 
This review summarized the structure, function, receptors and 
signaling pathways of HMGB1, and retrospectively analyzed 
the role of HMGB1 in ischemic cerebrovascular disease, 
hemorrhagic cerebrovascular disease and cerebral venous 
sinus thrombosis.

2. HMGB1

The structure of HMGB1. The sequence and structure of the 
HMGB1 protein are highly evolutionarily conserved. HMGB1 
is composed of 215 amino acids, and has a molecular weight 
of ~25 kDa. HMGB1 includes three structural domains: Two 
relatively rigid DNA binding domains (A and B box) located 
at the N‑terminal, which is termed the HMG box field, and 
a negatively charged acidic tail comprising 30 glutamic and 
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aspartic acids (7,8). The A box is located at the 1‑79 loci of 
the HMGB1 molecular amino acid sequence and the B box is 
located at the 86‑162 loci, and the amino acid homology rate 
of the two is >80%. The acidic tail between the B box and the 
C‑terminal is connected by a flexible connection containing 
24 amino acids (Fig. 1). Following HMGB1 being released 
to the outside of the cell, the B box is the main structural 
functional area that causes inflammation (7,9). The A box has 
an antagonistic effect on the inflammatory response caused 
by the B box, and this anti‑inflammatory ability is enhanced 
following the fusion of the acidic C‑terminal.

The HMGB1 molecule contains two nuclear localization 
sequences (NLS), respectively located in the A box (28‑44) 
and the junction area of box B and the C tail (179‑185). It 
also contains three cysteine residues, which are located sepa-
rately at the 23 and 45 sites of the A box and the 106 locus 
of box B (Fig. 1) (8). Following stimulation, two cysteine 
residues can form a disulfide bond, and thus HMGB1 exists 
as three subtypes, the ‘disulfide HMGB1’, ‘thiol HMGB1’ and 
‘oxidized HMGB1’ (10). Disulfide HMGB1 is the main subtype 
involved in the acute and chronic inflammatory response in 
the extracellular space and serum, which can further acti-
vate macrophages/monocytes to amplify the inflammatory 
response. The mechanism of HMGB1 is mainly involved in 
non‑inflammatory responses and its mechanism has yet to be 
elucidated. Thiol HMGB1 can be released early and is able to 
repair cell damage by recruiting inflammatory cells (11).

Secretion of HMGB1. HMGB1 is secreted by two modes: 
Passive release and active secretion. The two secretory path-
ways differ in their molecular mechanism, release kinetics 
and downstream signaling pathway. Passive release occurs 
instantaneously upon the destruction of cellular integrity, as 
HMGB1 is not associated with nuclear DNA in living cells (8).

Under the stimulation of pathogen/microbe‑associated 
molecular patterns and endogenous inflammatory mediators, 
including tumor necrosis factor (TNF), interleukin‑1 (IL‑1) 
and interferon-γ (IFN‑γ), macrophages, monocytes, dendritic 
cells, endothelial cells and other immune cells can actively 
secrete HMGB1 (8). HMGB1 can also induce its own release 
through pre‑feedback regulation. Neurons, astrocytes, 
leukemia cells and neuroblastoma cells can also promote 
the active secretion of HMGB1 (8). Active secretion is much 
slower than passive release, and can be divided into two steps. 
To begin with, the HMGB1 in the nucleus is transferred to the 
cytoplasm through the internuclear pore. This process relies on 
the Janus kinase‑signal transducer and activator of transcrip-
tion signaling pathway and the super‑acetylation of two key 
lysine residues in NLS (12), preventing HMB1 from entering 
the cytoplasm and returning to the nucleus, which may aid 
HMGB1 in accumulating in the cytoplasm. The second stage 
gradually induces the programmed death of inflammatory 
cells; alternatively, through secreted lysosomes, the intracel-
lular HMGB1 is released from the cells (13).

