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Abstract: Temperature, memory effect, and cross-contamination are suspected to contribute to drift
in electronic tongue (e-tongue) sensors, therefore drift corrections are required. This paper aimed
to assess the disturbing effects on the sensor signals during measurement with an Alpha Astree
e-tongue and to develop drift correction techniques. Apple juice samples were measured at different
temperatures. pH change of apple juice samples was measured to assess cross-contamination.
Different sequential orders of model solutions and apple juice samples were applied to evaluate the
memory effect. Model solutions corresponding to basic tastes and commercial apple juice samples
were measured for six consecutive weeks to model drift of the sensor signals. Result showed that
temperature, cross-contamination, and memory effect influenced the sensor signals. Three drift
correction methods: additive drift correction based on all samples, additive drift correction based
on reference samples, and multi sensor linear correction, were developed and compared to the
component correction in literature through linear discriminant analysis (LDA). LDA analysis showed
all the four methods were effective in reducing sensor drift in long-term measurements but the
additive correction relative to the whole sample set gave the best results. The results could be explored
for long-term measurements with the e-tongue.

Keywords: drift correction; CHEMFET sensors; chemometrics; electrochemical; fingerprinting

1. Introduction

Generally, the human taste sensing system cannot be replaced by instruments. However, this
sensory evaluation has many drawbacks like subjectivity and fatigue of the panel members and there
are tasks where the human sensory evaluation is impossible for reasons ranging from safety to accuracy.
Reasons such as these has led to a rising interest in instrumental alternatives with better advantages.
The electronic tongue (e-tongue) and taste sensors were developed to satisfy such requirements. The
principle and concept of these instruments are to measure samples with artificial sensors having
cross-sensitivity and partial selectivity characteristics similar to the human tongue. The sensors are
able to measure complex substances dissolved in liquids. The outcome of using such an instrument is
a chemical pattern with characteristics for any sample. This is the so called “fingerprint” technology
and is the main operating principle of artificial taste sensing devices.
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E-tongue systems are typically made up of an autosampler, a sensor array, a signal acquisition
device, and software for data processing [1,2], but the creation of this system generally requires
expertise from different disciplines, e.g., sensory science, artificial intelligence, chemometric analysis [3].
Many types of chemical sensor array implementations have become widespread in e-tongue researches
and practice. According to this, the literature distinguishes the electrochemical—potentiometric [4,5],
voltammetric [6,7], amperometric [8], impedimetric [9], conductometric [10]—optical (florescence,
absorbance, reflectance) [11], mass and biosensors [12] as the most common sensor types. In taste sensing
measurements, the potentiometric e-tongue (“taste sensors”) are the most utilized but disadvantages
such as strong temperature dependence and temporary or permanent solute sorption in sensor
membranes can affect its sensitivity. However, and among the many advantages of the potentiometric
measurement method used in the electronic tongue, it can be highlighted that its functional mechanism
is the closest to the human component recognition process [13].

The investigations with potentiometric e-tongues are based on voltage measurement. There is no
electric current between the sensors, thus, electrochemical reactions induced by the measurement do
not proceed. Typically, Ag/AgCl electrodes are used as a reference point against the potentiometric
working electrodes. The sensitivity of sensors is generally determined by the surface coat, which
usually applies various lipid components embedded in the polymer membrane [12]. Contacts with
the examined solution are formed depending on the selectivity of the membranes. Hence, the surface
potentials develop and change accordingly, and this is detected by the device. Given that the obtained
e-tongue data (sensor signals) are multicomponent, subsequent analyzes require the use of multivariate
chemometric methods as tools for pattern recognition.

The first step in electronic tongue data analysis is visual inspection, which is used to determine
what kind of pretreatment is required. Preprocessing is mainly performed in order to improve the
signal-to-noise ratio, and to eliminate unnecessary data that can impair visualization.

From literature, there are publications dealing with instrumental taste sensing from the nineties.
The number of the articles related to this topic increased continuously in the last three decades but
there are only few publications that show the results of measurement comparisons performed in
different times. This may be due to the issues of sensor instability associated with the electronic
tongue instruments [14]. The instability of the chemical sensors is often referred to as sensor drift. It
was also defined by Holmberg and Artursson [15] as follows: “a gradual change in any quantitative
characteristic that is supposed to remain constant” but in general terms, it can refer to the inaccurate
signal measurements of sensor-based instruments, mainly as a result of sensor deteriotion due to the
evolution of the materials used in sensor development.

Drift is a major undesirable characteristic of sensor-based equipment, which could occur because
of various known and unknown factors. Changes in the environmental conditions of the experiment,
especially in temperature or unsatisfactory sensor cleaning, and even high variation in sample quality
or concentration, are among the most known effects contributing to sensor drift. The response of the
sensor depends on what it has recently been exposed to, because remnants of previous samples may
be still present on the sensor surface [15]. For such reasons, measuring samples with highly different
chemical composition and/or concentration may increase the probability of drift in the dataset; this
phenomenon is often referred to as the memory effect. The transfer of a portion of the liquid sample on
a macro scale due to unsatisfactory sensor cleaning is also a known contributor to changes in sensor
signal, which is often called cross-contamination. Another consequence of the cross-contamination
would be having some noise that has less to do with the multicomponent response and more to do with
the interaction between contaminants and sensors through a series of adsorption/desorption reactions
leading to limited performances [16]. These phenomena could be observed for all the different sensors
of the e-tongue and could engender the inhibition of electrochemical reactions of interest, hence a loss
of the electrodes activity [17]. From a technical and industrial perspective, drift problems hinder the
long-term operation of all kinds of sensors [18–20]. The problem of drift associated stability is an even
more important issue for the ion-selective field-effect transistor (ISFET) sensor-based electronic tongues.
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These instruments have high sensitivity, but are often associated with several disturbances [21]. Some
studies have tried to deal with the issue of drifts in e-tongues, but this was not optimized and was
not detailed.

According to most scientists in this field, e-tongues can be a useful instrument for quality
monitoring and evaluation of various samples, but for this purpose, it is necessary to overcome the
problem of the sensor drift [22]. Primarily, there are two major ways to decrease the drift: using
mathematical corrections or improving the measurement system [23].

In improving the measurement system, practically controlling the temperature and using
appropriate cleaning methods for the sensors have been recommended to decrease drift [24]. Regular
polishing and calibration of voltammetric e-tongues with sandpaper and rinsing with distilled water
have also been considered. These approaches however, lacked the time-efficiency needed for industrial
applications and demand rigorous maintenance for long-term stability [25], but most importantly, they
cannot be used in potentiometric sensors made up of highly sensitive membrane coating.

In addressing some of the occurring inaccuracies of such multidimensional data, several approaches
have been adopted, but empirical mathematical logarithms have so far provided better outcomes [11].
Fundamental studies conducted by Davide et al. [26] aimed at elucidating the effect of gas sensor
drifts from a mathematical stand point. Although their findings were effective, the approach fell
short when dealing with dynamic variables such as concentration gradients. Contrarily, additive and
multiplicative drift effects of MOSFET (metal oxide semiconductor field-effect transistor) and MOS
(metal oxide semiconductor) gas sensors were successfully corrected using reference gas samples [27]
and could also be useful in reducing e-tongue drift, but there are currently limited reports about
their efficiency for long-term experiments (experiments exceeding 1–3 weeks of measurement). In an
attempt to remove the gradual drift in the response of gas sensors and to avoid constant recalibrations,
Artursson et al. [28] introduced a method known as the component correction (CC), inspired by
orthogonal signal correction (OSC) from Wold et al. [29].

