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Background-—Cardiomyopathy is a major determinant of overall Fabry disease (FD) prognosis, with the worst outcomes in patients
with myocardial fibrosis. Late gadolinium enhancement is currently the gold standard for evaluation of replacement myocardial
fibrosis; however, this event is irreversible, thus identification of biomarkers of earlier diffuse fibrosis is paramount.

Methods and Results-—Type I collagen synthesis and degradation biomarkers (PICP [carboxyterminal propeptide of procollagen
type I], ICTP [carboxyterminal telopeptide of type I collagen], and MMP1 [matrix metalloproteinase 1] and MMP2) and markers of
bone synthesis and degradation were evaluated (to adjust type I collagen metabolism to bone turnover) in FD patients and controls.
FD patients were grouped by cardiomyopathy severity, according to echocardiogram: (1) normal, (2) tissue Doppler abnormalities,
(3) left ventricular hypertrophy. A significant increase in PICP and a significant decrease in matrix metalloproteinases were
observed in FD patients; even the group with normal echocardiogram had a significant increase in PICP. We also found a significant
correlation between left ventricular mass and PICP (q=0.378, P=0.003) and MMP1 (q=�0.484, P<0.001). PICP (adjusted for bone
turnover) was the better predictor of left ventricular mass in multivariable regression, and its diagnostic accuracy to predict late
gadolinium enhancement was also significant.

Conclusions-—Collagen type I synthesis is increased in FD cardiomyopathy, even in the earlier stages of the disease, and this
profibrotic state has good predictive value for and is likely to be critical to the development of overt left ventricular hypertrophy.
Moreover, inhibition of enzymes involved in collagen type I cleavage also seems crucial to myocardial collagen deposition. ( J Am
Heart Assoc. 2018;7:e007124. DOI: 10.1161/JAHA.117.007124.)
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F abry disease (FD) is an X-linked lysosomal storage disor-
der caused by mutations in the GLA (galactosidase a)

gene that encodes the enzyme a-galactosidase A, resulting in
diffuse lysosomal accumulation of neutral glycosphingolipids
(mainly Gb3 [globotriaosylceramide]). Both classical and
attenuated phenotypes are associated with significant cardiac
involvement. In adulthood, involvement of the heart, kidney,
and brain causes significant morbidity and premature

death.1,2 Most recent studies have shown cardiovascular
disease as the main cause of death in FD and a major
determinant of overall disease prognosis.3,4 Arrhythmias are
the most frequent cardiac event in FD,4,5 with a recent study
reporting the annual increase in cardiac fibrosis as the sole
independent predictor of malignant ventricular arrhythmias.6

Late gadolinium enhancement (LGE) imaging techniques
using cardiac magnetic resonance imaging (MRI) is the gold
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standard for noninvasive detection of focal replacement
fibrosis in the myocardium. More than 50% of FD patients
present with LGE, with characteristic midmyocardial distribution
in the inferolateral basal or midbasal segments of the left
ventricle wall that seems to be specific of FD cardiomyopathy.7,8

Nevertheless, LGE has several limitations as an imaging
biomarker: (1) It detects only irreversible tissue damage with
focal replacement fibrosis and has limited resolution of
�0.2g9; (2) it may not detect early, potentially reversible,
diffuse interstitial fibrosis10; (3) there is no universally
accepted technique to quantify fibrosis volume.11 A novel
technique, T1 mapping, has been studied for assessment of
diffuse interstitial fibrosis.10 In FD, however, it has been
studied more extensively as an imaging biomarker for early
detection of cardiac involvement (due to lipid storage, yielding
low native T1) than for evaluation of diffuse interstitial
fibrosis.12,13

Enzyme replacement therapy (ERT) is the standard of care
in the treatment of FD; however, the benefits of ERT may be
limited in patients with cardiac fibrosis14,15 and are probably
greater when administered early in the course of the disease.
A study using tissue Doppler imaging to detect early cardiac
involvement reported that ERT prevented the appearance of
tissue Doppler abnormalities in FD patients with no left
ventricular (LV) hypertrophy or tissue Doppler abnormalities
at baseline.16

The presence of LGE on cardiac MRI is a late event and
predicts a worse prognosis. Consequently, identifying early
predictors of overt disease is clinically relevant. Echocardio-
graphy is currently the gold standard to assess early signs of
cardiomyopathy, which is associated with diastolic dysfunc-
tion. Several studies have demonstrated that tissue Doppler
abnormalities precede and correlate with LV hypertrophy
progression.16,17 Newer tools like speckle tracking, which
allows measurement of myocardial systolic and diastolic
strains, seem to be superior to conventional echocardio-
graphic measurements (including tissue Doppler) for the

identification of myocardial contraction and relaxation
abnormalities.18,19

These manifestations may be preceded by histologic
changes or deregulated gene expression, as demonstrated
previously in hypertrophic cardiomyopathy (HCM) due to
sarcomere protein gene mutations.20,21 These results indicate
that a profibrotic milieu, with extracellular matrix expansion and
collagen deposition, is present early in the pathogenesis of the
disease, even when cardiac function and histology are normal.

The identification of biomarkers of collagen synthesis and
degradation could represent an advance in the identification
of preclinical involvement of the heart in FD, with possible
therapeutic implications. Type I collagen is the main collagen
type of the myocardium. During its synthesis from its
precursor, procollagen type 1, PICP (carboxyterminal propep-
tide of procollagen type I) is released into the bloodstream
with a stoichiometric ratio of 1:1, and its serum level reliably
reflects myocardial type I collagen synthesis.22,23 Collagen
turnover biomarkers have been studied in HCM, hypertension,
heart failure, and myocardial infarction.24–26 In the HCM
model, an increase in serum PICP was reported even in
mutation carriers without LV hypertrophy or visible fibrosis in
cardiac MRI.26 In FD cardiomyopathy, to our knowledge, there
are only 2 publications of a limited evaluation of extracellular
matrix turnover, reporting increased levels of MMP9 (matrix
metalloproteinase 9), PICP, ICTP (carboxyterminal telopeptide
of type I collagen), and PIIINP (procollagen type III aminoter-
minal propeptide).6,27

In this study, we investigated several biomarkers of
collagen type I turnover in a large cohort of FD patients
(within the entire spectrum of FD cardiomyopathy severity),
with an emphasis on the usefulness of these markers in early
and prehypertrophic stages of FD cardiomyopathy.

Methods
The data, analytic methods, and study materials will not be
made available to other researchers for purposes of repro-
ducing the results or replicating the procedure. See Data S1
for extended methods.

Study Design and Population
In this multicenter, cross-sectional, and prospective study, a
cohort of 60 consecutive FD patients was recruited from 3
centers (Centro Hospitalar Lisboa Norte, Lisbon, Portugal;
Hospital Senhora da Oliveira, Guimar~aes, Portugal; Royal Free
Hospital, London, United Kingdom) between February 2013
and June 2014. Twenty healthy controls were also recruited.