Biological functions of HMGB1. Under physiological condi-
tions, HMGB1 is involved in stabilizing chromosomal 
structure in the nucleus, maintaining gene stability, and 
induces DNA bending. In this process, box A of the two mole-
cules of HMGB1 can form a special structure successively or 

simultaneously with DNA, which causes the DNA to bend and 
reconstruct (14). In addition, HMGB1 can directly participate 
in the repair process of DNA damage following binding to 
DNA, namely in nucleotide, base excision, mismatch and 
double chain fracture repairs (15). The absence of HMGB1 can 
lead to increasing chromosomal instability (16).

Yanai et al (17), demonstrated that the absence of HMGB1 
would weaken the response of the body to the extracellular 
signals associated with viral invasion, Toll‑like receptor (TLR) 
ligands and PRRs. Therefore, HMGB1 may have a central 
role in early immunization activities. HMGB1 was one of 
the first members of its family to be identified. The down-
stream inflammatory ligands can induce the oligomerization 
of NOD‑like receptor (NLR) and the assembly of inflam-
matory protein complexes (18). NLR molecules contain a 
leucine‑rich repeat (LRR) domain, which has the functions of 
a combination of ligands. HMGB1 can also induce cell stress, 
mediating double‑stranded RNA‑dependent protein kinase 
autophosphorylation and promoting inflammatory cascade 
amplification in the process (19).

The HMGB1 in the cytoplasm can initiate autophagy, 
which is a self‑protective process that removes damaged 
mitochondria and microbial invasions in the cell by combining 
with beclin‑1 (20).

The HMGB1 signaling pathway. RAGE was the first 
identified receptor of HMGB1; it is a multifunctional trans-
membrane receptor of the immunoglobulin superfamily, 
which is involved in the maintenance of homeostasis and the 
occurrence of inflammation, and is encoded by a gene on 
chromosome 6p21.3 (21). When combined with HMGB1, it 
can activate p38 mitogen‑activated protein kinase (MAPK), 
extracellular signal‑regulated kinase 1 (ERK1) and ERK2, 
which in turn causes phosphorylation and degradation of the 
inhibitor of nuclear factor κB (IκB) to activate NF‑κB (22). 
HMGB1/RAGE can also induce the expression of MAPK, 
vascular cell adhesion molecule 1 and matrix metallopro-
teinase (MMP) (23).

The TLR is a member of the type I transmembrane 
superfamily, and consists of an extracellular LRR structural 
domain and a Toll/interleukin‑1 receptor (TIR) structural 
domain in the cytoplasm (21). The TLR signaling pathway 
is divided into MyD88‑dependent and MyD88‑independent 
pathways. Following combining with a single ligand, TLR 
upregulates MyD88 or other adaptive molecules to induce the 
activation of downstream factors, including NF‑κB, MAPK 
and IFN regulatory factors (24). HMGB1 interacts with 

Figure 1. Structure of HMGB1. HMGB1 is comprised of 215 amino acids 
and has a molecular weight of ~25 kDa. HMGB1 includes three structural 
domains: A box, B box and an acidic tail. It contains two NLS, NLS1 
(28‑44 loci) and NLS2 (179‑185 loci), and three cysteine residues, C1 (23 loci), 
C2 (45 loci) and C3 (106 loci). HMGB1, high mobility group box B1; NLS, 
nuclear localization sequences.
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TLR‑2, TLR‑4 and TLR‑9, triggering the activation of NK‑κB 
and IRF pathways (25). Following the stimulation of TLR2, 
the downstream signal can be mediated by Rac1 and PI3K, 
increasing the adhesion of CD11b/CD18 and intercellular 
cell adhesion molecule‑1 (ICAM‑1), and Akt is activated 
directly by the p65 transcription complex or by the IκB 
kinase pathway; both of these pathways are able to activate 
NF‑κB (22). Following the binding of TLR‑4 to HMGB1, the 
interleukin‑1 receptor‑related kinase 1 can be phosphorylated, 
thereby activating the downstream signaling molecule NF‑κB, 
and promoting MAPK by phosphorylating JNK, ERK, p38 
and IκB (26). TLR9, normally located in the endoplasmic 
reticulum, can be transferred to the early endosomes in an 
HMGB1‑dependent manner (27). TLR9 in endosomes and/or 
lysosomes can identify CpG DNA binding to HMGB1, and 
can then mediate NF‑κB and its downstream inflammatory 
response (28). In recent years, it has been demonstrated that the 
combination of HMGB1 and TLR5 can also rely on MyD88 to 
activate the downstream signal (29).

