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Abstract: The World Health Organization recommends pre-exposure prophylaxis (PrEP) for individ-
uals at substantial risk of HIV infection. The aim of this analysis is to quantify the individual risk
of HIV infection over time, using a large database of high-risk individuals (n = 5583). We used data
from placebo recipients in five phase III PrEP trials: iPrEx, conducted in men who have sex with men
and transgender women; VOICE, conducted in young women at high sexual risk; Partners PrEP,
conducted in HIV serodiscordant heterosexual couples; TDF2, conducted in high-risk heterosexual
men and women; and BTS, conducted in persons who inject drugs. The probability of HIV infection
over time was estimated using NONMEM7.4. We identified predictors of HIV risk and found a
substantial difference in the risk of infection among and within trial populations, with each study
including a mix of low, moderate, and high-risk individuals (p < 0.05). Persons who were female at
birth were at a higher risk of HIV infection than people who were male at birth. Final models were
integrated in a tool that can assess person-specific risk and simulate cumulative HIV risk over time.
These models can be used to optimize future PrEP clinical trials by identifying potential participants
at highest risk.

Keywords: HIV prevention trials; key and vulnerable populations; risk factors; risk phenotypes;
modeling

1. Introduction

In 2020, the World Health Organization (WHO) estimated that 37.7 million people
were living with human immunodeficiency virus (HIV), 1.5 million had newly acquired
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HIV, and 608,000 people with HIV had died [1]. While new infections and HIV-related
deaths have considerably declined between 2000 and 2020, the HIV pandemic continues to
be a major contributor to the global burden of disease [1].

Antiretroviral therapy (ART) reduces the risk of HIV infection when administered as
pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) [1]. The effectiveness
of PrEP at reducing HIV transmission has been demonstrated in several randomized
controlled trials (RCTs) [2–10], and its use has been increasing globally, with more than
600,000 people in 76 countries worldwide having received oral PrEP at least once in
2019 [11]. However, there is still considerable room for improvement in the widespread
use of PrEP in those at high risk of infection, and even in settings where access to and use
of PrEP is high, adherence is a challenge and varies among different populations [12].

Defining the risk of HIV infection remains a challenge and limits efforts to direct
HIV prevention services, including PrEP, to people who would benefit most. The WHO
recommends PrEP to populations with a substantial risk for acquiring HIV, which is defined
as an HIV incidence > 3 per 100 person-years. However, HIV risk varies within populations
based on individual characteristics and behaviors [13]. If the characteristics of high-risk
individuals and predictors of HIV infection within key populations can be identified, PrEP
provision could be better directed to populations who would benefit most, thereby reducing
HIV transmission. Likewise, the design of future PrEP clinical trials could be optimized by
selecting individuals at highest risk of HIV infection with greater anticipated incidence.

Previous studies used data from several PrEP randomized controlled trials (RCTs) to
identify predictors of HIV infection and develop heterogeneous risk scoring tools in specific
populations such as men who have sex with men (MSM), heterosexual serodiscordant
couples, and heterosexual women [14–17].

In this study, we aimed to characterize and compare the probability of HIV infection
within high-risk populations using data from the placebo arms of five PrEP clinical trials:
the Pre-exposure Prophylaxis Initiative (iPrEx) trial [2], the Vaginal and Oral Interventions
to Control the Epidemic (VOICE) trial [3], Partners Pre-exposure Prophylaxis (Partners
PrEP) trial [4], the Bangkok Tenofovir Study (BTS) [5] and the Botswana TDF/FTC Oral HIV
Prophylaxis Trial (TDF2) trial [6]. By quantifying the risk factors within each population,
we attempted to identify subgroups at low, medium, and high risk of acquiring HIV in each
population. With this quantitative understanding of HIV risk in key populations based on
individual characteristics and risk behaviors, we may be able to predict HIV incidence in
the absence of intervention and optimize future HIV prevention clinical trials by enrolling
the individuals at highest risk.