The proposed CC method helped in reducing the drift but its effectiveness was affected by
occurring non-linearities as the tendency of the drift in the reference sample must be similar to that of
the tested samples. Two data sets containing linear drift in multivariate spaces obtained by an e-tongue
were nonetheless corrected by Holmin et al. [30] using the CC and additive correction method. The
study, however, did not cover datasets measured in different days or weeks.

The most difficult expectation of e-tongue is a successful multi day comparison test. Thus, one
of the most important goals for many real-life applications is to develop methods to achieve sensor
signals stability even in long term. It is therefore necessary to explore and develop new and optimized
drift correction methods for e-tongue applications.

Our research group has been working with an Alpha Astree (major manufacturers of electronic
tongues) liquid and taste analyzer (usually referred as electronic tongue) on a wide range of applications,
and we had several attempts and the opportunity to develop various stabilized drift correction
techniques to improve the long-term stability of e-tongue measurements.

The aim of this paper was mainly to improve the reliability of the Alpha Astree e-tongue for
long-term measurements by performing experiments to define the magnitudes of effect for temperature
change between measurements, to prove that cross contamination can be a major factor in the observed
signal changes beside other interfering factors, to confirm that the measuring order of the samples
matters during measurements, and finally, to develop mathematical drift correction methods to
eliminate or reduce the impact of drift on e-tongue results.

2. Materials and Methods

This paper focuses on three practically important major causes of drift: temperature change,
cross contamination, and memory effect using apple juice and model solutions. The measurements
were performed with the recent best measurement system and practices to decrease drift. Practical
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mathematical corrections were introduced and tested on datasets from the electronic tongue as
described herein.

2.1. Instrumentation

An Alpha Astree liquid and taste analyzer (AplhaM.O.S., Toulouse, France), from now on referred
as electronic tongue (e-tongue), was used in this study. The instrument was equipped with a 16-position
autosampler and a sensor head consisting of a sensor array of seven ion selective field effect transistor
(IFSET) based on potentiometric chemical sensors (ZZ, BA, BB, CA, GA, HA, JB) specialized for food
applications and an Ag/AgCl reference electrode (Metrohm) and a stirrer. Each sensor is sensitive to
chemical components in a dissolved liquid sample. This e-tongue operates on the principle that, the
potential of the reference electrode remains constant so any measurable potential difference is related
to the voltage change on the sensor membranes, representing the components present in the liquid
sample [31]. The sensors are cross-selective and cross-sensitive to different chemical compounds. In
such multisensory analyzes, each sample is characterized by the so-called fingerprint analysis method.

The instrument was setup according to the manufacturer’s instructions [31] before starting each
measurement. This included a pre-conditioning with 0.01 M hydrochloric acid solution and the
following two steps: a conditioning and a calibration step using the mixture of samples to be measured
in equal portions. The aims of this preparation process were to condition the sensors to the analyzed
samples and to reduce the possibility of the sensor signals being out of the measurement range during
the experiment. The e-tongue was controlled by the software AlphaSoft, soft.ver. 12.3. 2.1.

2.2. Effect of Temperature Change on the Sensor Signals

Experiments were performed with apple juice samples at different sample temperatures of 5, 15,
25, and 35 ◦C. The apple juice samples were commercial products of 100% fruit juice content and were
diluted with distilled water to obtain five different concentrations of 80, 85, 90, 95, and 100% (v/v).

A special thermostat vessel was designed and constructed to precisely determine the temperature
dependence of the sensor signals of the e-tongue. The thermostat vessel was connected to an external
water bath, providing the opportunity to keep the desired temperature of the samples constant
during the experiment with a precision of ±0.2 ◦C using constant water circulation. Each sample
was characterized by three replicates at each temperature level. The experiment was started with the
acquisition of the cooled down samples at 5 ◦C and an additional blank sample was placed in the
sequence to provide enough time for the samples to warm up to the next desire temperature and at
the same time to prevent the sensor signals from being reconditioned. Therefore, the blank sample
consisted of the mixture of samples to be measured in equal portions.

The apple juice samples measured at the different temperatures and different concentrations were
placed in the autosampler according to increasing temperature, beginning with the sample of 5, 15,
25, and 35 ◦C in an increasing concentration level (80, 85, 90, 95, and 100%). Distilled water was
placed between each sample in the autosampler as a cleaning solution for the sensors. The samples
in the autosampler were in the following order: sample at 5 ◦C of 90 v/v%, then sample at 15 ◦C of
90 v/v%, sample at 25 ◦C of 80 v/v%, sample at 25 ◦C of 85 v/v%, sample at 25 ◦C of 90 v/v%, then
sample at 25 ◦C of 95 v/v%, followed by the sample at 25 ◦C of 100 v/v%, and the sample at 35 ◦C of
90 v/v%. The temperature of the distilled water samples used as cleaning was also set to the desired
temperature level.

2.3. Effect of Cross-Contamination

Each time, when the sensor head consisting of the seven sensors, reference electrode, and the
stirrer moves from one sample holder to another, a certain amount of liquid is transferred from the
previous sample to the next one through the surfaces of the above-mentioned elements. This amount
of transferred liquid can alter the composition of the sample and influence the sensor signals. The
e-tongue is suitable for measuring very small concentrations; thus, this cross contamination can also
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contribute to changed sensor signals during the measurement. As a counter measure, the manufacturer
of the instrument recommends using distilled water in the sequence to clean the sensor head before
each sample measurement. The cleaning parameters (speed, time, number of cleaning samples, and
stirring rate of the stirrer) can also be chosen before the experiment and can be used as a means to
optimize the cleaning of the sensor head, but the cleaning samples can still cause cross contamination
due to sample adsorption on the surfaces of the element of the sensor head.

Although this confounding phenomenon ultimately affects the sensor signals, its direct impact
cannot be singled out with monitoring of sensor signals alone because of other interfering parameters
such as temperature etc., therefore, independent tools are needed. In this study, pH and the electrical
conductance of the samples and their cleaning fluids were used to monitor this effect.

Commercial 100% apple juice samples and distilled water as cleaning fluid were used to test cross
contamination. During the electronic tongue measurement, the pH of the apple juice samples and their
cleaning fluids were measured before the 1st, 3rd, 5th, 7th, and 9th immersion of the sensor head in the
respective beaker using the S40 SevenMulti™ pH meter. They were measured three times each and
their averages were statistically analyzed.

2.4. Analysis of the Memory Effect

The sensors inherently have complex hysteresis (meaning on hysteresis the dependence of the state
of a system on its history) type behavior which is not fully understood. The signal of the sensor changes
over time, following an equilibrium after dipping into a given sample. In the fingerprinting approach,
the sensor signal at the stage where the sensor is likely saturated with the target components of the
liquid sample and reaches a stable level is used for the data evaluation. Hypothetically, this process
can be disturbed by the memory effect caused by the previously measured samples by interfering with
the sensitivity of the sensors. The memory effect is likely caused by components remaining chemically
connected on the sensor membranes even after the cleaning process and can influence the equilibrated
signals at the end of acquisition time [15]. Our hypothesis is that, this effect can cause significantly
distinct changes during the repetition of the sample measurements, which can be considered as poor
stabilization of the sensors. The memory effect can affect the discrimination of different samples by
decreasing the difference of the signals between samples. This decreases the sensitivity of the system
for the targeted samples. To avoid memory effect, the most obvious approach would be to completely
clean the sensor, but it would need impractically a long time to reach the saturation, which is why the
sensors need to be preconditioned in a sample close to the analyzed ones i.e., a mixture of the samples
to be analyzed. In addition, lengthy periods of cleaning can enhance sensor deterioration.