For FD patients, the only inclusion criteria were diagnosis
of FD and age ≥18 years. FD was defined in male patients as

Clinical Perspective

What Is New?

• Collagen type I synthesis is increased in Fabry disease
cardiomyopathy, even in the early preclinical stages.

• Inhibition of enzymes involved in collagen type I degradation
also seems crucial for myocardial collagen type I deposition.

What Are the Clinical Implications?

• Serum biomarkers of collagen type I metabolism may
identify ongoing fibrosis in the early stages of Fabry disease
cardiomyopathy and might predict the development of left
ventricular hypertrophy.
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low a-galactosidase A activity and/or identification of a
proven pathogenic mutation in the GLA gene and in female
patients as the presence of a proven pathogenic mutation in
the GLA gene.

FD patients with conditions, other than the usual manifes-
tations of FD cardiomyopathy, that possibly affected cardiac
collagen turnover were excluded, namely, HCM due to
sarcomere protein gene mutations or other cardiomyopathies,
previous myocardial infarction, moderate or severe valvular
heart disease, previous heart surgery, a cardiac device
implanted in the previous 6 months, surgery or major trauma
within the previous 6 months, inflammatory or fibrotic
diseases, and active cancer.

To enroll patients who were representative of the entire
spectrum of FD cardiomyopathy severity, recruitment was
done in accordance with subgroups of increasing severity of
FD cardiomyopathy (aiming at a specific number of patients),
defined by echocardiogram. Subgroup 1 had no evidence of
cardiac involvement: no LV hypertrophy or tissue Doppler
abnormalities (20 patients). Subgroup 2 had tissue Doppler
abnormalities (defined as at least 1 of the following: systolic
tissue Doppler velocities <6 cm/s; early diastolic tissue
Doppler velocities <10, <8, or <6 cm/s at the septal corner
of the mitral annulus in patients aged <40, between 41 and
60, and >60 years, respectively; early diastolic tissue Doppler
velocities <14, <12, or <6 cm/s at the lateral corner of the
mitral annulus in patients aged <40, between 41 and 60, and
>60 years, respectively) and no LV hypertrophy (20 patients).
Subgroup 3 had LV hypertrophy, defined as diastolic
interventricular septum or posterior wall thickness ≥12 mm
(20 patients).

The control group included healthy individuals with normal
echocardiograms who were age and sex matched with the
less severe FD subgroup (subgroup 1) and who did not have
conditions influencing cardiac collagen turnover, including not
only those previously listed for FD patients but also systemic
arterial hypertension (defined as systolic blood pressure
≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, or use of
antihypertensive medication), LV hypertrophy from any cause,
coronary artery disease, pacemaker placement (regardless of
time since implantation), and atrial fibrillation.

The study protocol was approved by the local or national
ethics committees of each participating center, and the study
was conducted in accordance with this protocol and the
ethics principles of the Declaration of Helsinki. Written
informed consent was obtained from all participants before
enrollment.

Clinical Assessment
For each patient recruited, routine follow-up data were
collected, namely sex, age, age at diagnosis, plasma

a-galactosidase A activity, GLA gene mutation, current
medication (angiotensin-converting enzyme inhibitors, angio-
tensin II receptor blockers, aldosterone antagonists, and b-
blockers), data about ERT (product, dose, and duration),
clinical manifestations (to calculate the disease severity
indexes: Mainz Score Severity Index [MSSI]28 and Fabry
International Prognostic Index [FIPI]29), echocardiographic
measurements, presence of LGE on cardiac MRI (if available),
and laboratory results (NT-proBNP [amino-terminal fragment
of the pro-hormone of brain natriuretic peptide], kidney
function tests [glomerular filtration rate, creatinine, and
albuminuria] and plasma lyso-Gb3 [globotriaosylsphingosine]).

Cardiomyopathy assessment/reference test and
outcomes

Cardiac function and structure were evaluated by echocar-
diogram and cardiac MRI. Echocardiogram (LV mass and
tissue Doppler abnormalities) was used as the reference test
for comparison with index tests because it is considered the
gold standard for evaluation of early cardiac dysfunction in
FD.

Data from the M-mode, 2-dimensional, and Doppler
transthoracic echocardiographic study were collected for
each patient and control. FD patients’ echocardiograms were
done using a Vivid 7 (General Electric) ultrasonographic
system at all recruitment sites. Evaluation of control partic-
ipants was performed using a Vivid 7 or Toshiba Xario
ultrasonographic systems, with a protocol identical to that for
FD patients for imaging acquisition. Echocardiograms were
undertaken in routine clinical practice, and there was no core
reading of the results.

LV dimensions (interventricular septum, posterior wall, and
LV end-diastolic diameter) were assessed from the long-axis
view, and ventricular mass was calculated according to the
Devereux formula and normalized for height (g/m2.7). LV
hypertrophy was defined as LV mass ≥50 g/m2.7. Left atrium
area was obtained in the apical 4-chamber view and
expressed in square centimeters.

Mitral inflow pattern (rapid filling [E wave] and atrial
contraction [A wave] peak velocities, E-wave decelerating
time, A-wave duration, and isovolumic relaxation time) was
obtained at the mitral level by Doppler echocardiography in
the apical 4-chamber view. Retrograde atrial flow velocity and
duration were acquired from the pulmonary veins also by
Doppler echocardiography in the same view.

Myocardial velocities during systole and early diastole were
collected from tissue Doppler imaging at lateral and septal
corner of the mitral annulus in the apical 4-chamber view.
Tissue Doppler abnormalities were defined as aforemen-
tioned. The ratio between LV rapid filling and average early
diastole (septal and lateral) was used to estimate LV end-
diastolic pressure.
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Echocardiographic studies were performed and reported
by people who were blinded to the measurement of collagen
turnover biomarkers (index tests) and clinical data.

Data about cardiac MRI were collected if it was performed
as part of the follow-up protocol and there was no core
reading of the images. Cardiac MRI studies were performed in
a 3.0-T system (Philips Intera). LGE is the standard for
detection of focal myocardial replacement fibrosis and was
defined in the study as 2 SD above the mean signal intensity
of the distant myocardium.

The specified outcomes were to compare the index tests
with tissue Doppler abnormalities in the identification of
incipient Fabry cardiomyopathy (comparing patients in sub-
group 1 with controls) and to correlate index tests with LVmass
and their diagnostic accuracy to identify LGE in cardiac MRI.

