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Liquid biopsy: one cell at a time
Su Bin Lim 1,2, Wen Di Lee2, Jyothsna Vasudevan2,3, Wan-Teck Lim4,5,6 and Chwee Teck Lim 1,2,7,8*

As an alternative target to surgically resected tissue specimens, liquid biopsy has gained much attention over the past decade. Of
the various circulating biomarkers, circulating tumor cells (CTCs) have particularly opened new windows into the metastatic
cascade, with their functional, biochemical, and biophysical properties. Given the extreme rarity of intact CTCs and the associated
technical challenges, however, analyses have been limited to bulk-cell strategies, missing out on clinically significant sources of
information from cellular heterogeneity. With recent technological developments, it is now possible to probe genetic material of
CTCs at the single-cell resolution to study spatial and temporal dynamics in circulation. Here, we discuss recent transcriptomic
profiling efforts that enabled single-cell characterization of patient-derived CTCs spanning diverse cancer types. We further
highlight how expression data of these putative biomarkers have advanced our understanding of metastatic spectrum and
provided a basis for the development of CTC-based liquid biopsies to track, monitor, and predict the efficacy of therapy and any
emergent resistance.

npj Precision Oncology            (2019) 3:23 ; https://doi.org/10.1038/s41698-019-0095-0

INTRODUCTION
Despite the first report on breast circulating tumor cells (CTCs) in
1869,1 techniques for isolating these circulating biomarkers were
only first described in 1960,2,3 and were gradually improved over
the next 40 years. While much progress has been made with the
albumin gradient method and FDA-approved CellSearch® system
during the first generation of CTC research,4 the existence of
heterogeneous CTC subpopulation highlighted the need to
develop marker-independent isolation technologies.5,6 Since then,
label-free techniques utilizing the principles of biophysical
properties have been developing rapidly as the second genera-
tion.4,7 FDA-approved/listed platforms, such as CellSearch® (Silicon
Biosystems) and ClearCell® FX (Biolidics) are exemplary technol-
ogies that have been widely used and demonstrated the clinical
significance of CTCs.8–12

Currently, 265 clinical trials regarding CTCs are listed on
clinicaltrials.gov. Despite successful CTC enumeration, achieving
high yield and high purity remains challenging because of millions
to billions of blood cells and a few to tens of CTCs present as
background and target cells, respectively, in a milliliter of whole
blood from cancer patient.13 It has been posited that the
conventional EpCAM-based enrichment method would require
5 L of blood to detect at least one CTC in metastatic disease with
99% sensitivity.9 Such exceptionally low CTC frequencies could be
attributed to progressively lost expression of epithelial markers
during epithelial-to-mesenchymal transition (EMT) in circula-
tion,14,15 as higher CTC counts have been reported with
immunologic or physical property-based enrichment.16–18

In addition to the wide range of CTC detection rate reported in
clinical studies, broad phenotypic plasticity and diversity have
been observed at multiple molecular levels during metastatic
cascade – from EMT and invasion19–21 to evasion of apoptosis,22

chemoresistance,23 migration,24 intravasation,25 extravasation, and
organ colonization.26 While a tumor biopsy from either primary
tumor or metastatic lesion alone may not always recapitulate the
entire tumor harboring segregated clones,27 spatiotemporally
heterogeneous CTCs collected in a sequential manner could
potentially reveal comprehensive window into the metastatic
disease for real-time monitoring of therapy response, which
remains an unmet need in current clinical practice with tissue
biopsy.

SINGLE-CELL ANALYSIS
Emerging sequencing data from spatially distinct tumors provide
clear evidence of intratumoral heterogeneity.28–30 Owing to the
technical challenges, however, CTC analyses have been limited to
bulk-cell samples, missing the information on cellular hetero-
geneity. The inevitable leukocyte contamination in any given
primarily enriched sample further complicates downstream
molecular analyses. Such confounding effect is particularly
pronounced in transcriptomic studies when the activated
leukocytes concurrently overexpress cancer-associated biomar-
kers, such as MUC1 or HER2, masking the true expression of CTC-
specific transcripts.31 Their mesenchymal nature and hematopoie-
tic origin further interfere with the expression of EMT-related and
stem cell markers, respectively, resulting in false-positive
observations.32