It is assumed that model solutions, which are often applied as reference samples in drift correction
methods, can alter the measurement of the target samples, therefore, the memory effect on the e-tongue
sensor signals was analyzed using three different model solutions and apple juice samples. Citric
acid, sodium chloride (NaCl), and mono sodium glutamate (MSG) solutions in 0.01 M concentration,
corresponding to basic tastes, and 100% apple juice sample as a commercial product was used. The
following experimental designs were applied to study the possible memory effect: In one arrangement,
the samples were placed in the auto-sampler and analyzed in the following order (order a): citric acid,
NaCl, MSG, and apple juice; in another arrangement, the reverse order (order b): citric acid, apple
juice, MSG, NaCl; and finally (order c): citric acid, NaCl, MSG, apple juice sample order was applied.
Between each dipping into the sample (measurement), the head was cleaned in distilled water. For
both arrangements, nine complete measurement series of the samples were performed.

2.5. Experimental Setup and Development of New Drift Correction Methods

Experimental series with 100% commercial apple juice and 0.01 M concentration of citric acid,
NaCl and MSG model solutions were executed from week 0 to week 5 to study the effect of drift on
sensor signals of e-tongue and to determine the classification effectiveness of apple juice with drift
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corrections using these model solutions as reference points. The experiment of the apple juice and
model solutions were performed once per week under controlled conditions as shown in Table 1.

Table 1. Sample preparation and experimental conditions for drift correction measurements.

Week Experimental Samples Experimental Conditions
Temperature Cleaning Solution

0 10 times dilution of 100% fresh apple juice and
model solutions: Citric acid, MSG and NaCl

25 ◦C ± 0.2 ◦C
(controlled)

Replaced between each
sample repeat

1 10 times dilution of 100% fresh apple juice and
model solutions: Citric acid, MSG and NaCl

25 ◦C ± 0.2 ◦C
(controlled)

Replaced between each
sample repeat

2 10 times dilution of 100% fresh apple juice and
model solutions: Citric acid, MSG and NaCl

25 ◦C ± 0.2 ◦C
(controlled)

Replaced between each
sample repeat

3 10 times dilution of 100% fresh apple juice and
model solutions: Citric acid, MSG and NaCl

25 ◦C ± 0.2 ◦C
(controlled)

Replaced between each
sample repeat

4 10 times dilution of 100% fresh apple juice and
model solutions: Citric acid, MSG and NaCl

25 ◦C ± 0.2 ◦C
(controlled) No replacement

5 10 times dilution of 100% fresh apple juice and
model solutions: Citric acid, MSG and NaCl 23 ◦C (uncontrolled) No replacement

Experimental conditions of temperature and cleaning solution were chosen and used throughout
the six weeks experiment study on the effect of temperature and cross-contamination on the sensor
signals. Distilled water was used as the cleaning solution and it was to clean the sensor head between
the sample solutions in order to reduce cross-contamination.

For week 0 to week 3, the temperature of the samples was kept at constant 25 ◦C (±0.2 ◦C), with
the same thermostat vessel used for the temperature experiment. The cleaning fluids were replaced
with fresh ones between each repetition.

For week 4, the temperature of the samples was still kept at constant 25 ◦C (±0.2 ◦C), but the
cleaning fluids were not replaced with fresh ones.

On week 5, the temperature of the samples was at around 23 ◦C, but was not controlled with the
thermostat and the cleaning fluids were not replaced with fresh ones between the different repeats of
the experiments.

The sequence of the samples and all the other measurement conditions were unchanged throughout
the five weeks of the experiment except as clarified above. The sample preparation was controlled to
avoid any unwanted change. Apple juice boxes with 100% fruit content from the same batch were
used. The new apple juice box was opened, and 10 times dilution was freshly made every time right
before the measurement. The model solutions were also freshly prepared with 0.01 M concentration
using distilled water.

The instrument was pre-configured according to the manufacturer’s recommendation before
each experiment by performing conditioning using 0.01 M HCl solution and distilled water, then a
calibration using a mixture of the samples to be tested. There was no other measurement performed
on the system during the six weeks of experiment. During conditioning, the analysis time (duration
of sensors) in the 0.01 M HCl solution was 300 s but was 10 s in the cleaning solution. In total, this
process took 56 min. During the calibration, the analysis time (duration of sensors) in the calibration
sample was 120 s and the cleaning time was 10 s; calibration was repeated as many times as needed to
calibrate the sensors. The measurement time for the tested samples was 120 and 10 s of cleaning. For
the data analysis, the average of the last 10 s was taken and statistically analyzed. This time window
was used to make sure the samples were well characterized by the equilibrium state of the sensors (the
time at which the sensor signals are most stable). The sensors were rinsed with distilled water and left
in open air to dry after each weekly experiment.
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Description of the Drift Corrections Methods

For the purposes of this study, the signal obtained from the e-tongue using the manufacturer’s
suggested protocol described above was referred to as raw data (non-drift corrected).

The appearing drift in the e-tongue-based analysis often makes the instrument unsuitable for
long-term measurements, so three new drift correction methods were developed to test the long-term
measurement of e-tongue using the data from the five-week experiment. The methods were developed
in a simple but transparent way and were used to correct the drift occurring during the six weeks
of experiments. For purposes of this study, they were referred to as additive correction relative to
all samples, additive correction relative to reference samples, multi sensor linear correction (using
reference samples), and the component correction based on principal component analysis (PCA)
developed by Artursson et al. [28]. The calculation principles of the applied drift correction methods
are detailed as follows.

(A) Additive correction relative to all samples

The idea of the additive correction relative to all samples is that the average sensor signals
for all the repeats of a measurement without any disturbing variation needs to be constant. With
any disturbance among the repeats, the change of the average sensor signal supposedly represents
the caused drift. So, instead of using the original signal (X), it is more beneficial to subtract the
average sensor signals for each sensor and for each repeat to get zero-centered values (X′) as shown in
Equation (1):

X′S = XS −XS, (1)

where S index stands for the sensors. Thus, each sensor and each repeat had a correction value. In this
way, the “offset” type error between the measurements was corrected.

The key of this type of methods lies primarily in the simplicity of its calculation and secondarily
that, there is no assumption about the behavior of the drift so, it can correct the effect of varying
temperature or memory. This technique is appropriate in the cases where, measurements are performed
with the same sample set and sequence.

(B) Additive correction relative to reference samples

This method was developed to overcome the limitation of the previous method that all the samples
need to be the same in each measurement. In this method, the drift is checked based on the shift of
the sensor signals of the reference samples. The rest of the samples are corrected based on the shift
of the reference samples. The selected set model solutions as references were used to calculate the
average sensor signal to subtract from the original signal for each sensor and for each repeat to get
zero-centered values (X′) as shown in Equation (2):

X′S = XS −Xre f erences
S , (2)

where S index stands for the sensors. Thus, each sensor and each repeat had a correction based on the
selected references.

(C) Multi sensor linear correction (using reference samples)

The idea of the multi sensor linear correction is that the drift in the sensor signals between
two measurements is not simply additive but also can be multiplicative. Thus, the mathematical
relationship between sensor signals of the same samples on different days (X1 and X2) is linear. This
relationship can be estimated by measuring reference samples along with the samples on both days
(Xref1 and Xref2). Using linear regression on reference signals Xref1 and Xref2 based on Equations (3)
and (4) for each sensor:

Xre f 1
S = m·Xre f 2

S + b, (3)
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gives the slope (m), and the intercept (b) for the correction. The corrected signals (X2′) on the second
day can be calculated from the original signals (X2) on the second day using the linear parameters
(m, b):

X2
S
′
= m·X2

S + b. (4)

where S index stands for the sensors. To determine the needed correction caused by drift, at least
two reference samples are required to be measured. In this paper, we used three reference solutions
as described above. The correction was applied for the measurements on different days but not for
each repeat.