2. Materials and Methods
2.1. Database: Clinical Trials and Study Design

We included participants enrolled in the placebo arms of five phase III clinical trials
that evaluated the efficacy of daily TDF, administered with or without FTC, as PrEP in
populations at high risk of HIV infection. These RCTs were conducted, between 2005
and 2013, among: MSM/transgender women (TGW) (iPrEx, NCT00458393) [2], young
heterosexual women at high sexual risk (VOICE, NCT00705679) [3], heterosexual men
and women in HIV serodiscordant partnerships (Partners PrEP, NCT00557245) [4], people
who inject drugs (Bangkok Tenofovir Study [BTS], NCT00119106) [5], and heterosexual
men and women at high risk (TDF2, NCT00448669) [6]. Trial protocols were reviewed
and approved by local and institutional Ethical Committees, and all participants provided
written informed consent. Trials included in this analysis were double-blind, with neither
the participants nor the researcher knowing participants were receiving placebo or active
agent. The randomization process was specific for each trial and can be found in the trial
primary publications [2–6]. Overall, in all the trials, study visits were scheduled every
month after enrollment, which included drug dispensation, adherence counseling and
monitoring, medical history, and HIV status tests. For this study, we included data from
trial participants who were HIV negative at enrollment and had the date of enrollment
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and the date of HIV infection or the date their data were censored in the trial database.
We collected longitudinal HIV test results (collected monthly), and baseline demographic
characteristics, sexual transmitted infections (STIs), and risk behavior (Table 1).

Table 1. Population characteristics and risk factors of participants in five pre-exposure prophylaxis
studies.

Study Population Geographical
Region Demographics

Sexually
Transmitted
Infections

Sexual Risk
Behavior

Other Risk
Factors

iPrEx MSM/TGW

- Peru
- Ecuador
- South Africa
- Brazil
- Thailand
- US

- Age
- Education
- Ethnicity
- Sex at birth
- Marital status
- Transgender

- HSV2
- Gonorrhea
- Chlamydia
- Syphilis

- No. of
partners

- No. of
intercourses

- Protective
intercourse

- Receptive/
insertive
partner

- Partner’s
HIV status

VOICE Young women at
high sexual risk

- South Africa
- Uganda
- Zimbabwe

- Age
- Education
- Ethnicity
- Financial

support (by
partner)

- Sex at birth
- Marital status
- N◦ live birth

- HSV1-2
- Gonorrhea
- Chlamydia
- Syphilis
- Trichomonas

- No. of
partners

- No. of
intercourses

- Protective
intercourse

- Type of
intercourse
(vaginal/
anal)

- Partner’s
HIV status

- Partner
circumcised

- Partner has
other sexual
partners

Partners
PrEP

HIV negative
partner in HIV-
serodiscordant
heterosexual

couples

- Kenya
- Uganda

- Age
- Education
- Sex at birth
- Income
- Marital status
- N◦ Children
- Pregnancy

- HSV2
- Gonorrhea
- Chlamydia
- Syphilis
- Trichomonas

- No. of
partners

- No. of
intercourses

- Protective
intercourse

- Partner’s
viral load

- Male
circumcision

BTS People who
inject drugs

- Bangkok

(Thailand)

- Age
- Education
- Ethnicity
- Sex at birth

- No. of
partners

- No. of
intercourses

- Protective
intercourse

- Frequency
anal
intercourse

- Drug
injection
frequency

- Live with
- partner

TDF2
Heterosexual

men/women at
high risk

- Botswana

- Age
- Education
- Ethnicity
- Sex at birth
- Marital status

- Gonorrhea
- Chlamydia
- Syphilis
- Trichomonas

- No. of
partners

- No. of
intercourses

- Protective
intercourse

- HIV positive
partner

Sexual risk behavior factors were recorded differently between studies (see Table S1a–e in Supplementary
Materials).

