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Introduction. Acute kidney injury (AKI) pathogenesis is complex. Findings of gentamicin nephrotoxicity are seen in 30% of
the AKI patients. Vitamin D has proven to be effective on renin expression, inflammatory response, oxidative stress, apoptosis,
and atherosclerosis. We aimed to investigate the effect of vitamin D in an experimental rat model of gentamicin-induced AKI.
Methods. Thirty nonuremic Wistar albino rats were divided into 3 groups: Control group, 1mL saline intramuscular (im) daily;
Genta group, gentamicin 100mg/kg/day (im); Genta + vitamin D, gentamicin 100mg/kg/day (im) in addition to 1𝛼, 25 (OH)
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0.4mcg/kg/day subcutaneously for 8 days. Blood pressures and 24-hour urine were measured. Blood urea and creatinine levels and
urine tubular injury markers were measured. Renal histology was semiquantitatively assessed. Results. Urea, creatinine and urine
neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1 were all increased in Genta group indicating AKI model.
Systolic blood pressure decreased, but urine volume and glutathione increased in Genta +Vit D group compared to Control group.
Histological scores indicating tubular injury increased in Genta and Genta +Vit D groups. Conclusions. Vitamin D does not seem
to be effective on histological findings although it has some beneficial effects via RAS system and a promising effect on antioxidant
system.

1. Introduction

Acute kidney injury (AKI) pathogenesis is complex, and
promoting events may be completely different (ischemia
or toxins are major factors that precipitate in the injury),
but similar pathways may be involved in subsequent injury
responses. For this, reason to study AKI models, various
methods were defined for each specific situation.

Gentamicin derived from gram-positive bacteria called
Micromonospora purpurea present in soil and water hav-
ing potential in treating aerobic gram-negative bacteria.
Accumulation of gentamicin in proximal renal tubules may
cause nephrotoxicity which leads to brush border network

damage [1]. The nephrotoxicity involves renal free radical
production and accumulation, consumption of antioxidant
defensemechanisms, glomerular congestion, and acute tubu-
lar necrosis [2–5], leading to diminished creatinine clearance
and renal dysfunction. The pathological mechanisms also
involve elevation of endothelin-1, upregulation of trans-
forming growth factor-beta (TGF-𝛽), significant increase in
monocyte/macrophage infiltration into the renal cortex and
medulla, augmentation of oxidative stress, and apoptosis and
also necrosis [6–9].

Vitamin D is a pleiotropic hormone that affects classical
and nonclassical tissues. Its primary sites of action are still
considered to be the intestine, bone, and kidneys [10]. A
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number of studies have shown positive therapeutic efficacy of
vitaminDand analogs to reduce proteinuria [11–13]. Recently,
a large randomized placebo-controlled clinical trial (the
VITAL Study, 𝑛 = 281) confirmed that paricalcitol was able
to reduce albuminuria and blood pressure in patients with
diabetic nephropathy who were already on renin-angiotensin
system inhibitor therapy [14]. Together, these clinical data
provide a strong case to argue for the use of vitaminD analogs
as a complementary therapy for treatment of proteinuria.
Given the importance of podocytes in the regulation of
glomerular filtration, it is speculated that podocytes are
important antiproteinuric targets of vitamin D [15] although
tubular effect of vitamin D is still debate.

Inflammation and reactive oxygen substances play an
important role on acute kidney injury pathophysiology.
VitaminD has already known antiinflammatory and immun-
omodulatory effects. In the present study, the aim was to
investigate whether vitamin D might be a useful therapeutic
agent for gentamicin-induced AKI model in rats. Up to now
vitamin D related protection mechanisms on AKI remain to
be fully proven. Given the complexity of the disease and the
pleiotropic nature of the agent activity, the protective effect
would be expected and be of a multifactorial nature.

2. Methods

2.1. Study Protocol. Thirty nonuremic Wistar albino male
rats (𝑛 = 30; weight 180–220 g) were divided into three
equal groups. They were housed in polycarbonate cages
under 24∘C room temperature with a 12-hour light/dark
cycle and fed a standard laboratory diet. The Animal Ethics
Committee of Ege University Hospital approved the study
design. The three groups of rats consisted of the following:
Control group, 1mL saline intramuscular (im) daily; Genta
group, gentamicin 100mg/kg/day (im); Genta + vitamin D,
gentamicin 100mg/kg/day (im) in addition to 1𝛼, 25 (OH)
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0.4mcg/kg/day subcutaneously for 8 days.
Systolic blood pressure was measured in conscious

rats by the indirect tail cuff method, using an electros-
phygmomanometer and pneumatic pulse transducer (MAY
NIBP200-A, Ankara, Turkey), and 24-hour urine was col-
lected in metabolic cages. After 1 hour, ketamine HCL anes-
thesia (60mL/kg body weight) was applied, and immediately,
blood sampleswere collected through direct cardiac puncture
in sacrificed rats. Semiquantitative assessment of kidneys was
carried out by the same pathologist who was unaware of the
groups.