(D) Component Correction Based on PCA

According to Artursson et al. [28], one of the suggested drift correction methods was to remove
the drift direction from the measurement matrix. The principle of this method is to determine the
direction of the drift in the multi-dimensional sensor space by measuring a reference sample during
the experiment. Basically, the principal component loadings of the reference sample (Xre f erence) are
calculated during the drift correction process using PCA analysis. The PCA analysis finds the directions
with the most variations. Thus, most likely, the highest variation in the reference sample measurements
during the drift process is the direction of the drift so the first PCA loading (p) needs to be the direction
of the drift. In this drift correction method, it is supposed that the drift direction in the reference
sample is the same as the rest of the samples in the measurement. Using the first loading (p) to project
the data set (X) to this direction will give the amount of change in the sensor signals in the direction of
the drift (t), mathematically called the score of the first PCA component:

t = X · p, (5)

with this PCA score (t), the change of the signals in the drift direction, form the perpendicular hyper
plane, as a matrix of vectors (Xdri f t) can be calculated:

Xdri f t = t · pT, (6)

and Xdri f t needs to be subtracted from the original matrix of the sensor signals to get the corrected
sensor signal matrix:

Xcorrected = X −Xdrift, (7)

for the whole data set.
This method is often effective in correcting drift, but there are disadvantages of this method. The

corrected sensor signals do not contain any information in the direction of the drift and one sample can
be used as reference. Furthermore, our drift process covered six weeks. When we calculated separate
drift directions for each week relative to week 0, the corrected week 0 data were different and could
not be used in discriminant analysis for the whole process. For this reason, first, we determined the
correction using only week 0 and week 5. Then, tried to separate correction for each week but instead
of correcting both week 0 and later weeks, we corrected only the later ones (X2), subtracting twice
the drift:

X2
corr = X2

− 2·X2drift, (8)

with this correction, instead of losing the information in the drift direction, we transformed the data
of later weeks onto the data of week 0. Component correction is very sensitive for outliers, which is
why it is important to carefully remove them. We determined and removed two outliers of apple juice
and citric acid on week 2. Chemically, citric acid is the closest in composition to apple juice, which is
why we used it as the reference to calculate the drift direction. The transformation is demonstrated in
Figure 1.
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Figure 1. Principal component analysis plots demonstrating component correction for citric acid week
0 (red points) and week 1 (blue points). (a) original data and (b) component correction and (c) modified
component (correction subtracting twice the drift from week 1).

2.6. Applied Statistical Methods and Software

As a first step in the data evaluation, principal component analysis (PCA) was performed. Based
on the PCA results, outlier detection and data pretreatment were implemented. Based on this, the first
three repetitions of the measurements proved to be outliers. This was most likely due to the fact that
e-tongue sensors were not properly conditioned during that time of measurement, and therefore, were
omitted before the further evaluation.

The results of the temperature experiments performed on apple juice samples of different
concentrations were evaluated by linear discriminant analysis (LDA). In the case of the temperature
effect measurement, the LDA models were built to discriminate between the different concentrations
of apple juices at different temperatures. In addition to LDA, Euclidean multidimensional distances
were calculated between the group centers of apple juice samples for the different concentrations and
temperatures in the seven-dimensional space (from the seven e-tongue sensors), to compare the effects
of temperature and concentration on sensor signals.

The pH results of the cross-contamination study were evaluated by calculating univariate linear
regressions between the number of repeats and pH of the tested apple juice samples.

PCA was used to analyze the data obtained to investigate the memory effect. Three different PCA
models were built for the three different experiments to visualize patterns between the tested apple juice
and model solutions. The deviations of the different groups on the PCA score plots were compared.

The effectiveness of the applied drift correction methods in comparison to the non-corrected
dataset was evaluated by LDA. Classification models were built using the data from week 0 to
discriminate between the four solutions (citric acid, NaCl, MSG, and apple juice). These models were
used to predict the data of experiments from week 1 to week 5, separately for each of the developed
drift correction methods (i.e., non-drift corrected, additive correction relative to all samples, additive
correction relative to reference samples, and multi sensor linear correction). The results of the three
drift correction methods were compared to non-drift corrected ones by evaluating the relative pattern
and deviation of the different groups of the model solutions and apple juice samples on the LDA score
plots and by the change of the correct classification rate from one week to the next. In addition to the
LDA evaluation, multidimensional Euclidean distances were separately calculated for each method
between the group centers of the apple juice sample measured on week 0 and all the respective weeks
of experiments separately in the three-dimensional LDA space normalized by the distance of the center
of MSG and citric acid measured on week zero.

All the LDA models were validated by threefold cross-validation [32]. The predictive significance
of each LDA model was tested by splitting the data into two groups: the training set and validation set.
The training set consisted of two-thirds of the data and the validation set consisted of the remaining
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one-third of the data of each sample. The data splitting was repeated three times by substituting the
one-third of the data in both the calibration and validation sets.

The additive correction relative to all samples and additive correction relative to reference samples
were executed in R-project ver. 3.6.3. The multi sensor linear correction was done in MathCad ver. 14.0
(PTC) mathematical. The programs were used to complete mathematical transformation after raw data
input, which was followed by the extraction of the corrected data matrixes. The LDA models were
built and validated in Statistica ver. 9.1. with general discriminant analysis module [33].

3. Results

3.1. Effect of Temperature on the Sensor Signals

Figure 2, shows the result of discriminant analysis for the different concentrations of apple juice
samples at different temperatures (a) and the Euclidian multidimensional distance between the groups
of apple juices with different concentrations (b) and with different temperatures (c). The groups of
lowest temperature (5 ◦C) and apple juice concentration (80%) were considered as the reference samples
for the distance calculations, respectively.

Figure 2. (a) Discriminant analysis score plot of the different concentrations of apple juice at different
temperatures and (b) the Euclidian multidimensional distance between the groups of apple juices with
different concentrations and (c) with different temperatures with the fitted regression models.

3.2. Effect of Cross Contamination

The results in the pH change of apple juice samples in the function of the measurement repeats
of the electronic tongue tests are shown on Figure 3. The regression model showed close correlation
between the pH and number of measurements with a coefficient of determination (R2) of 0.965. The
slope of the fitted model implies an average of about 0.1 pH increase by one-time transfer of distilled
water from the cleaning fluid to the apple juice samples.
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Figure 3. The increase of pH of apple juice samples versus electronic tongue measurement repeats.

3.3. Analysis of Memory Effect

Figure 4 shows the results of principle component analysis for apple juice and model solutions
measured in different sample orders for the evaluation of memory effect Figure 4a presents the PCA
results of the experiment where the sample order was: citric acid, NaCl, MSG, apple juice; and in
Figure 4b, the one when the reverse sample order was: citric acid, apple juice, MSG, NaCl; and in
Figure 4c, the sample order was applied: citric acid, NaCl, apple juice, MSG.