Measurement of Collagen Turnover Biomarkers
and Index Tests
To assess type I collagen turnover, we measured levels of
peptides released during collagen synthesis and degradation
and enzymes involved in collagen degradation. During colla-
gen synthesis, PICP is cleaved from procollagen I and released
into blood. Collagen is degraded by matrix metalloproteinases
(MMPs) as follows: MMP1 cleaves collagen I and releases
ICTP into the blood; further degradation is performed by
gelatinases MMP2 and MMP9.

Type I collagen is also a major component of bone; so the
measured pro- and telopeptides may reflect bone formation
and resorption. To minimize such confounding factors, we
also measured markers of bone synthesis (B-AP [bone-specific
alkaline phosphatase]) and resorption (TRAP5b [tartrate-
resistant acid phosphatase type 5b]) and determined the
ratios of PICP:B-AP and ICTP:TRAP5b.

Peripheral venous blood samples were obtained
<6 months apart from the echocardiographic study, spun
within 120 minutes after phlebotomy (4899g, 10 minutes),
immediately stored at �20°C, transported to the laboratory in
dry ice, and thawed and mixed thoroughly just before the
assay.

TRAP5b was evaluated by an ELISA method, according to
manufacturer instructions (Immunodiagnostic Systems), and
measured at 405 nm; MMP1 and MMP2 were evaluated by an
ELISA method, according to manufacturer instructions
(SunRed), and measured at 450 nm; B-AP and PICP were
evaluated by an ELISA method, according to manufacturer
instructions (Quidel Corp), and measured at 405 nm; ICTP
was evaluated by an electrochemiluminescence immunoassay
in a COBAS e411 instrument (Roche). Duplicate determina-
tions were made for each individual, and the average result
was considered. Laboratory researchers were blinded to
clinical data and cardiac assessments (reference test).

Because there are no validated reference values for the
tested biomarkers, the upper limit of the 95% confidence
interval for the mean of the control group was assumed to be
the upper limit of the reference value.

Statistical Analysis
Statistical analysis was performed with SPSS (version 21; IBM
Corp) software. Categorical variables were expressed as
number and percentage and continuous variables as median
and interquartile range.

For categorical variables, the v2 or Fisher exact tests were
used to compare the variable distributions between the
groups. Normal distribution of continuous variables was
tested using the Shapiro–Wilk test. For continuous variables,
comparison of means or medians was performed using the
Student t test for variables that followed a normal distribution
and the Mann–Whitney test or related-samples Wilcoxon
signed rank test for variables that did not. If the qualitative
variable had >2 categories, ANOVA (post hoc analysis with
Bonferroni correction) was used for variables with normal
distribution, and a Kruskal–Wallis test was used for those
without.

Because of the skewed distribution of all studied biomark-
ers (index and reference tests), the Spearman correlation
coefficient was determined to evaluate the correlation
between the biomarkers and the quantitative variables.

To construct a regression model to quantify LV mass, all
potentially related variables were correlated, using the
Spearman rank correlation coefficient, with LV mass (in
univariate analysis). Those variables showing significant
correlation (P<0.05) were entered into the multivariable
analysis. For multivariable analysis, stepwise regression
combining both forward selection and backward elimination
was used. A cutoff limit to remain in the model was set at an
F-statistic P value of <0.05.

We evaluated the diagnostic accuracy of the studied
biomarkers to detect cardiac fibrosis (defined by presence of
LGE in cardiac MRI) by calculating the sensitivity, specificity,
and area under the curve from receiver operating character-
istic curves (we determined the confidence intervals of the
area under the curve [nonparametric method], with values
between 1 [perfect test] and 0.5 [useless test]).

For all comparisons and correlations, P<0.05 was consid-
ered significant.

Results

Population Characteristics
From February 2013 to June 2014, we recruited 60 FD patients
(20 in each subgroup) and 20 controls (age and sex matched
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with subgroup 1; Figure 1). Population characteristics are given
in Table 1. Only 1 FD patient was taking a mineralocorticoid
receptor antagonist (in subgroup 3). Overall, 28 different GLA
pathogenic mutations were identified (Table S1), with p.N215S
and p.F113L—2 mutations associated with attenuated or late-
onset phenotypes with predominant cardiac involvement—
accounting for 31.7% of the patients; the remaining mutations

are usually associated with a classical phenotype. As expected,
no adverse events resulted from collecting blood samples to
determine index tests.

No significant echocardiographic differences were noted
between the control group and FD subgroup 1 (Table 2). A
gadolinium-based contrast cardiac MRI result was available
for 37 FD patients (60%; 9, 13, and 15 in subgroups 1, 2, and

Figure 1. Study flow diagram. ICTP indicates carboxyterminal telopeptide of type I collagen; LGE, late gadolinium enhancement; LV, left
ventricular; MMP, matrix metalloproteinase; PICP, carboxyterminal propeptide of procollagen type I; TDI, tissue Doppler imaging.

DOI: 10.1161/JAHA.117.007124 Journal of the American Heart Association 5

Cardiac Collagen Turnover in Fabry Disease Aguiar et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



3, respectively); LGE was present in 0%, 15.4%, and 80.0% of
patients in FD subgroups 1, 2, and 3, respectively.

Collagen Type I Turnover Biomarkers (Index
Tests)
Collagen type I synthesis (PICP) was increased in FD patients
(Table 3). Compared with PICP levels in controls, PICP levels
in FD subgroup 1 were significantly elevated, a 61% increase
(P=0.006). Comparing FD subgroups, PICP levels were
significantly higher in FD subgroup 3 (P=0.001). The signif-
icant results comparing FD subgroup 1 and controls and FD
subgroups remained with the PICP:B-AP ratio.

Collagen type I degradation (ICTP) and levels of the
enzymes involved in its degradation (MMP1 and MMP2) were
similar between the control group and FD subgroup 1
(Table 3). The difference between these 2 groups attained
statistical significance only after adjustment to bone degra-
dation with the ICTP:TRAP5b ratio (P=0.011). Moreover, there
was a significant trend of decreased activity of MMP1 as
severity increased.

The PICP:ICTP ratio is considered to reflect the balance
between type I collagen synthesis and degradation. PICP:ICTP
evaluation reveals a clear trend (significant only after adjust-
ment for bone turnover [P=0.012]) of prevalent type I collagen
synthesis over degradation within the subgroups of FD patients
with greater severity (Figure S1). Correlation between PICP:
ICTP and MMP1 reflects the influence of higher collagenase
activity balancing PICP:ICTP toward type I collagen degradation
and lesser collagen type I deposition. Accordingly, we identified
a significant inverse correlation between PICP:ICTP and MMP1
activity before (q=�0.348; P=0.008) and after (q=�0.322;
P=0.015) adjustment to bone turnover.