2.2. Functional Parameters. Serum urea and creatinine
levels and urine gamma glutamine transferase (GGT)
activity were determined using commercial available kits
spectrophotometrically (Biolabo Reagents, Maizy France).
Urine (Lipocalin-2)-Neutrophil gelatinase-associated lipo-
calin (NGAL) (Boster Biological Technology Co, Ltd.), and
kidney injury molecule-1 (KIM-1) (Adipo Bioscience, Inco,
USA) levels were measured with ELISA kits. Urine glu-
tathione (GSH) levels were determined by a commercially

available kit (Cayman Chemical Company, Ann Arbor, MI,
USA).

2.3. Structural Parameters. Four percent formalin was used
for fixation of kidney samples which were embedded into
paraffin wax. Paraffin blocks were divided into sections
5 𝜇m in thickness, and hematoxylin-eosin andMasson’s were
trichrome used for staining. All samples were examined by
the same pathologist who was unaware of which samples
originated fromwhich group. Tubular degeneration, necrosis,
tubule interstitial nephritis, and total histological scores were
evaluated semiquantitatively from 0 to 3.

Tubular degeneration (TD): in the cytoplasm of the
proximal tubule epithelial cells, stained bodies of various sizes
and vacuolization containing acidophilus were considered as
TD.

Scoring:
Absence of TD; 0
Mild TD: small and a few focus TD in immediately
beneath the capsule (0%–10); 1
Moderate TD: for a few focal focus TD and along the
tubular segment (10%–25); 2
Severe TD: diffuse and significant TD along the
tubular segment (% 25–50); 3
Very severe TD: TD was greater than 50%; 4

Tubular necrosis (TN): defined as loss of epithelial cells
of the nucleus, dark acidophilic cytoplasm, loss of tubular
epithelial cells into tubular lumen, and acellular sections of
tubules.

Scoring:
Absence of TN; 0
Mild TN: small and a few focus TN in immediately
beneath the capsule (0%–10); 1
Moderate TN: for a few focal focus TN and along the
tubular segment (10%–25); 2
Severe TD: diffuse and significant TN along the
tubular segment (% 25–50); 3
Very severe TN: TN was greater than 50%; 4

Tubulointerstitial inflammation (TIN): defined as infil-
tration of inflammatory cells in perivascular and interstitial
areas.

Scoring:
Absence of TIN; 0
Mild TIN: a few pieces of infiltration concentrated on
perivascular area (0–5%); 1
Moderate TIN: usually infiltrations involved in corti-
cal interstitial and many focal areas (5–10%); 2
Severe TIN: diffuse and significant infiltration areas
(15–25%); 3
Very severe TIN: TIN was greater than 50%; 4
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Figure 1: Blood pressures.
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Figure 2: Urine Volumes.

Total histologic score (THS): TD/2 + TN + TIN/2,
respectively.

Normal THS: 0–2
Mild THS: 2–5
Moderate THS: 5–8
Severe TH: >8

2.4. Statistical Analysis. Study results are presented as mean
± standard error of the mean (SEM). Nonparametric tests
(Kruskal Wallis, Man-Whitney 𝑈 test) were performed as
statistical evaluation, and 𝑃 < 0.05 was considered as
significant.

3. Results

Systolic blood pressure in Control group was 120 ± 6 and
decreased to 112 ± 13mmHg (Figure 1), and urine volume
increased in Genta + Vit D group (3.4 ± 0.5 cc) compared to
Control group (3 ± 0.5 cc) (𝑃 < 0.05) (Figure 2). In Control
group, urea and creatinine levels were 91 ± 6 and 0.74 ± 0.03
and increased to 137 ± 6mg/dL and 1.1 ± 0.1mg/dL in Genta
group, also 149 ± 5mg/dL and 1.6 ± 0.3mg/dL in Genta +
Vit D, indicating acute kidney injury (Figure 3). Neutrophil
gelatinase-associated lipocalin (NGAL) was 49.5 ± 7 signif-
icantly and increased to 390 ± 143 ng/mL in Genta group
and decreased to 247 ± 112 ng/mL in Genta + Vit D group.
Glutathione and gamma glutamine transferase were 0.4 ±
0.13 and 1.3 ± 0.35 and increased to 0.6 ± 0.1 nmol/mL and
59±19U/L in Genta + Vit D group (Figure 4). Kidney injury

Table 1: Clinical and laboratory findings.