2.2. Data Analysis

Primary analysis consisted of characterizing the probability of acquiring HIV infec-
tion over time of initially seronegative individuals and identifying predictors of infection
through parametric survival analysis [18] using NONMEM7.4 [19] with the LAPLACE
estimation method. This probability was treated as a right-hand censored time to event
variable. The primary outcome was time to HIV seroconversion of initially seronegative
individuals, which is defined as the time from the date of enrollment to the date of se-
roconversion and characterized using a parametric time to event model. These models
are characterized by a hazard (hz) that can be parameterized using different distribution
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functions. The link between the hz and the overall survival probability (OS) (defined
as the probability of remaining HIV uninfected) is established through the cumulative
hazard (HZ) over time (OS = e-HZ) [18]. The identification of the different predictors of
HIV infection was performed by covariate analysis in the hz baseline parameters. The
covariates included in the analysis were the population characteristics and risk factors
of participants collected at study baseline. Hazard ratios (HR) were computed for each
covariate included in the final multivariate model to compare the effect magnitude of each
predictor on the relative risk. The HR was computed by calculating the ratio of the baseline
hazard of group A (e.g., No use of condom) to group B (e.g., Use of condom). For contin-
uous predictors, HR was calculated with respect to the median value of the population
(e.g., being 20 years old increases the risk of contracting HIV with respect to being 24 years
old in the iPrEx study). Internal model evaluation was performed by simulation-based
diagnostics using Kaplan–Meier Visual Predictive Check (VPC) plots [20,21] stratified by
significant predictors. Detailed explanation of model building and evaluation is included
in the Supplementary Methods. Exploratory analysis by Kaplan–Meier plots stratified by
the different covariates and univariate Cox-regression analysis was performed to identify
preliminary potential predictors of HIV infection and to support the final model.

2.3. Risk Stratification Using Final Multivariate Model

Risk stratification was performed based on a target probability of remaining HIV
uninfected at 1 year of follow up (52 weeks). We defined low risk as <1% probability of HIV
infection, moderate risk as 1% to 5% probability, and high risk as >5% probability. A risk
score (RS) corresponding to these probabilities was calculated by integrating the survival
function (RS1% = −(log(OS99%)/52)). Individual risk scores were computed based on the
significant predictors using the baseline hazard for the final model describing time to HIV
infection. These computed risk scores were used to distribute individuals into the risk
subgroups (low, moderate, high).

2.4. Interactive Web Application

The final models were coded using the mlxR package (https://cran.r-project.org/
package=mlxR, accessed on 1 July 2019) and were incorporated into an interactive web
application using the R package shiny (https://shiny.rstudio.com, accessed on 1 July
2019) to perform interactive simulations of individual HIV risk profiles within each key
population based on individual predictors.

3. Results
3.1. Largest Dataset Regarding HIV Outcome including Different High-Risk Populations

From the placebo arms of the five PrEP phase III clinical trials, 5583 individuals were
included in the analysis: 1218 MSM/TGW (iPrEx), 2008 young women at high risk (VOICE),
1574 HIV negative partners in HIV-serodiscordant couples (Partners PrEP), 177 people who
inject drugs (BTS), and 606 heterosexual men and women at high risk (TDF2). A detailed
description of the baseline characteristics and population-specific risk behaviors collected
in the five trials is shown in Supplementary Table S1a–e. Due to the different risk factors
and demographic information collected in each study (Table 1 and Table S1a–e), and the
large number of individuals enrolled, each study population was analyzed separately. The
Supplementary Materials (Preliminary analysis) show the results from the preliminary
Kaplan–Meier plot (Supplementary Figures S1–S5) and univariate cox-regression analysis
(Supplementary Tables S2–S6) for each study population.

3.2. Substantial Differences in Risk Infection between Different Key Populations

The risk of acquiring HIV over time varied among the studies (Figure 1). Women
at high risk (VOICE) showed the highest risk of HIV infection (HIV uninfected < 90% at
week 130); and serodiscordant heterosexual partners (Partners PrEP) showed the lowest
risk of HIV infection (HIV uninfected ≈ 95% at week 130). The probability of remaining

https://cran.r-project.org/package=mlxR
https://cran.r-project.org/package=mlxR
https://shiny.rstudio.com
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HIV uninfected over time was characterized by a parametric survival model using an
exponential distribution in which the hz over time is equal to a baseline hazard parameter
(λ) (hz(t) = λ). Differences in study populations were considered by estimating a different
λ value for each population at high risk (Table 2). The hazard function was modified by
including significant predictors of HIV risk as covariates of λ using a linear relationship.
Predictor estimates and their effect on HIV risk are summarized in Table 2.
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Figure 1. Probability of HIV infection over time of the placebo arms of the five PrEP studies. The
Bangkok study’s follow up was until week 348. Vertical lines represent the censored individuals.
Number at risk represents the number of individuals at HIV risk in each study at each time of the
x-axis. Cumulative number of events represents the number of individuals who contracted HIV
infection in each study at each time of the x-axis.
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Table 2. Final multivariate model by study.