Correlation With Cardiac Imaging and LGE
(Reference Standards)
For the entire FD cohort, a significant direct correlation
between the biomarker of collagen type I synthesis (PICP)
and LV wall thickness and mass (Table 4) was found (PICP
with LV mass: q=0.378, P=0.003). This significant correla-
tion remained after adjustment for bone turnover (PICP:B-AP
ratio with LV mass: q=0.313, P=0.016). For biomarkers of
collagen type I degradation, there was a significant inverse
correlation between the enzyme MMP1, involved collagen
type I cleavage, and LV thickness and mass parameters
(MMP1 with LV mass: q=�0.484, P<0.001). A significant
direct correlation was found for the MMP1 and echocardio-
graphic parameters of diastolic dysfunction, namely, early
diastolic mitral velocities measured at the septal (q=0.354,
P=0.016) and lateral (q=0.280, P=0.042) corners of the
mitral annulus.

There was a clear trend for higher values of collagen type I
synthesis and decreased activity of the enzymes involved in
collagen type I cleavage in patients with LGE in cardiac MRI
(Table 4), but the difference between patients with and
without LGE was significant only for PICP, even after
adjustment for bone turnover (for PICP:B-AP ratio: mean
difference 12.5, a 74% increase for LGE positive group;
P=0.01).

After adjustment for bone turnover, there was a significant
correlation between PICP:ICTP and LV mass and higher values
of this ratio in LGE positive patients (Figure S2).

Correlation With ERT, Severity Indexes, and Other
Variables
For the rest of the variables (including demographic, diagnos-
tic, and severity- and treatment-related variables), not directly
related to cardiac imaging, consistent and significant corre-
lations were found among the biomarker of collagen type I
synthesis or MMP1 and the disease severity indexes (MSSI
and FIPI) and NT-pro BNP (Table 5). Correlations among other
biomarkers and these variables seemed less reliable, except
for the correlations between age or estimated glomerular
filtration rate and MMPs; however, the significant correlation
with estimated glomerular filtration rate did not remain after
adjustment for LV mass.

The serum concentration of PICP and PICP adjusted for
bone turnover was significantly higher in male patients, and
there was a nonsignificant trend of lower serum MMP1
concentration in the same sex. This is in agreement with the
unbalanced sex distribution across FD patient subgroups and
the significantly higher mean LV mass in male patients
(57.6 g/m2.7 versus 41.4 g/m2.7; P<0.001). Nonetheless, the
significant direct correlation between LV mass and PICP and
the inverse correlation between LV mass and MMP1 remained
significant for both sexes in the subanalysis by sex.

Association Between Predictive Variables and
Clinical End Points (LV Mass and LGE)
Variables with significant correlation with LV mass (in
univariate analysis) were included in a multivariable regres-
sion model (Table 6). Within this model only 2 variables
retained statistical significance: PICP:B-AP ratio and age, with
the former as the better predictor of LV mass (b=0.919;
SE=0.095; P<0.001).

The global diagnostic accuracy of several biomarkers to
detect patients with LGE in cardiac MRI was significant for LV
mass, PICP, PICP:B-AP ratio, PICP:ICTP ratio adjusted to bone
turnover, and NT-proBNP (Figure 2), achieving diagnostic
accuracy of 75.9% for the PICP:ICTP adjusted ratio. Moreover,
lower estimated glomerular filtration rate, systolic average,
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and early diastolic average had significant predictive value for
presence of LGE in cardiac MRI.

Using a model of binary logistic regression for the
diagnosis of LGE, a model with LV mass and NT-proBNP
correctly classified 73.9% of patients regarding LGE status;
this percentage increased to 87.0% after addition of the PICP:
ICTP adjusted ratio to the model.

Discussion

Increased Collagen Type I Synthesis
The results of our study suggest increased myocardial
collagen type I synthesis in FD patients with established LV
hypertrophy and, to a lesser extent, in FD patients with
normal echocardiograms or with isolated tissue Doppler
abnormalities. PICP increase remained after adjustment for
bone synthesis (with the ratio to B-AP), confirming the

myocardial origin of the excessive collagen type I synthesis
(rather than higher bone metabolic activity). This correction
for bone activity is important mainly in postmenopausal
women because the concentration of collagen type I synthesis
and degradation biomarkers is increased in this population.30

Serum PICP concentration was slightly, but nonsignifi-
cantly, lower in patients with tissue Doppler abnormalities
(subgroup 2) compared with patients with normal echocar-
diograms (subgroup 1). We attributed this to the similar LV
masses in these subgroups because there was a significant
direct correlation between LV mass and serum PICP.

Elevation of PICP levels in FD patients with normal
echocardiograms suggests that it may be used as a serologic
marker of risk, detectable before the earlier echocardiographic
signs of cardiac dysfunction. The ongoing longitudinal evalua-
tion of these biomarkers will help clarify this issue. Moreover, it
hints that the stimulus for myocardial fibrosis is an early event
in FD cardiomyopathy (probably directly related to the disease

Table 1. Clinical Characteristics of Study Population

Controls (n=20) FD Cohort (n=60)

FD Subgroups

1 (n=20) 2 (n=20) 3 (n=20)

Categorical variables, n (%)

Sex (female)* 14 (70.0) 37 (61.7) 14 (70.0) 18 (90.0) 5 (25.0)

HBP (yes) 0 (0.0) 25 (41.7) 8 (40.0) 10 (50.0) 7 (35.0)

HF class (0/I/II) ��� 39/6/14 15/3/2 14/2/4 10/2/8

ERT (yes) ��� 39 (65.0) 14 (70.0) 8 (40.0) 17 (85.0)

ACEI/ARB (yes) 0 (0.0) 29 (48.3) 9 (45.0) 10 (50.0) 10 (50.0)

b-Blockers (yes) 0 (0.0) 11 (18.3) 3 (15.0) 3 (15.0) 5 (25.0)

Continuous variable, median (IQR)

Age, y† 41.0 (23.0) 44.0 (23.0) 40.5 (21.0) 48.5 (18.0) 59.5 (13.0)

Age at diagnosis, y‡ ��� 41.5 (22.0) 34.5 (24.0) 44.0 (15.0) 50.5 (35.0)

Age at ERT initiation, y§ ��� 49.0 (17.1) 38.1 (25.4) 52.4 (17.0) 49.4 (19.9)

Time in ERT, y ��� 6.3 (8.4) 4.8 (8.0) 5.9 (7.6) 8.2 (9.1)

MSSIk ��� 18.5 (21.0) 11.0 (11.0) 12.5 (18.0) 31.0 (16.0)

FIPIk ��� 2.0 (3.0) 1.0 (2.0) 1.0 (3.0) 4.0 (2.0)

Plasma lyso-Gb3, nmol/L¶ ��� 9.1 (16.6) 3.6 (27.3) 8.3 (9.9) 18.8 (45.1)

Plasma a-gal A (female), nmol/h/mL ��� 4.3 (4.1) 5.1 (2.8) 3.5 (4.5) 3.8 (.)