Control, 𝑛 = 10 Genta, 𝑛 = 10 Genta + Vit D,
𝑛 = 10

SBP (mmHg) 120 ± 6 125 ± 10 112 ± 13a
DBP (mmHg) 68 ± 4 75 ± 7 74 ± 8
Urine volume (cc) 3 ± 0.5 2.4 ± 0.4 3.4 ± 0.5a
Urea (mg/dL) 91 ± 6 137 ± 6a 149 ± 5a
Creatinine (mg/dL) 0.74 ± 0.03 1.1 ± 0.1a 1.6 ± 0.3a
NGAL (ng/mL) 49.5 ± 7 390 ± 143a 247 ± 112
GSH (nmol/mL) 0.4 ± 0.13 0.3 ± 0.04 0.6 ± 0.1a
GGT (U/L) 1.3 ± 0.35 38 ± 37 59 ± 19a
KIM-1 (ng/mL) 0.64 ± 0.05 4.7 ± 0.6a 6 ± 0.5a
TD 0.9 ± 0.1 2 ± 0a 2.3 ± 0.2a
TN 0 1.3 ± 0.2a 1.2 ± 0.2a
TIN 0.4 ± 0.2 1.4 ± 0.2a 2 ± 0.1ab
THS 0.75 ± 0.15 3.4 ± 0.4a 6.3 ± 0.7ab

SBP: systolic blood pressure; DBP: diastolic blood pressure; NGAL: neu-
trophil gelatinase-associated lipocalin;GSH: glutathione; KIM: kidney injury
molecule; TD: tubular degeneration; TN: tubular necrosis; TIN: tubuloin-
terstitial nephritis; THS: total histological score; 𝑃 < 0.05, aGroup versus
Control, bGroup versus Genta.

molecule 1 (KIM-1) level was 0.64 ± 0.05 in Control group
and increased significantly in both Genta and Genta + Vit D
groups (4.7 ± 0.6 and 6 ± 0.5 ng/mL) (Table 1).

Histological scores of tubular degeneration (TD), tubular
necrosis (TN), tubulointerstitial nephritis (TIN), and total
histological score (THS) all increased significantly in Genta
and Genta + Vit D groups compared to Control group
(Figures 5 and 6). TIN and THS scores also significantly were
higher in Genta + Vit D group compared to Genta group
(Table 1).

4. Discussion

Gentamicin is a positively charged chemical that strongly
binds to the acidic phosphoinositide components of the brush
border membrane which is a negatively charged portion of
the proximal tubule, and they mainly act on the cationic
drug receptor, megalin, located deeply at the base of the
brush border villi. The receptor-drug complex thus formed is
rapidly internalized by a pinocytosis process and checked up
by lysosomes, where lysosomal phospholipidosis occurs that
disrupts a number of renal intracellular processes [16, 17].

Renin angiotensin system (RAS) in the kidney is a
mandatory mediator of renal injury. Vitamin D hormone
has a negative regulatory effect on RAS by suppressing renin
expression [18, 19]. It is shown that vitaminD receptor-absent
mutantmice developmore severe renal damage (e.g., intersti-
tial fibrosis, increased albuminuria, and glomerulosclerosis)
than wild-type counterparts in diabetic state [20] or under
postrenal acute kidney injury [21], because of enhanced
activation of the RAS in the kidney. In 5/6 nephrectomised
rats given paricalcitol treatment attenuated tubulointerstitial
and glomerular injury and decreased blood pressure and
albuminuria by inhibiting the activation of the locally pro-
duced RAS in the remnant kidneys [22]. Doxercalciferol had
an effect on modulating fat-induced renal injury by targeting
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Figure 3: Renal function tests.
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Figure 4: Urine neutrophil gelatinase-associated lipocalin and glutathione levels.
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Figure 5: Renal histology. Pathological examination performed by
semiquantitatively scored from 0 to 3.

the RAS and lipid metabolism [23]. Other studies proved
that combination therapy with one RAS inhibitor (ACE
inhibitor or ARB) and one vitamin D analog (paricalcitol or
doxercalciferol) leads to additive or synergistic therapeutic
effects in blocking renal injury in experimental rat models
of type 1 and type 2 diabetes mellitus [24–27]. The renal
protection of the combination therapy is the inhibition of the
compensatory renin induction usually encountered in the
use of both RAS inhibitors and the vitamin D analogues.
Renin induction inhibition and accumulation of angiotensin
II within the kidney leads to excellent therapeutic results

[28]. The combination strategy in these studies explains why
vitamin D analogs are still effective in reducing albuminuria
in CKD patients who are already receiving RAS inhibitors
[29, 30]. In present study, we found that SBP is decreased in
Genta + vitamin D group compared to Control group. This
indicates that the RAS blocking effect of vitamin D was still
strong enough even in the presence of acute kidney injury.
Increased urine volume in this group also may be attributed
to RAS blocking effect of vitamin D therapy.