Study Model Building Significance ↑ Risk Parameters Estimates (RSE%)

iPrEx Baseline (Exponential) - - θλ 0.00103 (14%)

+Predictor Condom Receptive Partner p < 0.001 No use of condom when receptive partner θRECEPTIVE′ = 1 + θReceptive ( )
θReceptive (No condom) = 0

θReceptive (Condom) = −0.73 (12%)

+Predictor Age p < 0.05 Younger age θAGE′ = 1 + θAge × (age− 24) θAge =−0.0305 (34%)

+Predictor Syphilis Seroreactivity Kaplan–Meier analysis Syphilis positive θSYPHILIS ′=1+θSyphilis ( )
θSyphilis(−) = 0

θSyphilis(+) =0.64 (70%)

VOICE Baseline (Exponential) - - θλ 0.001 (15%)

+Predictor Herpes2 p < 0.05 Herpes simplex virus 2 Positive θHSV2′ = 1 + θHSV2 ( )
θHSV2(+) = 0.997 (37%)

θHSV2(−) = 0

+Predictor Marital Status p < 0.001 Not being married θMARITAL′ = 1 + θMarital ( )
θMarital(Married)=−0.813 (12%)

θMarital(No Married)= 0

+Predictor Age p < 0.001 Younger age θAGE′ = 1 + θAge × (age− 24) θAge =−0.068 (26%)

+Predictor Primary Sex Partner has Sex with
another Partner (last 3 months) p < 0.05 Primary sex partner has sex with

another partner θPARTNER′ = 1 + θPartner ( )
θPartner(No extra sex ) =−0.443 (32%)

θPartner(Extra sex ) =0

+Predictor Financial Support p < 0.05 No financial support θFINANCIAL SUPPORT′ = 1 + θSupport( )
θSupport(No)= 0.512 (60%)

θSupport(Yes)= 0

+Predictor Number of Children Birth Kaplan Meier analysis Lower number of children birth θCHILDREN′ = 1 + θChildren × (children− 1) θChildren =−0.162 (84%)

Partners PrEP Baseline (Exponential) - - θλ 0.000166 (43%)

+Predictor Age p < 0.01 Younger age

IF age ≤34
θAge1 = −0.253 (65%)
θAge2 = 0.0579 (145%)

θAGE′ = 1 + θAge1 × (age− 34)
IF age >34

θAGE′ = 1 + θAge2 × (age− 34)

+Predictor Sex at birth Kaplan–Meier analysis Female θSEX′ = 1 + θSex( )
θSex(Male) = 0

θSex(Female) =0.742 (62%)

+Predictor Number of Children Kaplan–Meier analysis Lower number of children θCHILDREN′ = 1 + θChildren × (children− 3) θChildren =−0.0828 (82%)

+Predictor Partner’s Viral Load * p < 0.001 Partner’s viral load detectable - -

BTS Baseline (Exponential) - - θλ 0.0005 (23%)

+Predictor Sex at birth p < 0.01 Female θSEX′ = 1 + θSex( )
θSex(Male) = 0

θSex(Female) = 2.33 (52%)

+Predictor Drug Injection Frequency - Daily drug injection θDRUG FREQUENCY′ = 1 + θDrug Frequency ()
θDrug Frequency ( Weekly)= 0

θDrug Frequency ( Daily)= 2.22 (67%)

TDF2 Baseline (Exponential) - - θλ 0.0006 (20%)

No available predictor was found significant.

* Partner’s viral load covariate was not included in the final model due to missing information in more than 90% of the individuals of partner’s study. θPREDICTOR represents the predictor’s
model relationship, included in the model as covariate of the baseline hazard parameter (λ). RSE: relative standard error, e.g., for iPrEx study: λ = θλ × θRECEPTIVE′ × θAGE′ × θSYPHILIS′.
θPredictor() represents the parameter value for the categorical predictors, where ( ) can have one category or other. E.g., for sex at birth: θSex( ) will take the value of θSex(Male) or θSex(Female)
depending on the participant’s sex at birth. ↑ Risk: Increase risk.
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3.3. Low, Moderate, and High-Risk Profiles Inside Key Populations Based on the
Significant Predictors