Plasma a-gal A (male), nmol/h/mL ��� 0.11 (0.3) 0.14 (0.50) 0.06 (.) 0.20 (0.30)

NT-proBNP, ng/mL† ��� 142.0 (334.0) 40.0 (122.0) 129.5 (166.0) 940.7 (1602)

eGFR, mL/min/1.73 m2† 108.5 (20.0) 93.0 (51.0) 99.5 (53.0) 101.0 (91.0) 67.5 (51.0)

ACEI indicates angiotensin-converting enzyme inhibitors; a-gal A, a-galactosidase A; ARB, angiotensin II receptor blockers; eGFR, estimated glomerular filtration rate; ERT, enzyme
replacement therapy; FD, Fabry disease; FIPI, Fabry International Prognostic Index; HBP, high blood pressure (arterial hypertension); HF, heart failure; IQR, interquartile range; lyso-Gb3,
globotriaosylsphingosine; MSSI, Mainz Severity Score Index; NT-proBNP, N-terminal probrain natriuretic peptide.
*P<0.01 for difference in the distribution of categorical variables between subgroups.
†P<0.01 for difference between subgroups 1 and 3.
‡P<0.05 for difference between subgroups 1 and 2.
§P<0.05 for difference between subgroups 1 and 3.
kP<0.01 for difference between group 3 and all other groups.
¶P<0.05 for difference between subgroups 2 and 3.
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pathophysiology) and not a secondary event caused by
mechanical stress or ischemia at microcirculatory level. Similar
to our study, in HCM it has been shown that serum levels of
PICP are elevated even in mutation carriers without LV

hypertrophy, supporting a profibrotic state preceding develop-
ment of overt cardiomyopathy.26 Moreover, a histologic study
in cats with preclinical HCM showed an increase in myocardial
collagen deposition.31 Furthermore, studies in murine models
of HCM have shown upregulation of several extracellular matrix
proteins (CTGF [connective tissue growth factor] and POSTN
[periostin]) in the very early stage of the disease (prehyper-
trophic stage, with normal histologic findings).20,21

In FD, one of the accumulating substrates is lyso-Gb3, a
product of Gb3 deacylation. Lyso-Gb3 promotes proliferation
of vascular smooth muscle cells in culture32 and increases the
expression of TGF-b (transforming growth factor b) in human
cultured podocytes, with subsequent increase in extracellular
matrix synthesis.33 These findings support our observations
that upregulation of cardiac fibrogenesis is an early event and
directly related to the disease pathophysiology.

Type I Collagen Degradation: MMP
Downregulation
In contrast, we found no increase in collagen type I
degradation biomarker (ICTP), even after adjustment for bone
turnover. Nonetheless, we found a significant decrease in the
activity of MMP1 across the subgroups of increasing severity
of FD cardiomyopathy. As an index of degree of coupling
between the synthesis and degradation of collagen type I, the
PICP:ICTP ratio, after adjustment to bone turnover, was
significantly higher in the subgroup of patients with estab-
lished LV hypertrophy and inversely correlated with MMP1
activity. Thus, as reported in HCM,26,34,35 we can hypothesize
that in incipient FD cardiomyopathy, increased collagen
synthesis is balanced by degradation (limiting fibrogenesis),
but when collagen type I synthesis exceeds the degradation,
there is deposition of collagen in the myocardium and LV
hypertrophy; the suppression of MMPs may be another
mechanism of myocardial collagen type I buildup.

Table 2. Echocardiographic Characteristics of Study
Population

Controls

FD Subgroups

1 2 3

dIVS, mm* 9.0 (2.0) 9.0 (2.0) 9.0 (2.2) 14.5 (4.0)

dLVPW,
mm*

9.0 (1.0) 9.0 (3.0) 8.9 (2.8) 12.1 (4.5)

LVMi,
g/m2.7*

39.3 (10.9) 35.2 (9.7) 39.5 (19.6) 63.3 (10.6)

LA area,
cm2*

��� 17.0 (4.6) 18.9 (5.6) 23.3 (10.2)

E/A ratio ��� 1.47 (0.85) 1.25 (0.87) 0.98 (0.95)

DT, ms† ��� 184.0 (73.0) 230.0 (62.0) 249.5 (25.0)

S0(s), cm/s‡ 8.0 (2.0) 8.0 (2.0) 6.0 (2.0) 6.0 (2.0)

S0(l), cm/s‡ 9.5 (5.0) 11.0 (3.0) 7.0 (3.0) 6.5 (3.0)

E0(s), cm/s§ 11.5 (5.0) 11.5 (3.0) 7.0 (4.0) 5.0 (2.0)

E0(l), cm/s‡ 15.5 (6.0) 14.5 (4.0) 9.0 (4.0) 8.0 (4.0)

E/E0‡ 6.3 (2.1) 6.0 (2.3) 9.4 (5.0) 11.8 (6.5)

Data are shown as median (interquartile range). dIVS indicates diastolic interventricular
septal thickness; dLVPW, diastolic left ventricular posterior wall thickness; DT, E-wave
decelerating time; E/A, left ventricular rapid filling (E wave)/atrial contraction (A wave)
peak velocities; E/E0(a), left ventricular rapid filling velocity/average (septal and lateral)
early diastolic myocardial velocity measured at the mitral annulus; E0(l), early diastolic
myocardial velocity measured at the lateral corner of the mitral annulus; E0(s), early
diastolic myocardial velocity measured at the septal corner of the mitral annulus; LA, left
atrium; LVMi, left ventricular mass indexed for height; S0(l), systolic myocardial velocity
measured at the lateral corner of the mitral annulus; S0(s), systolic myocardial velocity
measured at the septal corner of the mitral annulus.
*P<0.01 for difference between subgroup 3 and all other FD groups.
†P<0.01 for difference between subgroups 1 and 3.
‡P<0.01 for difference between subgroup 1 and all other FD groups.
§P<0.01 for difference between all FD groups.