Functionally, gentamicin-related nephrotoxicity is char-
acterized by a decrease in glomerular filtration rate and high
levels of serum creatinine and blood urea, indicating renal
dysfunction [31–37]. In the present study, Genta-induced
experimental AKImodel is formed and proven by an increase
of these renal function tests appropriately. Unfortunately,
they were still higher in Genta + vitamin D group than in
Control group.

In the literature, there are increasing multifactorial
mechanisms suggested as the leading cause of gentamicin
nephrotoxicity. Lysosomal apoptosis and phospholipidosis
have been suggested to play a pivotal role in gentamicin-
induced nephrotoxicity [38–40]. In the past, gentamicin was
shown to increase reactive oxygen species (ROS) like super-
oxide anions, hydroxyl radicals and hydrogen peroxides, and
reactive nitrogen species generation in the renal cortex that
eventually lead to renal structural and functional deteriora-
tion [41–44]. Further, it is linked with marked increases in
lipid peroxidation levels [45], nitrotyrosine formation [46]
and protein oxidation [47]. In our study, we demonstrated
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Figure 6: Renal pathology.

that in Genta group although it did not reach statistical
significance a little GSH decrease occurred. On the other
hand, Genta + Vit D group had a statistically significant GSH
increase. In the literature, gentamicin has been also shown
to cause changes in the composition of lipid membranes
executed by free radicals mediated lipid peroxidation [48].
Furthermore, gentamicin-administered rat kidneys are more
susceptible to ROS damage because of the induction of
deficiency in antioxidant defense enzymes like superoxide
dismutase and catalase [49, 50]. Here in our study, vitamin
D might have some beneficial effect on gentamicin-induced
AKI by increasing GSH levels and acting as an antioxidant
mechanism, and also NGAL levels were not increased unlike
to Genta group.

Structurally, gentamicin-related nephrotoxicity is associ-
ated with the edema of proximal tubular cells, glomerular
hypertrophy, perivascular edema, inflammation, glomeru-
lar congestion, cellular desquamation, glomerular atrophy,
tubular necrosis, and tubular fibrosis [40, 51–57]. Gentam-
icin causes macrophage infiltration and higher transforming
growth factor-𝛽 which may lead to progression of TIN
[40]. In the present study, TIN scores were significantly
higher in Genta group, but surprisingly in Genta + Vit
D group, histological scores were even higher than Genta
group. Tubular histological parameters all were increased in
Genta group indicating experimental AKI model occurred
but unfortunately all these parameters were not decreased in
Genta + Vit D group.

Acut kidney injury as a result of gentamicin-induced
tubular necrosis stimulates inflammatory events by recruiting
intercellular adhesion molecule-1 and monocyte chemo-
attractant protein-1 at the site of injury that enhance the
migration of monocytes andmacrophages to the site of tissue
damage, ultimately leading to renal pathogenesis [58, 59]. In
present study we demonstrated that GGT levels in Genta +
Vit D group and KIM-1 levels in both Genta and Genta + Vit
D groupswere increased indicating that renal tubular damage
occurred in Genta groups and also even using Vit D did not
prevent progression of injury.

5. Conclusion

In the past, vitamin D was shown as an effective drug on
podocytes preventing proteinuria, regulate bone remodel-
ing, regulate cell cycles, and the renin-angiotensin system
[60]. The present study indicates that the progression of

gentamicin-induced AKI was not stopped by vitamin D
treatment shown by histological findings although it probably
has some beneficial effects on the RAS system via blood
pressure lowering and increase of urine volume and a
promising effect on antioxidant system. As a result given the
various overlapping pathways involved in AKI pathogenesis,
intended therapies may need to use vitamin D in addition to
other therapeutical approaches to target diverse pathways in
order to achieve success.
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[34] J. Pedraza-Chaverŕı, P. D. Maldonado, D. Barrera, A. Cerón,
O. N. Medina-Campos, and R. Hernández-Pando, “Protective
effect of diallyl sulfide on oxidative stress and nephrotoxicity
induced by gentamicin in rats,”Molecular andCellular Biochem-
istry, vol. 254, no. 1-2, pp. 125–130, 2003.

[35] P. Balakumar, A. Rohilla, and A. Thangathirupathi,
“Gentamicin-induced nephrotoxicity: do we have a promising
therapeutic approach to blunt it?” Pharmacological Research,
vol. 62, no. 3, pp. 179–186, 2010.

[36] C. Silan, O. Uzun, N. U. Çomunoǧlu, S. Gokçen, S. Bedirhan,
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