C‑X‑C chemokine receptor 4 (CXCR4) is a member of the 
G protein‑coupled receptor family, which has a low expres-
sion in normal tissues, but a significantly higher expression 
in tumor tissues (21). Recent studies have demonstrated that 
CXCR4 is also involved in inflammatory responses, and that 
thiol HMGB1 can form complexes with CXCL12 and activate 
CXCR4 to promote the production of inflammatory cells and 
cytokines (30).

3. HMGB1 and acute cerebrovascular disease

Acute ischemic cerebrovascular disease. Worldwide, ischemic 
cerebrovascular disease is the leading cause of disability and 
the third leading cause of mortality, and therefore is a heavy 
social and economic burden (31). Following cerebral ischemia, 
neuroinflammation and stress serve important roles in the 
pathogenesis of the disease (31). The inflammatory response 
in ischemic stroke consists of two stages: The early stage of 
destruction of the nerve tissue and the late stage of organiza-
tional reconstruction.

Following acute ischemic stroke, damaged brain tissue 
can release HMGB1, recruiting a variety of pro‑inflammatory 
cytokines and chemokines, and increasing adhesion molecule 
expression, further activating brain cells and immune 
cells (32). Following cerebral ischemia, astrocytes and endo-
thelial cells may be the early targets of HMGB1, which can 
be activated in this process. The former can directly transmit 
signals to neurons and blood vessels, and the latter upregulates 
ICAM‑1 expression, recruiting immune cells into the ischemic 
area (33). The destruction of the blood brain barrier (BBB) 
is an important stage of ischemic brain injury, involving 
multiple cytokines. The activation of MMPs and the expres-
sion of various proteases results in the decomposition of the 
BBB, exacerbating leukocyte extravasation (34). HMGB1 can 
increase vascular permeability and promote BBB decomposi-
tion (35). Anti‑HMGB1 antibody can inhibit the morphological 
and functional changes in the BBB induced by HMGB1 (36). 
Tsukagawa et al (32) demonstrated that quantitative serum 
HMGB1 levels could be used to evaluate the prognosis of 
ischemic stroke and may be more accurate than the existing 
evaluation methods.

Ischemic reperfusion injury can further aggravate functional 
metabolic disorders and structural damage in ischemic tissues. 
Apoptosis is strictly regulated by the MAPK family, and the 
c‑Jun N‑terminal kinase (JNK), ERK1/2 and p38 protein family 
in ischemia reperfusion injury is activated (37). The continuous 
activation of MAPK is associated with the death or apoptosis 
of neurons in the post‑stroke stage of ischemic stroke (37). A 
study by Gong et al (38), demonstrated that glycyrrhizin can be 
used as a HMGB1 inhibitor to inhibit the JNK and p38 path-
ways in rats. Umahara et al (39), revealed that in the chronic 
stages of cerebral infarction, certain macrophages that were 
located in the ischemic region were positive for HMGB1. They 
hypothesized that there may be two reasons for this. One is 
that the HMGB1‑associated inflammatory response in chronic 
cerebral infarction develops from acute cerebral infarction. 
Alternatively, HMGB1‑positive macrophages may induce 
autophagy in the area of chronic ischemic injury, possibly due 
to the fact that HMGB1 can maintain autophagy (20).

In the recovery phase of ischemic stroke, HMGB1 may 
promote brain remodeling. Chen et al (40) and Wu et al (41), 
demonstrated that IL‑6 and vascular endothelial growth 
factor (VEGF) mediate the reactive astrocyte release of HMGB1, 
and participate in the angiogenesis and neurogenesis in the late 
phase of stroke, promoting brain remodeling and neurological 
function recovery. Brain remodeling was inhibited following the 
administration of HMGB1 inhibitors. These studies have aided 
in improving the prognosis of ischemic stroke at different stages.