An RS of 1.93 × 10−4 was associated with a probability of HIV infection of 1% (low
risk) and an RS of 9.86 × 10−4 was associated with a probability of 5% (high risk) at year 1
of follow-up. The distribution of individual RSs based on the predictors for each population
is shown in Figure 2A.
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Figure 2. Risk stratification representation. (A) Distribution of individual risk scores and (B) Observed
Kaplan–Meier rates stratified by low, medium, and high-risk group for each study population. Low,
medium, and high-risk groups were defined as individuals with a probability of infection over 1 year
of <1%, between 1 and 5%, and >5%. No risk stratification is shown for TDF2 study as no available
predictor was included in the model.

A subgroup of individuals at low risk (RS ≤ 1.93 × 10−4) were identified constituting
8% (MSM/TGW), 23% (young women at high risk) and 31% (HIV negative partners in HIV-
serodiscordant heterosexual couples) of their study population. Using this stratification,
the population of people who inject drugs in the BTS study did not include low-risk
individuals. High-risk individuals (RS ≥ 9.86 × 10−4) constituted 36% (MSM/TGW), 28%
(young women at high risk), 4% (HIV negative partners in HIV-serodiscordant heterosexual
couples) and 21% (people who inject drugs) of their study populations. These high-
risk subpopulations show differences across the study populations, with a cumulative
probability of acquiring HIV infection in 1 year of 6% (MSM/TGW), 11% (young women
at high risk), 7% (HIV negative partners in HIV-serodiscordant heterosexual couples) and
8% (BTS). Moderate risk individuals (1.93 × 10−4 < RS > 9.86 × 10−4) represented the
largest subgroup with individuals constituting 56% (MSM/TGW), 49% (young women at
high risk), 65% (HIV negative partners in HIV-serodiscordant heterosexual couples), and
79% (people who inject drugs) of their study populations. We did not find statistically
significant predictors of HIV infection in the TDF2 study, so the risk stratification was not
applied to that data. The risk stratification based on the individual predictors shows a
statistically significant difference in the risk of acquiring HIV infection within and across
populations (Figure 2B).

Table 3 shows the distribution of participant characteristics in each risk stratum
for each study population. Overall, individuals with high-risk characteristics are most
prevalent in the high-risk stratum, in contrast to those with low-risk characteristics (Supple-



Pharmaceutics 2022, 14, 1801 8 of 13

mentary Table S7). Interestingly, all the individuals in the high-risk stratum in the Partners
PrEP study are women.

Table 3. Distribution of identified risk factors among low, medium, and high-risk groups.

Study Participant Risk Factors
Number of

Participants with
Those Risk Factor

Proportion of Participants with Those Risk Factors in
Each Risk Strata

Low Moderate High

iPrEx

No use of condom when
receptive partner 734 7/734 (1%) 257/734 (35%) 470/734 (64%)

Age < 24 570 0/570 (0%) 238/570 (42%) 332/570 (58%)

Syphilis positive 178 9/178 (5%) 59/178 (33%) 110/178 (62%)

VOICE

Herpes2 positive 918 197/918 (21%) 316/918 (34%) 405/918 (45%)

Not being married 1582 67/1582 (4%) 957/1582 (61%) 558/1582 (35%)

Age < 24 894 50/894 (6%) 427/894 (48%) 417/894 (47%)

Primary sex partner has sex
with another partners 231 55/231 (24%) 58/231 (25%) 118/231 (51%)

No financial support 348 22/348 (6%) 112/348 (32%) 214/348 (62%)

No children 304 8/304 (3%) 136/304 (45%) 160/304 (53%)

Partners PrEP

Female 621 61/621 (10%) 501/621 (80%) 59/621 (10%)

Age < 34 755 51/755 (7%) 645/755 (85%) 59/755 (8%)

Less than 3 children 619 84/619 (14%) 478/619 (77%) 57/619 (9%)

Bangkok
Female 21 0/21 (0%) 0/21 (0%) 21/21 (100%)

Daily drug injection 17 0/21 (0%) 0/17 (0%) 21/17 (100%)

A comparison of each predictor effect on the HR for each population is shown in
Figure 3A. A detailed description of model predictors in each study is included in Sup-
plementary Material (Additional Results). The evaluation of the established models sup-
ports the adequacy of the parametric multivariate models and demonstrates good agree-
ment between observed and simulated HIV risk data for each of the identified predictors
(Figure 3B). The model evaluation plots support the following statements: (i) there are
different levels of HIV risk in each study population (e.g., married women show a lower
probability of HIV infection compared to unmarried women in the VOICE trial), and
(ii) there is a difference in the high-risk profiles between the study populations (e.g., red
profiles of Figure 3B for number of children predictors for VOICE vs. Partners PrEP studies).