Table 3. Collagen Type I Turnover Biomarkers in Controls and FD Subgroups

Controls (n=20)

FD Subgroups

P Value* P Value†1 (n=20) 2 (n=20) 3 (n=20)

PICP, ng/mL 107.3 (39.3) 148.5 (129.0) 115.7 (88.8) 219.0 (98.4) 0.006 0.001

PICP/B-AP 10.1 (4.3) 16.2 (10.3) 12.7 (9.1) 19.4 (24.1) 0.003 0.001

ICTP, ng/mL 0.34 (0.20) 0.25 (0.27) 0.20 (0.19) 0.29 (0.23) 0.687 0.236

ICTP/TRAP5b 0.11 (0.07) 0.16 (0.10) 0.11 (0.07) 0.13 (0.06) 0.011 0.186

MMP1, ng/mL 16.8 (26.3) 13.5 (19.3) 14.1 (4.3) 9.6 (4.6) 0.159 0.002

MMP2, ng/mL 440.3 (541.0) 341.8 (849.5) 356.5 (187.0) 318.7 (101.9) 0.872 0.108

Data are shown as median (interquartile range). B-AP indicates bone-specific alkaline phosphatase; FD, Fabry disease; ICTP, carboxyterminal telopeptide of type I collagen; MMP, matrix
metalloproteinase; PICP, carboxyterminal propeptide of procollagen type I; TRAP5b, tartrate-resistant acid phosphatase type 5b.
*Controls vs FD disease subgroup 1.
†Between FD subgroups.
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The suppression of MMPs as a pathophysiological mech-
anism for cardiac fibrosis has been described previously in
HCM.34,35 The multiple pathways involved in MMP suppres-
sion are not well understood, but recent studies imply
aldosterone-induced expression of TIMP1 (tissue inhibitor of
metallopeptidase 1), acting mainly through MMP1 inhibition
increasing net cardiac collagen content.36 Furthermore,
microRNA miR-214 (an antifibrotic microRNA) may play an
important role in MMP1 regulation, as shown by Dong et al,37

demonstrating that suppression of MMP1 in cardiac fibrob-
lasts, induced by angiotensin II, could be reversed after
administration of pre–miR-214 (this also decreased TIMP1
and TGF-b).

Correlations Between Collagen Metabolism
Biomarkers and Cardiac Imaging
The biomarker of type I collagen synthesis (PICP), before and
after adjustment for bone turnover, had a significant corre-
lation with LV mass, and after multivariable adjustment, PICP:
B-AP ratio remained the better predictor of LV mass. In
addition, there was a significant inverse correlation between
MMP-1 and LV mass. These 2 findings might indicate that
increased collagen synthesis and inhibition of collagenolysis
are syntropic in the process of LV hypertrophy.

Moreover, although female patients presented significantly
lower serum PICP concentration and LV mass, subanalysis by

sex showed that PICP or MMP1 remained predictors of LV
mass in both sexes.

Nevertheless, the correlation between biomarkers of
collagen type I metabolism and LV thickness and mass is
not a universal finding in previous studies in HCM.26,34,35

Studies in HCM elucidating the relative contribution of fibrosis
to the magnitude of hypertrophy and heart weight found clear
but weak correlations.38 In FD, the magnitude of the increase
of fibrotic tissue in endomyocardial tissue was not as high as
the cardiomyocyte area and glycosphingolipids vacuoles.39

Despite the possibility of greater contribution of cardiomy-
ocytes hypertrophy than fibrosis to the degree LV hypertro-
phy, the predictive value of the collagen type I synthesis
biomarker to LV mass is evident.

In addition, there was significant correlation between
MMP1 and tissue Doppler systolic and early diastolic
myocardial velocities, further supporting the role of MMP
inhibition in diastolic function impairment, as described
previously for HCM.34

As expected, PICP was the sole biomarker with significant
difference between LGE-positive and -negative FD patients;
however, we cannot rule out that these findings reflect only
the significant correlation between PICP and LV mass, as LV
mass was significantly higher in patients with LGE. Further-
more, PICP was already elevated in FD patients with normal
echocardiograms and without LGE. Nonetheless, the diagnos-
tic accuracy of PICP and the PICP:ICTP ratio (reflecting the

Table 4. Correlation Between Type I Collagen Turnover Biomarkers and Cardiac Imaging Parameters

PICP (ng/mL) PICP/B-AP ICTP (ng/mL) ICTP/TRAP5b MMP1 (ng/mL) MMP2 (ng/mL)

Echocardiogram

dIVS, mm 0.438* 0.378* 0.178 �0.017 �0.519* �0.300*

dLVPW, mm 0.322* 0.234 0.204 0.043 �0.438* �0.294*

LVMi, g/m2.7 0.378* 0.313* 0.197 0.013 �0.484* �0.235

LA area, cm2 0.173 0.066 0.092 0.080 �0.129 �0.239

DT, ms 0.103 0.059 �0.024 �0.187 �0.294* �0.145

S0(s), cm/s �0.023 0.071 0.020 �0.046 0.354* 0.188

S0(l), cm/s �0.029 �0.017 �0.063 0.083 0.230 0.127

E0(s), cm/s �0.125 �0.113 0.130 0.139 0.354* 0.288

E0(l), cm/s �0.037 0.000 0.127 0.234 0.280* 0.200

E/E0(a) 0.105 0.005 0.027 �0.082 �0.097 0.087

Cardiac MRI

LGE (yes) 88.8* 12.5* 0.066 �0.024 �5.27 �239.3

Data are shown as mean difference for categorical variables and as q for continuous variables. B-AP indicates bone-specific alkaline phosphatase; dIVS, diastolic interventricular septal
thickness; dLVPW, diastolic left ventricular posterior wall thickness; DT, E-wave decelerating time; E/E0(a), left ventricular rapid filling velocity/average (septal and lateral) early diastolic
myocardial velocity measured at the mitral annulus; E0(l), early diastolic myocardial velocity measured at the lateral corner of the mitral annulus; E0(s), early diastolic myocardial velocity
measured at the septal corner of the mitral annulus; ICTP, carboxyterminal telopeptide of type I collagen; LA, left atrium; LGE, late gadolinium enhancement; LVMi, left ventricular mass
indexed for height; MMP, matrix metalloproteinase; MRI, magnetic resonance imaging; PICP, carboxyterminal propeptide of procollagen type I; S0(l), systolic myocardial velocity measured
at the lateral corner of the mitral annulus; S0(s), systolic myocardial velocity measured at the septal corner of the mitral annulus; TRAP5b, tartrate-resistant acid phosphatase type 5b.
*P<0.05.
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balance between synthesis and degradation) to detect LGE
was high, �75% after adjustment for bone metabolism, and
significant. Moreover, the addition of the PICP:ICTP ratio to
routine clinical predictors (LV mass and NT-proBNP) seems to
increase the ability to correctly classify a patient regarding
LGE status.

Previous results in HCM found no significant correlation
between collagen type I metabolism biomarkers and LGE,26

and these results are certainly related to the limited resolution
of LGE to detect focal replacement fibrosis9 and the inability
to detect early diffuse interstitial fibrosis.10 Nevertheless,
sensitive ELISAs may detect very small amounts of circulating
PICP; they provide a more sensitive index of fibrosis and
reflect subtle changes in myocardial composition that are not
detectable by cardiac MRI.