Acute hemorrhagic cerebrovascular disease
Intracranial aneurysm and SAH. Intracranial aneurysms are 
pathological local dilations caused by changes in local intracra-
nial vessels. Among the various causes of SAH, spontaneous 
aneurysm rupture is the most common and requires attention. 
Zhang et al (42), demonstrated that HMGB1 was highly expressed 
on ruptured and unruptured aneurysm walls and, compared with 
the latter, the former had a higher level of expression. However, 
there is no significant association between the size of the 
aneurysm and the expression level of HMGB1. Through double 
immunofluorescence staining, Chalouhi et al (43) demonstrated 
that HMGB1 was expressed in the nucleus of smooth muscle 
cells, macrophages, lymphocytes and endothelial cells; these 
cells were involved in the remodeling of the aneurysm wall. 
NF‑κB is highly expressed in the aneurysm wall, and the 
formation of the aneurysm is hindered by the application of 
NF‑κB inhibitors (44). The incidence of intracranial aneurysms 
is associated with atherosclerosis and HMGB1 is involved in 
the formation of atheromatous plaques; following endothelial 
cell injury, activated NF‑κB induces the activation of leuko-
cyte adhesion molecules and a variety of cytokines, including 
HMGB1, and these signals can collect macrophages in the wall 
of blood vessels. Macrophages immersed in vessel walls can 
transform into foam cells and release HMGB1 again, forming 
a positive feedback inflammatory pathway (45). It has been 
demonstrated that in the formation and development of intracra-
nial aneurysms, HMGB1 mediates the inflammatory response 
and participates in the formation of atherosclerotic plaques; as a 
result, the vascular wall is thickened or narrowed, and vascular 
remodeling increases the risk of rupture. Therefore, inhibition 
of HMGB1 may alleviate atheromatous plaque formation and 
reduce the risk of aneurysm rupture.
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SAH is a life‑threatening central nervous system disease. 
Cerebral vasospasm is one of the most important causes of 
the high morbidity and mortality of SAH. Previous study 
have demonstrated that 30‑70% of patients with aneurysms 
and SAH will have vasospasm (46). It has been observed that 
this pathophysiological process is associated with inflamma-
tory reactions, including leukocyte recruitment, infiltration 
and activation. Following SAH, HMGB1 participates in 
the inflammatory response and serves an important role in 
apoptosis and vascular spasm (47). Zhao et al (48), revealed 
that the artery endothelial cells and smooth muscle cells in 
the damaged brain region following SAH were activated 
to stimulate the secretion of HMGB1, which may promote 
intracranial arterial spasms. Umahara et al (39), conducted 
autopsies of patients with SAH and revealed that an 
HMGB1‑like immunoreaction was observed in the cytoplasm 
of vascular smooth muscle cells in the hematoma. HMGB1 
could not only promote the occurrence of cerebral vasospasm, 
but also increase the gene and protein expression levels of 
RAGE in neurons and microglia around the hematoma, and 
the number of microglia was also significantly increased. As 
a main downstream factor of RAGE, the main p65 subunit 
of NF‑κB was significantly increased, indicating that 
RAGE promoted the activation of NF‑κB at the early stage 
of SAH (49). Resveratrol, as an inhibitor of HMGB1, can 
relieve this pathophysiological change; the reason for this is 
that resveratrol may be involved in SAH‑induced neuronal 
apoptosis, brain edema and nerve injury via inhibition of 
the HMGB1‑mediated TLR4/MyD88/NF‑κB pathway in the 
early stage of SAH (50). Clinically, patients with aneurysmal 
SAH may develop cerebral vasospasm and delayed cerebral 
ischemia, increased expression of HMGB1 during the course 
of disease, increased cerebral vasospasms and eventually an 
increased risk of cerebral infarction (51). Therefore, HMGB1 
rapidly interacts with nerve cells and glial cells following 
SAH, and participates in cerebral vasospasm and apoptosis.

In the recovery phase of SAH, Tian et al (52) suggested 
that HMGB1 can promote neurological recovery and blood 
vessel regeneration via RAGE mediation, which further 
demonstrated that HMGB1 serves different roles at different 
disease stages.