Figure 4. Principle component analysis score plots of the electronic tongue results of apple juice and
model solution samples measured in three different sample orders: (a) citric acid NaCl, MSG, apple
juice and: (b) reverse sample order: citric acid, apple juice, MSG, NaCl and: (c) citric acid, NaCl, apple
juice, MSG.
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3.4. Development and Comparison of New Drift Correction Methods

3.4.1. Raw Data (Non-Drift Corrected)

Figure 5 shows the score plot of the LDA model built on the apple juice samples and the model
solutions (0.01 M citric acid, MSG, NaCl) measured at week 0 and the projected data points of week 1,
week 2, week 3, week 4, and week 5 of e-tongue measurements using the non-drift corrected data.

Figure 5. Linear discriminant analysis plots for raw data (non-drift corrected) of the e-tongue
measurements of apple juice samples (red symbols) and model solutions: citric acid (green symbols),
NaCl (gold symbols), and MSG (gray symbols). The solid circles indicate the measurements on week 0
which was used to build the linear discriminant analysis model, and the different symbols (diamond,
triangle, plus, asterisk, and circle) stand for the different weeks 1–5, respectively.

The average classification accuracies of the LDA classification for apple juice samples using
the raw data (non-drift corrected) were 100%, 100%, 11.1%, 0%, 16.7%, and 0% for the samples
measured in weeks 0 to 5, respectively. Considering the other solutions, on week 0, there was no
misclassification observed.

For week 1, 22.2% of NaCl was misclassified as MSG, and 33.3% of citric acid to the group to
apple juice. From week 2, the classification was completely unreliable and resulted in unacceptable
misclassifications among all the four groups.

For week 2, 44.4% of MSG was misclassified as NaCl, 33.3% of NaCl as apple juice, 5.6% of citric
acid as apple juice.

For week 3, 16.7% of MSG was classified as NaCl, 50% of NaCl as apple juice.
For week 4, 27.8% of MSG was classified as NaCl, and 38.9% of NaCl as apple juice.
For week 5, 100% of MSG was classified as apple juice, 27.8% of NaCl as apple juice.
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3.4.2. Additive Correction Relative to Whole Sample Set

The LDA score plot of the model built on the apple juice samples and the model solutions (0.01 M
citric acid, MSG, NaCl) measured at week 0 is presented in Figure 6 with the projected data points of
week 1, week 2, week 3, week 4, and week 5 of e-tongue measurements after the application of the
additive correction relative to the whole sample set method.

Figure 6. Linear discriminant analysis plots for the drift corrected dataset using the additive correction
relative to the whole dataset method of the e-tongue measurements of apple juice samples (red symbols)
and model solutions: citric acid (green symbols), NaCl (gold symbols), and MSG (gray symbols). The
solid circles indicate the measurements on week 0 which was used to build the linear discriminant
analysis model, and the different symbols (diamond, triangle, plus, asterisk, and circle) stand for the
different weeks 1–5, respectively.

The classification accuracies of the LDA classification for apple juice samples of the drift corrected
data using the additive correction relative to the whole dataset method were 100% for the samples
measured in all the six weeks.

Considering the model solution samples, on week 0 and week 1, all samples were
correctly classified.

On week 2 and 3, 5.6% of citric acid was misclassified to the group of apple juice samples.
On week 4, 27.8% of citric acid was misclassified to the group of apple juice samples.
On week 5, 66.7% of citric acid was classified as the apple juice sample.

3.4.3. Additive Correction Relative to Reference Samples

Figure 7 shows the LDA score plot of the classification model built on the apple juice samples and
the model solutions (citric acid, MSG, NaCl) measured at week 0 and the results of the projection of
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the data points acquired between week 1, and week 5 with the e-tongue after applying the additive
correction relative to the reference samples method.

Figure 7. Linear discriminant analysis plots for the drift corrected dataset using the additive correction
relative to reference samples method of the e-tongue measurements of apple juice samples (red symbols)
and model solutions: citric acid (green symbols), NaCl (gold symbols), and MSG (gray symbols). The
solid circles indicate the measurements on week 0 which was used to build the linear discriminant
analysis model, and the different symbols (diamond, triangle, plus, asterisk, and circle) stand for the
different weeks 1–5, respectively.

The classification accuracies of the LDA classification for apple juice samples using the additive
correction relative to the reference samples drift correction method were 100% for the samples measured
on week 0, 1, 4, and 5, and 94.4% on week 2 and 3, respectively.

There were no misclassifications observed among the model solutions on week 0 and 1.
For week 2, 11.1% of citric acid was classified as apple juice, and 5.6% of apple juice as citric acid.
For week 3, 5.6% of citric acid was classified as apple juice, and 5.6% of apple juice as citric acid.
For week 4, 33.3% of citric acid was classified as apple juice.
For week 5, 66.7% of citric acid was classified as apple juice, and 5.6% of MSG as NaCl.

3.4.4. Multi Sensor Linear Correction

The LDA plot of apple juice measurement and the model solutions (citric acid, MSG, NaCl) built
based on the data of week 0 is shown in Figure 8 presenting the results of the projections of the data
of e-tongue experiments between week 1 and week 5 after the drift correction by the multi sensor
linear correction.
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Figure 8. Linear discriminant analysis plots for the drift corrected dataset using the multi sensor linear
correction method of the e-tongue measurements of apple juice samples (red symbols) and model
solutions: citric acid (green symbols), NaCl (gold symbols), and MSG (gray symbols). The solid circles
indicate the measurements on week 0 which was used to build the linear discriminant analysis model,
and the different symbols (diamond, triangle, plus, asterisk, and circle) stand for the different weeks
1–5, respectively.

The classification accuracies of the LDA classification for apple juice samples based on the drift
corrected data using the multi sensor linear correction were 100% for the samples measured in week 0,
1 and, 5, and 93.3% and 94.4% in week 2 and 4, respectively.

There was no misclassification found on week 0 and week 1 among the model solutions.
For week 2, 11.1% of citric acid was classified as apple juice, 5.6% of NaCl as MSG, and 11.1% of

apple juice as citric acid.
For week 3, 11.1% of citric acid was classified as apple juice.
For week 4, 5.6% of citric acid was classified as apple juice.
For week 5, 11.1% of citric acid was classified as apple juice.

3.4.5. Component Correction

The LDA plot of apple juice measurement and the model solutions (citric acid, MSG, NaCl) built
based on the data of week 0 is shown in Figure 9, presenting the results of the projections of the data of
e-tongue experiments between week 1 and week 5 after the drift correction by component correction
based on pairing the first and last week.

The LDA plot of apple juice measurement and the model solutions (citric acid, MSG, NaCl) built
based on the data of week 0 is shown in Figure 10, presenting the results of the projections of the data
of e-tongue experiments between week 1 and week 5 after the drift correction by component correction
performed based on pairing each week to week 0.
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Figure 9. Linear discriminant analysis plots for the drift corrected dataset using the component
correction method of the e-tongue measurements of apple juice samples (red symbols) and model
solutions: citric acid (green symbols), NaCl (gold symbols), and MSG (gray symbols). The correction
was performed based on pairing the first and last week. The solid circles indicate the measurements
on week 0 which was used to build the linear discriminant analysis model, and the different symbols
(diamond, triangle, plus, asterisk, and circle) stand for the different weeks 1–5, respectively.

Figure 10. Linear discriminant analysis plots for the drift corrected dataset using the modified
component correction method of the e-tongue measurements of apple juice samples (red symbols)
and model solutions: citric acid (green symbols), NaCl (gold symbols), and MSG (gray symbols).
The correction was performed based on pairing each week to week 0. The solid circles indicate
the measurements on week 0 which was used to build the linear discriminant analysis model, and
the different symbols (diamond, triangle, plus, asterisk, and circle) stand for the different weeks
1–5, respectively.
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The classification accuracies of the LDA classification for apple juice samples based on the drift
corrected data using the multi sensor linear correction were 100% for the samples measured in week 0,
1, 2, and 4, and 83.3% and 0.0% in week 3 and 5, respectively.