A novel cardiac MRI technique, T1 mapping (assessing T1
relaxation times), may overcome the inability of LGE to detect
diffuse interstitial fibrosis. High T1 relaxation times are
observed in diffuse fibrosis, protein deposition, and water in
edema. Low T1 values are seen in iron or lipid deposition;
however, in FD cardiomyopathy, cardiac lipid storage is a

hallmark, and T1 mapping has been studied as an imaging
biomarker for early detection of cardiac involvement (with low
native T1).12,13 Consequently, the capacity of T1 mapping to
detect early diffuse fibrosis may be impaired because of low
native T1 (fibrosis may be detected only in the “pseudonor-
malization” stage, when the amount of fibrotic tissue is
enough to overcome the low native characteristic FD
cardiomyopathy) and needs further evaluation.

Collagen Type I Metabolism Biomarkers: Previous
Findings in FD Cardiomyopathy
To our knowledge, only 2 studies have evaluated cardiac
extracellular matrix turnover in FD. Shah et al27 reported
increased levels of MMP9, with significant correlation with
MSSI and inverse correlation with midwall fractional shorten-
ing of the left ventricle. No difference was found in levels of
TIMP1 and TIMP2 between FD patients and controls. In
contrast to the identified decrease in MMP1 and MMP2 with
increasing cardiomyopathy severity, MMP9 has been identi-
fied in HCM as a profibrotic marker.35

Table 5. Influence of Other Variables in Biomarkers of Collagen Type I Turnover

PICP (ng/mL) PICP/B-AP ICTP (ng/mL) ICTP/TRAP5b MMP1 (ng/mL) MMP2 (ng/mL)

Demographic

Sex (female) �48.9* �7.5* �0.11* �0.02 5.7 �55.6

Age, y 0.077 0.071 �0.153 �0.175 �0.334* �0.277*

Diagnosis

Age at diagnosis, y �0.059 0.009 �0.142 �0.100 �0.308* �0.309*

Plasma a-gal A (female), nmol/h/mL �0.318 �0.444* 0.028 0.029 0.071 �0.017

Plasma a-gal A (male), nmol/h/mL 0.120 0.145 0.012 0.035 �0.121 �0.055

Disease severity

MSSI 0.394* 0.287* 0.194 0.189 �0.392* �0.222

FIPI 0.258* 0.141 0.158 0.043 �0.374* �0.211

Plasma lyso-Gb3 (female), nmol/L 0.402* 0.463* 0.225 0.255 �0.123 0.094

Plasma lyso-Gb3 (male), nmol/L 0.240 0.095 0.171 0.308 0.037 0.266

NT-proBNP, ng/mL 0.289 0.489* �0.163 �0.084 �0.533* �0.262

eGFR, mL/min/1.73 m2 �0.122 �0.081 �0.060 �0.059 0.289* 0.262*

Treatment

ERT (yes) 13.6 3.8 0.03 �0.01 �1.0 �56.3

Age at ERT initiation, y �0.187 �0.139 �0.217 �0.218 �0.217 �0.220

Time in ERT, y 0.204 0.110 �0.213 �0.288 �0.014 0.146

ACEI/ARB (yes) �27.0 �1.8 �0.03 �0.04 �8.2 �173.4

b-Blockers (yes) 6.3 0.2 �0.03 �0.00 4.7 67.5

Data are shown as mean difference for categorical variables and as q for continuous variables. ACEI indicates angiotensin-converting enzyme inhibitors; a-gal A, a-galactosidase A; ARB,
angiotensin II receptor blockers; B-AP, bone-specific alkaline phosphatase; eGFR, estimated glomerular filtration rate; ERT, enzyme replacement therapy; FIPI, Fabry International
Prognostic Index; ICTP, carboxyterminal telopeptide of type I collagen; lyso-Gb3, globotriaosylsphingosine; MMP, matrix metalloproteinase; MSSI, Mainz Severity Score Index; NT-proBNP,
N-terminal probrain natriuretic peptide; PICP, carboxyterminal propeptide of procollagen type I; TRAP5b, tartrate-resistant acid phosphatase type 5b.
*P<0.05.
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Kr€amer et al6 reported an increase in 3 biomarkers of
collagen metabolism (PICP, ICTP, and PIIINP) compared with
healthy historical controls; however, no difference in these
markers was observed between patients with and without
fibrosis in the cardiac MRI. The authors explained this finding
assuming a systemic fibrotic state in FD, involving the heart, the
kidneys, and other organs. Nevertheless, a subanalysis by sex
and adjustment to bone turnover was not performed and could
be crucial; usually female patients have amilder phenotype, but
the rise of the collagen markers due to bone turnover can
misleadingly overestimate myocardial fibrosis. Moreover, the
previously described limitations of LGE techniques to detect
cardiac fibrosis certainly influenced the results.

Limitations
This study has several limitations. First, histologic correlation is
absent, although it could be very useful for biomarker validation,
but endomiocardial biopsy is an invasive and potentially harmful
technique. Second, the cross-sectional design hinders the
prognostic value of these biomarkers and the influence of ERT
and angiotensin-converting enzyme inhibitors or angiotensin II

receptor blockers on them (we are currently performing a
longitudinal evaluation). Third, laboratory standardization of
these biomarker assays is an urgent need to improve their
clinical application. Fourth, no core reading of the echocardio-
grams and cardiac MRIs was performed as part of the
standardized research protocol. Fifth, there is no correlation
with speckle-tracking analysis of echocardiograms because this
was not available in the majority of the cohort, and there is no
quantification of the LGE area, although no correlation was
identified in previous studies. Sixth, there is no correlation with
T1 mapping cardiac MRI techniques.

Moreover, in this study, we recruited a relatively small
cohort of FD patients that does not represent the entire
spectrum of FD cardiomyopathy phenotypes. Further research
is needed to address the value of the studied biomarkers in a
larger and more heterogeneous cohort of FD patients.

Conclusion
This study provides new, relevant data to understand the
natural history of fibrogenesis in FD cardiomyopathy. It
shows, for the first time, that serum biomarkers of collagen

Table 6. Predictive Model of LV Mass by Univariate and Multivariable Regression Analysis

LV Mass (Univariate) LV Mass (Multivariable)