Intracranial hemorrhage (ICH). ICH accounts for ~15% of 
all stroke cases and has a mortality rate close to 50% (53). 
Even patients who survive ICH often experience severe 
disability (53). The reaction that follows ICH is a complex 
process and involves a series of pathophysiological reactions, 
including excitotoxicity, free radical injury and inflammatory 
reactions (54). Hematoma can cause inflammatory reac-
tions in the surrounding tissue, and can activate glial cells 
and neurons to aggravate cerebral injury (55). Following 
acute ICH, HMGB1 is released into the extracellular space 
by the damaged cell and, as a proinflammatory cytokine, 
it immediately causes a downstream inflammatory reac-
tion (56), leading to brain damage, affecting neurobehavioral 
functioning, increasing the permeability of the BBB and 
aggravating brain edema (57). It has been reported that an 
anti‑HMGB1 antibody can improve brain injury and nerve 
function defects following ICH in rats (58). In this process, 
HMGB1 triggers three specific downstream receptors, 

RAGE, TLR‑2 and TLR‑4, of which RAGE may be the 
most important. The use of RAGE antagonists alone hinders 
ICH‑induced inflammatory cell infiltration, and decreases 
its downstream factors IL-1β and MMP-9 in the brain tissue 
around the site of the ICH (57). As a downstream factor of 
HMGB1, NF‑κB is highly sensitive to oxidative stress in the 
surrounding area following ICH, and mediates downstream 
IL-1β and ICAM‑1, which serve a key role in cell death 
following ICH, particularly in apoptosis (55).

At the end of the course of the disease, the brain begins 
to undergo a remodeling process, involving synaptic and 
vascular regeneration, which may aid in the recovery of nerve 
function following ICH. In this process, the progenitor cells 
of the subventricular region of the hippocampus migrate 
into the damaged brain region and differentiate into mature 
neurons and glial cells (59). HMGB1 serves an important role 
in promoting tissue recovery and remodeling at the late stage 
of disease. Following ICH, the expression levels of HMGB1 
and VEGF are increased in surrounding brain tissue, and the 
inhibition of HMGB1 activity could significantly reduce the 
upregulation of VEGF (56). The ICH rat model induced by 
collagenase indicates that HMGB1 promotes angiogenesis 
mainly by mediating RAGE (56). In addition, HMGB1 can 
promote the expression of MMP‑9, improve brain damage 
and restore nerve function (54). Therefore, when inhibiting 
the HMGB1‑RAGE signaling pathway for ICH treatment, 
attention should be paid to the fact that early inhibition of this 

Figure 2. Signaling pathway of HMGB1 in cerebral venous sinus thrombosis. 
Following thrombosis, the pressure in the veins and capillaries is higher and 
blood return is limited, leading to tissue hypoxia. Subsequently, damaged 
tissue can actively or passively release HMGB1, triggering downstream 
inflammatory responses, participating in BBB disruption, apoptosis and 
nerve damage, and further aggravating brain damage. HMGB1, high mobility 
group box B1; BBB, blood brain barrier; TNF‑α, tumor necrosis factor α; IL, 
interleukin; MCP‑1, monocyte chemoattractant protein‑1; TLR‑4, Toll‑like 
receptor 4.



BIOMEDICAL REPORTS  9:  191-197,  2018 195

pathway can improve the treatment of ICH, while later inhibi-
tion of this pathway could hinder the recovery of neurological 
function (57). These studies indicated that HMGB1 exerted 
different effects at different phases of intracranial hemor-
rhage; therefore, future studies need to focus on determining 
time frames.

Cerebral venous thrombosis. Cerebral venous sinus thrombosis 
is a relatively rare cerebrovascular disease, which accounts for 
0.5‑1% of the causes of stroke. A total of 50% of patients have 
venous cerebral infarction with a series of clinical manifesta-
tions, including headache, hemiplegia, epileptic seizures and 
intracranial hypertension. Its pathophysiological mechanism 
can be explained by the fact that, following thrombosis, the 
pressure in the veins and capillaries is higher and blood return 
is limited, leading to tissue hypoxia, which contributes toward 
brain edema and ICH. The increase in venous pressure also 
hinders the reabsorption of the cerebrospinal fluid and further 
aggravates the intracranial hypertension (60). Although an 
increasing amount of attention has been paid to CVST in 
recent years, little is known regarding the exact pathogenesis 
and progression of the disease.