There was no misclassification found on week 0 among the model solutions.
For week 1, 33.3% of MSG was classified as NaCl.
For week 2, 61.1% and 27.8% of MSG was classified as NaCl and apple juice, 50% of NaCl as

apple juice.
For week 3, 16.7% of apple juice was classified as citric acid.
For week 4, 33.3% of NaCl was classified as MSG.
For week 5, 66.7.3% and 33.3% of MSG was classified as citric acid and apple juice, 44.4% and

55.6% of NaCl as citric acid and apple juice, 100.0% of apple juice as citric acid.

3.4.6. Comparison of the Different Correction Method

Figure 11 shows the relative Euclidean distances from the center of the week 0 measurements
for apple juice after one week, two weeks, three weeks, four weeks, and five weeks for the non-drift
corrected and the for each developed drift correction method.

Figure 11. Comparison of the mean and standard deviation of the relative Euclidean distances of
the apple juice samples from the center of week 0 calculated in the space of linear discriminant
analysis models built based on the non-corrected and differently drift corrected data of e-tongue
measurements. The intervals show the variation in distance for the threefold linear discriminant
analysis cross-validation results.

From Figure 11, it can be observed that except the first week, all the drift corrections drastically
decreased the Euclidean distances of the apple juice samples from the center of the week 0 measurements.
The distances do not show significant differences among the methods except for measurement done
in week 2 where, the multi sensor linear correction and component correction provided significantly
poorer correction. Finally, the corrections show similar effectiveness in all the weeks until week 4; on
week 5, the effectiveness of the corrections were significantly worse.
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4. Discussion

4.1. Effect of Temperature on the Sensor Signals

The results from Figure 2, demonstrate that temperature had a significant effect on the sensor
signals. The apple juice samples having different temperatures were discriminated based on the
first factor (Root 1), which contains about 98% of the variance between the groups. The apple juice
samples of different concentrations measured at the same temperature were discriminated based on the
second factor (Root 2), which contains only 2% of the variance between the groups. The relationship
between the multidimensional distances of the sensor signals and the sample temperature could be
approximated by a linear connection. The slope of the regression model assumes about 50-unit change
for the multi-dimensional Euclidean distance in the seven-dimensional sensor space with a change
of 1 ◦C of the apple juice sample. The change of apple juice concentration also caused a fairly linear
change in the multi-dimensional Euclidean distance of the sensors, but with much lower effects on it.
This caused approximately a seven unite change in the multi-dimensional Euclidean distance, with a
change of 1% concentration of the apple juice sample.

4.2. Effect of Cross Contamination

Results of experiments performed to monitor the effect of cross-contamination showed a monotone
increase in the pH of the apple juice which increased approximately by 0.1 for the repeat in the e-tongue
measurement. This may be due to the distilled water being transmitted by the sensor head from the
cleaning fluid to the apple juice samples. This phenomenon confirmed that cross contamination can
influence e-tongue measurements especially in the case of measurement containing samples that are
highly different in concentrations.

4.3. Analysis of Memory Effect

In Figure 4, the relative position of the sample groups on the PCA score plots was different from
each other based on both PC1 and PC2. The standard deviation for the repeated measurements of
the same sample were different for the different sample orders. These observations confirm that the
sensor signals can be affected by the measurement order and can influence the time required to achieve
equilibrium stage for the sensors. In addition, citric acid is chemically the closest in composition
to apple juice and this could be why NaCl and MSG samples were grouped in the positive area of
PC1 axis but citric acid and apple juice were grouped in the negative area of PC1 axis, regardless of
measuring order. These could be attributed to the memory effect on e-tongue sensors.

4.4. Development and Comparison of the Different Drift Correction Methods

4.4.1. Rawdata (Non-Drift Corrected)

From Figure 5, it can be observed that all the samples measured on week 0 had small inter group
distances and they were well separated. That is why the threefold cross validation also resulted in
100% correct classification. Data points of all the four tested samples in the following weeks presented
similar patterns in terms of variation, compared to their counterparts measured in week 0. For week 1,
the groups were found relatively close to those of week 0 but became substantially higher for week
2. For week 3 and 4, the data points were projected by the model between groups in week 0 and
week 2 showing the non-linear characteristic of the change in sensor signals. In spite of the less
ideal condition on week 4 when cleaning fluids were not replaced in every round of experiments,
no extreme variations were observed. Finally, on week 5, the data points of the measurements were
projected substantially further from their week 0 locations and the direction was close to perpendicular
to the direction observed for the previous weeks. The reason could be because the temperature
during the measurement was different. The inter group distances increased with the respective longer
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experimental periods (weeks), except the last week where the inter group distances were similar to
week 1.

4.4.2. Additive Correction Relative to Whole Sample Set

From Figure 6, it can be observed that the correction led to significant improvements in the results.
The data points of each of the tested samples presented more compact groups with low intergroup
distance, compared to the non-corrected ones. After threefold cross-validation, apple juice samples
were corrected with an accuracy of 100% throughout the entire six-week period of the experiment. For
week 5, the sample groups showed only clear separation from the groups of the previous weeks for all
the tested samples, but it did not cause any misclassifications for the apple juice measurements. The
additive correction based on the whole sample set can therefore be said to be effective for the correction
of drift occurring within six weeks of experimental period.

4.4.3. Additive Correction Relative to Reference Samples

From Figure 7, the effectiveness of the additive correction relative to reference samples method
was similar to the additive correction relative to whole sample set one. It can be noticed, however, that
some of the data points of week 2 and week 3 showed higher distance from their week 0 groups, which
was also characterized by the slightly lower correct classification results. The biggest variation was
observed in the data of week 5, which suggests that effects of change in the sample temperature may
not be fully corrected by this method. The additive correction relative to reference samples method can
therefore be said to be effective for correcting drift occurring within only controlled environments,
variations in temperature can be a challenge for this approach.

4.4.4. Multi Sensor Linear Correction

The results of multi sensor linear correction presented Figure 8 showed similar effectiveness of this
correction method in comparison to the additive correction methods. There were no misclassifications
for week 1, week 2, and week 5, but weaker results were found for the apple juice classifications for
week 2 and 4. Data points of week 5 perfectly overlapped with the groups of the model samples for
the three sample solutions but showed some separation for the data points of apple juice samples.
This implies different change in the sensor signals by the different type of samples. The multi sensor
linear correction can therefore be said to be effective for correcting drift in e-tongue measurements
with relatively high efficiency for long-term experimental periods of up to six weeks using the samples
under study.

4.4.5. Component Correction

Comparing Figures 9 and 10, the modified component correction method showed better results
than the component correction method reported by Artursson et al. [28]. The component correction
method was only effective in correcting drift for week 0 and week 2 of experiments, but the modified
component correction method could correct drift for up to four weeks experiment for MSG and NaCl
and even in all six weeks of experiment for citric acid and apple juice.