R P Value b P Value

PICP 0.413 0.001 0.081 0.418

PICP/B-AP 0.510 <0.001 0.919 <0.001

ICTP 0.170 0.202

ICTP/TRAP5b 0.016 0.906

MMP1 �0.339 0.010 �0.066 0.646

MMP2 �0.285 0.032 0.016 0.910

PICP/ICTP 0.217 0.102

PICP/ICTP adjusted 0.379 0.004 0.035 0.751

Age 0.486 <0.001 0.392 0.010

Age at diagnosis 0.274 0.035 0.066 0.644

Age at ERT initiation 0.310 0.058

Time in ERT 0.320 0.050 �0.094 0.288

Plasma a-gal A (female) �0.027 0.906

Plasma a-gal A (male) �0.004 0.987

MSSI 0.631 <0.001 0.041 0.686

FIPI 0.658 <0.001 �0.149 0.417

Plasma lyso-Gb3 0.409 0.009 �0.012 0.898

NT-proBNP 0.414 0.040 0.028 0.759

eGFR �0.388 0.003 �0.057 0.645

a-gal A indicates a-galactosidase A; B-AP, bone-specific alkaline phosphatase; eGFR, estimated glomerular filtration rate; FIPI, Fabry International Prognostic Index; ICTP, carboxyterminal
telopeptide of type I collagen; lyso-Gb3, globotriaosylsphingosine; LV, left ventricular; MMP, matrix metalloproteinase; MSSI, Mainz Severity Score Index; NT-proBNP, N-terminal probrain
natriuretic peptide; PICP, carboxyterminal propeptide of procollagen type I; TRAP5b, tartrate-resistant acid phosphatase type 5b.
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type I metabolism identify ongoing fibrosis in the early stages
of FD cardiomyopathy and possibly predict the development
of LV hypertrophy, highlighting the importance of developing
therapies to mitigate fibrosis and change the natural history of
FD cardiomyopathy.
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Supplemental	Material	



Data S1.
	Supplemental Methods	

Laboratorial	methods	

Plasma	lyso-Gb3	was	quantified	by	liquid	chromatography	tandem-mass	spectrometry	(Agilent,	

ultra	performance	liquid	chromatography	[UPLC]	triple	quadrupole	[QqQ]	electrospray	ionization	[ESI]).	

The	 quantification	 was	 achieved	 by	 multiple	 reaction	 monitoring	 (MRM)	 of	 the	 transitions	 mass-to-

charge	 ratios	 (m/z)	 786,4à282,3	 and,	 as	 internal	 standard	 1-β-D-glucosylsphingosine	 (GSG),	

460,5à280,3.	 The	 result	 was	 extrapolated	 from	 the	 calibration	 curve	 obtained	 from	 responses	 of	

calibrators	of	known	concentrations	versus	internal	standard.	

PICP	was	measured	in	serum,	by	an	ELISA	method	(QUIDEL	Corporation®,	Hannover,	Germany;	

category	number	8003),	according	to	manufacturer	instructions.	The	microelisa	strip	plate	is	pre-coated	

with	human	PICP	monoclonal	antibody	and	the	kit	uses	p-nitrophenyl	phosphate	substrate	to	measure	

the	 immune	 complex	 obtained	 during	 the	 reaction;	 final	 colorimetric	 reaction	 is	 measured	 by	

photometry	at	405	nm.		

ICTP	 was	 measured	 in	 serum,	 by	 an	 ECLIA	 method	 (Roche®	 Diagnostics	 GmBH,	 Mannheim;	

Germany;	 reference	 11972308122)	 in	 an	 automated	 analyser	 COBAS	 e411	 instrument,	 according	 to	

manufacturer	 instructions.	 The	 detection	 of	 the	 marker	 in	 the	 samples	 is	 made	 using	 human	 ICTP	

monoclonal	antibody.	

MMP-1	 was	 measured	 also	 in	 serum,	 in	 an	 assay	 using	 a	 double-antibody	 sandwich	 ELISA	

(SunRed®	Biotechnology	Company;	category	number	201-12-0917),	according	to	the	instructions	of	the	

manufacturer.	The	microelisa	strip	plate	is	pre-coated	with	human	MMP-1	monoclonal	antibody	and	the	

kit	 uses	 biotin-streptavidin-HRP	 technology	 for	 measure	 de	 immune	 complex	 obtained	 during	 the	

reaction;	final	colorimetric	reaction	is	measured	by	photometry	at	450	nm.	

MMP-2	 was	 measured	 in	 serum,	 also	 by	 a	 double-antibody	 sandwich	 ELISA	 assay	 (SunRed®	

Biotechnology	 Company;	 category	 number	 201-12-0905),	 according	 to	 the	 instructions	 of	 the	

manufacturer.	The	microelisa	strip	plate	is	pre-coated	with	human	MMP-2	monoclonal	antibody	and	the	

kit	 uses	 biotin-streptavidin-HRP	 technology	 for	 measure	 de	 immune	 complex	 obtained	 during	 the	

reaction;	final	colorimetric	reaction	is	measured	by	photometry	at	450	nm.	

B-AP	 was	 measured	 in	 serum,	 by	 ELISA	 methodology	 (QUIDEL	 Corporation®,	 Hannover,

Germany;	 category	 number	 8012),	 according	 to	 the	 instructions	 of	 the	manufacturer.	 The	microelisa	

strip	 plate	 is	 pre-coated	 with	 human	 B-AP	 monoclonal	 antibody	 and	 thee	 kit	 uses	 p-nitrophenyl	



phosphate	substrate	 to	measure	 the	 immune	complex	obtained	during	 the	reaction;	 final	colorimetric	

reaction	is	measured	by	photometry	at	405	nm.	

TRAP-5b	was	measured	 in	 serum,	by	 an	ELISA	assay	 (ids,	 Immunodiagnostic	 Systems®,	United	

Kingdom;	category	number	SB-TR201A),	according	to	the	manufacturer	instructions.	The	microelisa	strip	

plate	is	pre-coated	with	human	TRAP5b	monoclonal	antibody	and	the	kit	uses	p-nitrophenyl	phosphate	

substrate	 to	measure	 the	 immune	complex	obtained	during	 the	 reaction;	 final	colorimetric	 reaction	 is	

measured	by	photometry	at	405	nm.	



Table	S1.	Mutation frequency.

Mutation	 n	 %	
p.N215S 10	 16.7	
p.F113L 9	 15.0	
p.G35E 7	 11.7	
c.700_702del 2	 3.3	
p.R227X 2	 3.3	
p.C52G 2	 3.3	
p.L166P 2	 3.3	
p.N42V 2	 3.3	
p.R342Q 2	 3.3	
unknown	 2	 3.3	
other*	 20	 33.3	
*	Mutations	presented	by	only	one	patient	within	the	study



Figure	 S1.	Boxplot of PICP to ICTP ratio (before and after adjustment for bone collagen 
turnover) in controls and FD subgroups. 
PICP:	carboxy-terminal	propeptide	of	procollagen	type	I;	ICTP:	carboxy-terminal	telopeptide	of	type	I	collagen.	
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Figure	 S2.	 Correlation between PICP to ICTP ratio (after adjustment for bone collagen 
turnover) and left ventricular mass (upper image); boxplot of PICP to ICTP ratio (after adjustment 
for bone collagen turnover) in LGE negative and positive patients (lower image).  
PICP:	carboxy-terminal	propeptide	of	procollagen	type	I;	ICTP:	carboxy-terminal	telopeptide	of	type	I	collagen;	LVM:	left	ventricular	mass;	LGE:	
late	gadolinium	enhancement.