In recent years, a number of studies have demonstrated 
that HMGB1 may be involved in the pathogenesis of 
CVST (Fig. 2): i) In a study undertaken by Gu et al (61), the 
protein and mRNA expression levels of HMGB1‑RAGE were 
upregulated in the cerebral infarction area in rats following 
CVST. Recombinant human soluble (rhs)‑TM was added to the 
model, which reduced the nerve injury and infarct volume, and 
reduced the expression level of HMGB1‑RAGE and the proin-
flammatory cytokines TNF‑α, IL-1β and IL‑6 in the ischemic 

penumbra; and ii) in the pathogenesis of CVST, venous return 
is blocked, but in view of the abundant collateral circulation of 
the cerebral venous system, there may be other mechanisms 
involved in the occurrence of cerebral edema following CVST. 
Nagai et al (62), demonstrated that following the occurrence 
of CVST, the concentration of monocyte chemoattractant 
protein‑1 (MCP‑1) increased. Meanwhile, HMGB1 could 
activate the expression of MCP‑1 (23); therefore, HMGB1 
may also be involved in the inflammatory response process 
of CVST in this way. A study undertaken by Yang et al (63), 
also demonstrated that apoptosis participated in the pathogen-
esis of CVST: caspase‑3 served an important role in cellular 
apoptosis, and caspase‑3 participated in the pathogenesis of 
CVST. Bax is a type of pro‑apoptotic protein and Bcl‑2 is 
one of the most active inhibitors of apoptosis. Bcl‑2/Bax has 
been demonstrated to be essential for determining whether 
apoptosis has occurred, and the ratio of Bcl‑2/Bax decreases 
significantly following the occurrence of CVST. HMGB1 
can induce apoptosis via NF‑κB by activating TLR‑4 (47). 
The results of these studies suggested that HMGB1 serves an 
important role in the pathogenesis of CVST.

In general, following acute cerebrovascular incident, 
HMGB1 interacts with neurons, endothelial cells and glial 
cells to participate in BBB disruption, vasospasm and apop-
tosis through mediating downstream inflammatory factors, 
which contribute toward cerebral edema and nerve injury. 
On the other hand, during the recovery phase, HMGB1 can 
promote brain repair and remodeling, contributing toward the 
recovery of neurological function. Therefore, targeted therapy 
for HMGB1 may have a positive effect on acute cerebrovas-
cular disease (Fig. 3).

Figure 3. Signaling pathway of HMGB1 in the early and late phases of cerebrovascular disease. Following acute cerebrovascular disease, under the stimulation 
of inflammation, astrocytes, endothelial cells and neurons can actively secrete HMGB1, while passive release occurs instantaneously upon the destruction of 
cellular integrity. Extracellular HMGB1 interacts with neurons, endothelial cells and glial cells to participate in BBB disruption, vasospasm and apoptosis 
through mediating downstream inflammatory factors, which contribute toward cerebral edema and nerve injury. On the other hand, during the late phase, 
HMGB1 can promote brain repair and remodeling, participating in angiogenesis and neurogenesis, contributing toward the recovery of neurological function. 
HMGB1, high mobility group box B1; BBB, blood brain barrier; TLR, Toll‑like receptor; VEGF, vascular endothelial growth factor; NF‑κB, nuclear factor-κB; 
MAPK, mitogen‑activated protein kinase; IL, interleukin; MMP, matrix metalloproteinase; ICAM‑1, intercellular cell adhesion molecule‑1.
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4. Conclusion

Due to the diversity of acute cerebrovascular diseases and 
complex pathophysiological mechanisms, it is very difficult 
to fundamentally cure acute cerebrovascular diseases by 
relying on the existing treatment methods. Gene therapy has 
the characteristics of high specificity, high biological activity 
and low toxicity, and can be targeted to improve or inhibit 
the expression of the target gene in vivo, so as to achieve the 
purpose of treating a disease. HMGB1 serves an important 
role in promoting the inflammatory response in acute cere-
brovascular diseases. Gene therapy targeting HMGB1 may 
achieve satisfactory results in patients with acute cerebrovas-
cular diseases.
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