4.5. Comparison of the Different Drift Correction Methods

All drift corrections provided apparent improvement for all the samples and LDA plots showed
similar patterns for all the different drift corrections. The results of NaCl and MSG showed significant
improvement compared to those of citric acid and apple juice, although their raw data showed higher
separations. From the LDA plots, none of the corrections resulted in a perfect overlap for the different
weeks, but they all provided high classification accuracy for apple juice samples. The component
correction by Artursson et al. [28] was effective in correcting drift for short experiments, but the
modified version proved to be capable of correcting drift in longer term experiments of up to six
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weeks. The component correction method had the highest mean and standard deviation in the relative
Euclidean distances of the apple juice samples when all the drift correction methods were compared in
Figure 11. This suggests that, comparatively, it was the least effective in correcting drift in datasets
from long-term experiments. The modified version of this however, showed contrary results that were
effective in correcting for up to six weeks of experiments for citric acid and apple juice.

The multi sensor linear correction did not show better performance than the mathematically
simpler additive corrections: the additive corrections were characterized by lower inner group distances
for the weekly experiments compared to the other correction methods.

The reason for that could be because the additive corrections were applied for every single sample
repetition but the multi sensor linear correction was applied on the whole group of the given sample
for the different weeks. Supposedly, the combination of these two methods could provide slightly
better results, but from all the methods compared in this study, the additive correction based on the
whole sample set gave the best results: it was capable of correcting drift occurring within six weeks of
experiments with 100% classification accuracy.

5. Conclusions

Literature has shown that temperature, memory effect, and cross-contamination can lead to drift
in e-tongue sensors. This was tested in this paper by performing an experiment for five weeks to assess
the impact of these factors on e-tongue sensors and develop drift correction methods.

From the results, the relationship between the sensor signal and the sample temperature could be
approximated by linear connection after temperature was shown to influence e-tongue results. The pH
of the apple juice increased approximately by 0.1 in the experiment, which was suspected to be caused
by the distilled water through the sensor head.

The measurement of the apple juice samples and model solutions applying different sample order
resulted in significant differences based on the Euclidian distances between the sample groups and
scatter caused by the memory effect on e-tongue sensors. This could be attributed to the altered sensor
stabilization and sensitivity.

Linear discriminant analysis of the non-drift corrected data from the e-tongue confirmed the
influence of temperature, memory effect, and cross-contamination on sensor signals, so four different
drift correction methods were developed and applied: multi sensor linear correction, additive correction
based relative to the whole data set, the additive correction relative to the reference samples method,
and modified component correction.

Linear discriminant analysis predictions could not entirely correct the data to provide perfect
classifications but the results confirmed that the applied drift correction methods significantly improved
the long-term measurement results of the electronic tongue and could be adapted for industrial purposes.
The additive correction based on the whole sample set could correct drift occurring within six weeks of
the experiment and was as such found to be the most effective drift correction method.

Author Contributions: All authors contributed to this research. The design of the experiment was done by Z.K.
and Z.G. Z.K., D.S. and V.Z.-M. were in charge of the experimental analysis with the electronic tongue. Z.K.,
Z.G. and D.Sz. developed the drift correction methods. Z.K. and Z.B. analyzed the data. The manuscript was
written by J.-L.Z.Z., B.A., F.V., Z.B., Z.G. and Z.K. The research was designed by Z.K. and D.S. The revision of the
manuscript was done by J.-L.Z.Z., Z.G. and Z.K. The work presented in the paper was conceived within research
projects led by Z.K. All authors have read and agreed to the published version of the manuscript.

Funding: Supported by the by the ÚNKP-19-3-I-SZIE-71 (Z.B.) and ÚNKP-19-4 -SZIE-27 (Z.K.) New National
Excellence Program of the Ministry for Innovation and Technology; Supported by the Bolyai János Scholarship of
the Hungarian Academy of Sciences (Z.K.) The project is supported by the European Union and co-financed by
the European Social Fund (grant agreement no. EFOP- 3.6.3-VEKOP-16-2017-00005).

Acknowledgments: The project was supported by the Doctoral School of Food Science (Z.B., J.-L.Z.Z., B.A., F.V).

Conflicts of Interest: The authors declare no conflict of interest.



Biosensors 2020, 10, 74 21 of 22

References

1. Vlasov, Y.G.; Legin, A.V.; Rudnitskaya, A.M. Electronic tongue: Chemical sensor systems for analysis of
aquatic media. Russ. J. Gen. Chem. 2008, 78, 2532–2544. [CrossRef]

2. Jiang, H.; Zhang, M.; Bhandari, B.; Adhikari, B. Application of electronic tongue for fresh foods quality
evaluation: A review. Food Rev. Int. 2018, 34, 746–769. [CrossRef]

3. Ciosek, P.; Wróblewski, W. Sensor arrays for liquid sensing–electronic tongue systems. Analyst 2007, 132,
963–978. [CrossRef]

4. Zaukuu, Z.L.J.; Bazar, G.; Gillay, Z.; Kovacs, Z. Emerging trends of advanced sensor based instruments for
meat, poultry and fish quality—A review. Crit. Rev. Food Sci. Nutr. 2019, 0, 1–18. [CrossRef]

5. Ciosek, P. Potentiometric electronic tongues for foodstuff and biosample recognition—An overview. Sensors
2011, 11, 4688–4701. [CrossRef] [PubMed]

6. Winquist, F.; Wide, P.; Lundström, I. An electronic tongue based on voltammetry. Anal. Chim. Acta 1997, 357,
21–31. [CrossRef]

7. Winquist, F. Voltammetric electronic tongues–basic principles and applications. Microchim. Acta 2008, 163,
3–10. [CrossRef]

8. Scampicchio, M.; Ballabio, D.; Arecchi, A.; Cosio, S.M.; Mannino, S. Amperometric electronic tongue for food
analysis. Microchim. Acta 2008, 163, 11–21. [CrossRef]

9. Riul, A.; Santos, D.S.; Wohnrath, K.; Di Tommazo, R.; Carvalho, A.C.P.L.F.; Fonseca, F.J.; Oliveira, O.N.;
Taylor, D.M.; Mattoso, L.H.C. Artificial taste sensor: Efficient combination of sensors made from
langmuir—blodgett films of conducting polymers and a ruthenium complex and self-assembled films
of an azobenzene-containing polymer. Am. Chem. Soc. 2002, 18, 239–245. [CrossRef]

10. Jain, H.; Panchal, R.; Pradhan, P.; Patel, H.; Pasha, T.Y. Review article electronic tongue: A new taste sensor.
Int. J. Pharm. Sci. Rev. Res. 2010, 5, 91–96.

11. Legin, A.; Rudnitskaya, A.; Vlasov, Y. Electronic tongues: Sensors, systems, applications. Sens. Updat. 2002,
10, 143–188. [CrossRef]

12. Winquist, F.; Krantz-Rülcker, C.; Lundström, I. Electronic tongues. MRS Bull. 2004, 29, 726–731. [CrossRef]
13. Hayashi, K.; Yamanaka, M.; Toko, K.; Yamafuji, K. Multichannel taste sensor using lipid membranes. Sens.

Actuators B. Chem. 1990, 2, 205–213. [CrossRef]
14. Panchuk, V.; Lvova, L.; Kirsanov, D.; Gonçalves, C.G.; Di Natale, C.; Paolesse, R.; Legin, A. Extending

electronic tongue calibration lifetime through mathematical drift correction: Case study of microcystin
toxicity analysis in waters. Sens. Actuators B Chem. 2016, 237, 962–968. [CrossRef]

15. Holmberg, M.; Artursson, T. Drift compensation, standards, and calibration methods. In Handbook of Machine
Olfaction; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2002; pp. 325–346.