3.4. Sex at Birth Effect: Females Appear to Be at Higher Risk of HIV Infection

In the trials that enrolled both men and women, women were at a higher risk of HIV
infection. Being female in the Partners PrEP Study increased the relative hazard ratio by
1.74 points, and being female in the BTS increased the relative hazard ratio by 3.33 points.
In TDF2, although no predictors were included in the final model, the Kaplan–Meier plot
of the raw data shows women at higher risk of HIV infection (Supplementary Figure S5).

3.5. Tool to Estimate Risk of HIV Infection

We developed an online interactive web application to simulate how the risk profiles
change for each study population depending on individual predictors. The web app is
hosted at http://saviclab.org/hiv-risk/. The tool allows users to compare the probability
of HIV infection over time for individuals within and between the key and to determi-
nate the level of risk (low, medium, and high) for each simulated profile. The definition
of low, medium, and high risk can be set in the tool by the user by selecting the risk
limits (probability of HIV infection) for low and high risk at a given time of follow up.

http://saviclab.org/hiv-risk/
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Supplementary Figure S6 provides a snapshot of the tool comparing the probability of HIV
between populations based on the individual predictors.
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Figure 3. Model predictors and evaluation. (A) Effect magnitude of each predictor on the relative
risk (hazard ratio) of HIV infection for each population. (B) VPCs by studies and by covariates as
a Kaplan–Meier plot of HIV probability. Lines represent raw data, and shaded areas cover the 95%
prediction interval calculated from 200 simulated studies. No predictor effect is represented for TDF2
study, as no available predictor was included in the model.

4. Discussion

We characterized the probability of HIV infection of five study populations by inte-
grating longitudinal data from the placebo arms of five pivotal PrEP RCTs. The parametric
models identified statistically significant predictors of HIV infection in four of the five
studies, allowing us to quantify the risk of HIV infection in high-risk individuals not
receiving PrEP. We found a substantial difference in the risk of HIV infection among and
within the trial populations, with each study population including a mix of low, moderate,
and high-risk individuals. Females at birth are associated with a higher risk of infection in
populations that included both sexes. Notably, this analysis constitutes the first comparison
of substantially different HIV risk levels across key populations.

We developed a parametric multivariate model for each study population due to
the heterogeneity of the risk factors across the studies. However, we initially attempted
to develop a single parametric multivariate model to quantify the probability of HIV
infection in the pooled placebo data from the five studies. This preliminary meta-analysis
that included the study populations and their common available covariates (i.e., age,
education, ethnicity, sex and high-risk population) identified age, sex and study population
as significant predictors of HIV infection (p < 0.001). This approach, however, ignored other
characteristics defined as high risk (e.g., prisoners) [22]. This analysis also failed to identify
the population-specific predictors (e.g., receptive partner condom use among MSM/TGW,
or drug injection frequency in people who inject drugs).

Female participants had a higher risk of infection in all studies that included women.
While the underlying mechanism for this finding cannot be revealed from this modeling
analysis, this result may be influenced by gender inequalities in the populations of women
included in this analysis. These gender inequalities could be due to unequal distribution of
HIV risk factors (e.g., difference in financial security, sexual behaviors, etc.), as well as the
different effect of these risk factors (e.g., male-to-female transmission, concomitant sexually
transmitted diseases, etc.) [23]. This finding is consistent with evidence that women account
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for more than half of the 36.9 million people living with HIV worldwide (African women
comprise the largest component), and that three of five new HIV infections among young
people (15–24 years) occur in females [24,25]. Unmarried women in the studies were at a
higher risk of HIV infection than married women in the VOICE and Partners PrEP studies.
Older age and having had more children lowered the risk of HIV infection by 7% per year
increase in age and by 16% per child born to women in the VOICE study and by 25% per
year increase in age to 34 years old and by 8% per child born to women in the Partners
PrEP study. There is an urgent need to focus HIV prevention on young women at high
sexual risk [26], especially in high HIV burden settings.

Our findings are consistent with previous studies that used risk assessment tools to
predict HIV infection risk [14,16,17,27–31]. Supplementary Materials (Additional Discus-
sion) includes a comparison of our findings with these studies. These risk assessment tools
are largely based on descriptive and semi-parametric Cox-proportional hazard analyses,
which are commonly used to quantify risk and identify predictors but cannot be used
to simulate HIV risk over time based on individual’s characteristics. Our analysis was
performed using parametric survival models in which the survival and hazard function are
characterized by a distribution expressed in terms of parameters that can be estimated. The
main advantages of the parametric survival models we used in this analysis are that, as
the underlying hazard over time is fully characterized and estimated, simulations of the
cumulative probability of HIV infection over time can be performed in different scenar-
ios, for different individuals, based on the combination of the predictors included in the
model (e.g., HIV risk for a 20-year-old man with a syphilis diagnosis, who has condomless
receptive anal sex with men while not on PrEP). In addition, we integrated the models in
a user-friendly interactive platform that overcomes the associated complexity of model
computation. This tool integrates the models for predicting the probability of remaining
HIV uninfected over time based on individual characteristics for the four study populations
for which significant predictors were identified. It can help identify the combination of
variables associated with the highest or lowest risk of infection compared to the median risk
profile for a determinant population. Additionally, the tool can be updated by integrating
information from ongoing and future PrEP RCTs to continue to refine and improve the
estimates [32]. The integration of new data could help to refine and validate the current
models, acquiring more precision in the parameters estimates, and it could help to identify
new predictors of HIV risk in those population where this analysis was unable to find them
(e.g., heterosexual men at high risk of infection, from TDF2 study). The tool serves as a
companion interactive app for the manuscript, and it could be used to stimulate conver-
sation about HIV prevention and as an informational tool for assisting on efficient future
triapl anning.

Our analysis had several limitations. The studies were conducted among specific
populations and geographic locations, and the results may not be generalizable to other
populations and sites. Unfortunately, this analysis was unable to find significant predictors
of HIV risk in the TDF2 study, which includes data from a population of heterosexual
men and women at high risk of infection. In addition, some participant characteristics
(e.g., partner viral load (Partners PrEP) or drug use (iPrEx)) that have been found to be
associated with HIV infection [14] were not included in our models because of missing
data. For example, among the 1574 Partner PrEP participants, only 85 had partner viral
load information available. All 49 participants whose partners had quantifiable viral
load acquired HIV during follow-up, and none of the 36 participants whose partners
had undetectable viral loads became infected. This is consistent with studies indicating
essentially no HIV transmission risk when viral load is below detection limits [33]. In
addition, the models were study-specific, so it was not possible to include the effect on HIV
risk of the combination of characteristics across all of the different study populations. Lastly,
the data used are slightly dated, with participants enrolled over ten years ago. Therefore,
future plans include the collection of contemporary data and key populations to validate
and refine this analysis.
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5. Conclusions

In conclusion, the parametric models we used allowed us to identify populations at
low, medium, and high risk of HIV infection. Our findings can be used to improve HIV
prevention trial recruitment by focusing on individuals at highest risk of HIV infection
with greater anticipated incidence. Furthermore, these models can be used to inform
risk without bias in a population receiving PrEP as prevention therapy by differentiating
between the protective effect of PrEP and the underlying HIV risk based on the identified
predictors [34]. Future plans include adding new placebo arms from new clinical trials to
the existing framework to promote knowledge integration and data sharing and to increase
the predictive power of the analysis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics14091801/s1, References [35–38] are cited in the sup-
plementary materials. Supplementary Material. Additional Methods. Model building and evaluation;
Supplementary Table S1 (a–e). Population characteristics and risk factors by studies; Supplementary
Material. Preliminary analysis. Figure S1. Kaplan–Meier plots for HIV-free % for iPrEx’ population
characteristics; Table S2. Univariate cox-regression analyses for iPrEx study; Figure S2. Kaplan–Meier
plots for HIV-free % for VOICE’ population characteristics; Table S3. Univariate cox-regression
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