16. Legin, A.; Kirsanov, D.; del Valle, M. Avoiding nonsense in electronic taste sensing. TrAC-Trends Anal. Chem.
2019, 121, 115675. [CrossRef]

17. Wei, Z.; Yang, Y.; Wang, J.; Zhang, W.; Ren, Q. The measurement principles, working parameters and
configurations of voltammetric electronic tongues and its applications for foodstuff analysis. J. Food Eng.
2017, 217, 75–92. [CrossRef]

18. Chen, D.Y.; Chan, P.K. An intelligent ISFET sensory system with temperature and drift compensation for
long-term monitoring. IEEE Sens. J. 2008, 8, 1948–1959. [CrossRef]

19. Polster, A.; Fabian, M.; Villinger, H. Effective resolution and drift of paroscientific pressure sensors derived
from long-term seafloor measurements. Geochem. Geophys. Geosys. 2009, 10. [CrossRef]

20. Owens, W.B.; Wong, A.P.S. An improved calibration method for the drift of the conductivity sensor on
autonomous CTD profiling floats by θ-S climatology. Deep. Res. Part I Oceanogr. Res. Pap. 2009, 56, 450–457.
[CrossRef]

21. Oelssner, W.; Zosel, J.; Guth, U.; Pechstein, T.; Babel, W.; Connery, J.G.; Demuth, C.; Grote Gansey, M.;
Verburg, J.B. Encapsulation of ISFET sensor chips. Sens. Actuators B Chem. 2005, 105, 104–117. [CrossRef]

22. Krantz-Rülcker, C.; Stenberg, M.; Winquist, F.; Lundström, I. Electronic tongues for environmental monitoring
based on sensor arrays and pattern recognition: A review. Anal. Chim. Acta 2001, 426, 217–226. [CrossRef]

23. Ivarsson, P.; Holmin, S.; Höjer, N.E.; Krantz-Rülcker, C.; Winquist, F. Discrimination of tea by means of a
voltammetric electronic tongue and different applied waveforms. Sens. Actuators B Chem. 2001, 76, 449–454.
[CrossRef]

http://dx.doi.org/10.1134/S1070363208120335
http://dx.doi.org/10.1080/87559129.2018.1424184
http://dx.doi.org/10.1039/b705107g
http://dx.doi.org/10.1080/10408398.2019.1691972
http://dx.doi.org/10.3390/s110504688
http://www.ncbi.nlm.nih.gov/pubmed/22163870
http://dx.doi.org/10.1016/S0003-2670(97)00498-4
http://dx.doi.org/10.1007/s00604-007-0929-2
http://dx.doi.org/10.1007/s00604-008-0915-8
http://dx.doi.org/10.1021/la011017d
http://dx.doi.org/10.1002/1616-8984(200201)10:1&lt;143::AID-SEUP143&gt;3.0.CO;2-Q
http://dx.doi.org/10.1557/mrs2004.210
http://dx.doi.org/10.1016/0925-4005(90)85006-K
http://dx.doi.org/10.1016/j.snb.2016.07.045
http://dx.doi.org/10.1016/j.trac.2019.115675
http://dx.doi.org/10.1016/j.jfoodeng.2017.08.005
http://dx.doi.org/10.1109/JSEN.2008.2006471
http://dx.doi.org/10.1029/2009GC002532
http://dx.doi.org/10.1016/j.dsr.2008.09.008
http://dx.doi.org/10.1016/j.snb.2004.05.009
http://dx.doi.org/10.1016/S0003-2670(00)00873-4
http://dx.doi.org/10.1016/S0925-4005(01)00583-4


Biosensors 2020, 10, 74 22 of 22

24. Escuder-gilabert, L.; Peris, M. Review: Highlights in recent applications of electronic tongues in food analysis.
Anal. Chim. Acta 2010, 665, 15–25. [CrossRef] [PubMed]

25. Oliveri, P.; Baldo, M.A.; Daniele, S.; Forina, M. Development of a voltammetric electronic tongue for
discrimination of edible oils. Anal. Bioanal. Chem. 2009, 395, 1135–1143. [CrossRef]

26. Davide, F.A.M.; Di Natale, C.; D’Amico, A. Self-organizing multisensor systems for odour classification:
Internal categorization, adaptation and drift rejection. Sens. Actuators B. Chem. 1994, 18, 244–258. [CrossRef]

27. Rudnitskaya, A. Calibration update and drift correction for electronic noses and tongues. Front. Chem. 2018,
6, 433. [CrossRef]

28. Artursson, T.; Eklöv, T.; Lundström, I.; Mårtensson, P.; Sjöström, M.; Holmberg, M. Drift correction for gas
sensors using multivariate methods. J. Chemom. 2000, 14, 711–723. [CrossRef]

29. Wold, S.; Antti, H.; Lindgren, F.; Öhman, J. Orthogonal signal correction of near-infrared spectra. Chemom.
Intell. Lab. Syst. 1998, 44, 175–185. [CrossRef]

30. Holmin, S.; Krantz-Rülcker, C.; Lundström, I.; Winquist, F. Drift correction of electronic tongue responses.
Meas. Sci. Technol. 2001, 12, 1348–1354. [CrossRef]

31. AlphaM.O.S, αAstree Electronic Tongue User Manual. Available online: https://www.alpha-mos.com/astree-
taste-analysis (accessed on 5 July 2020).

32. Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised pattern recognition in food analysis. J.
Chromatogr. A 2007, 1158, 196–214. [CrossRef]

33. StatSoft IN. STATISTICA (Data Analysis Software System). Available online: http://www.statsoft.fr/pdf/
STATISTICA10Features.pdf (accessed on 5 July 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.aca.2010.03.017
http://www.ncbi.nlm.nih.gov/pubmed/20381685
http://dx.doi.org/10.1007/s00216-009-3070-8
http://dx.doi.org/10.1016/0925-4005(94)87090-X
http://dx.doi.org/10.3389/fchem.2018.00433
http://dx.doi.org/10.1002/1099-128X(200009/12)14:5/6&lt;711::AID-CEM607&gt;3.0.CO;2-4
http://dx.doi.org/10.1016/S0169-7439(98)00109-9
http://dx.doi.org/10.1088/0957-0233/12/8/350
https://www.alpha-mos.com/astree-taste-analysis
https://www.alpha-mos.com/astree-taste-analysis
http://dx.doi.org/10.1016/j.chroma.2007.05.024
http://www.statsoft.fr/pdf/STATISTICA10Features.pdf
http://www.statsoft.fr/pdf/STATISTICA10Features.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Instrumentation 
	Effect of Temperature Change on the Sensor Signals 
	Effect of Cross-Contamination 
	Analysis of the Memory Effect 
	Experimental Setup and Development of New Drift Correction Methods 
	Applied Statistical Methods and Software 

	Results 
	Effect of Temperature on the Sensor Signals 
	Effect of Cross Contamination 
	Analysis of Memory Effect 
	Development and Comparison of New Drift Correction Methods 
	Raw Data (Non-Drift Corrected) 
	Additive Correction Relative to Whole Sample Set 
	Additive Correction Relative to Reference Samples 
	Multi Sensor Linear Correction 
	Component Correction 
	Comparison of the Different Correction Method 


	Discussion 
	Effect of Temperature on the Sensor Signals 
	Effect of Cross Contamination 
	Analysis of Memory Effect 
	Development and Comparison of the Different Drift Correction Methods 
	Rawdata (Non-Drift Corrected) 
	Additive Correction Relative to Whole Sample Set 
	Additive Correction Relative to Reference Samples 
	Multi Sensor Linear Correction 
	Component Correction 

	Comparison of the Different Drift Correction Methods 

	Conclusions 
	References