The transition from bulk to single-cell analyses on patient-
derived CTCs has thus been fueled in part by studies over the past
five years. At the genomic level, they have identified clinically
relevant alterations, ranging from small-scale (e.g., single nucleo-
tide variation (SNV), microsatellite instability) to large-scale
mutations (e.g., copy-number variation, large-scale state transition,
inter/intrachromosomal rearrangement). These aberrations
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include time-varying SNVs during the course of chemotherapy,33

private mutations that are absent in either matched primary or
metastatic tumor34 and that are not yet listed in the COSMIC
database (http://cancer.sanger.ac.uk),35 and copy-number profiles
that distinguish chemosensitive from chemorefractory disease.23

Although limited in sample size and number of studies,
transcriptomic studies have further revealed complex and
heterogeneous expression patterns within and across patients.
For example, expression profiles of single CTCs have demon-
strated superior diagnostic accuracy in defining lineage identity
and in identifying clinically distinct subsets of tumors across
multiple myeloma and prostate cancers.36,37 They have also
revealed therapeutically relevant biomarkers38–40 (e.g., predictive
of resistance and/or response to adjuvant therapies), that are
involved in activated oncogenic signaling pathways41 (e.g., PI3K-
AKT-mTOR) and that are potentially targetable.24,36,38,41–43

INTEGRATED WORKFLOW
Despite the prevalence of EpCAM− CTCs44 and varying capture
efficiency,45 epithelial marker-dependent CellSearch® technology
remains as the most common enrichment method to isolate CTCs
from patient-derived peripheral blood. Pre-enrichment is often
required for recovery of preferably viable and intact CTCs, and can
be performed with direct imaging modalities,36 density gradient
centrifugation in Percoll or Ficoll,24,32 immunoaffinity,42,46–48

microfiltration in two43 and three41 dimensions, and microfluidic
approaches.37–40,49–51 Table S1 summarizes cell sorting and
isolation technologies, including methods, working principles,
features, limitations, and the reported recovery rates of spiked
cancer cells. Primarily enriched bulk CTC samples are subsequently
subjected to manual cell picking or micromanipulation,24,32,36,41–

43,46,48,49 and micro/nanoplatforms37–40,47,50,51 for single-cell isola-
tion and downstream molecular and phenotypic characterization
(Table 1).
Microfluidics has particularly come to the fore in the field

among the various isolating and cell sorting devices incorporating
hydrodynamics,12 optics,52 dielectrophoresis,53 magnetics,54 or
acoustics.55 The ability to manipulate even a small drop of whole
blood and to retain cells or molecules at defined locations inside
microfluidic devices enable characterization of chemical, thermal,
and/or temporal variations in a multiplex manner. Having the
benefits of integrated functionalities, microfluidic devices further
eliminate the need for independent multiple modules required for
sample preparation, purification and analysis, depending on input
characteristics. Microfluidic technologies have increasingly been
applied to rare cell populations, including CTCs, to explore
multiple modalities of CTCs at the single-cell level (Fig. 1). These
workflows coupled microfluidic systems, such as CTC-iChip,37–40,51
HBCTC-Chip,49 ClearCell® FX,12,50,56 NanoVelcroChip57,58 and Par-
sortix,41 with single-cell profiling technologies, such as whole
genome/exome sequencing (WGS/WES),56,58 single-cell RNA
sequencing (scRNA-seq) or PCR (scPCR), single-cell western
blotting (scWB) and secretion profiling.59,60

Gene-specific targeted preamplification or whole transcriptome
amplification (WTA) is required prior to sequencing or profiling to
analyze less than 1 pg of mRNA from the isolated single cells.
Current WTA methods include PCR-based, multiple displacement
amplification (MDA) or in vitro transcription (IVT)-based amplifica-
tion61 of cDNA templates transcribed from single-cell mRNA.
Many, however, are limited to selective amplification of the
polyadenylated RNAs, and thus may be biased to the 3’-end or the
5’-end of a transcript.62 Among a few WTA techniques developed
for full-length mRNA-characterization of a single cell, modified

Table 1. Workflow summary of single-cell transcriptomic studies that analyzed patient-derived CTCs

Cancer type CTC enrichment CTC criteria (micromanipulation) Single-cell profiling Number of CTCs
(number of
patients)a

Reference

Multiple myeloma FACS with serial dilution CD45−, CD138+ SMART-seq2 21 (2) 36

Colon CellSearch® CD45-, EpCAM+ Multiplex PCR 11 (8) 24

Ovary Biocoll separation,
Dynabeads® CD45
depletion

DAPI+, CK/EpCAM+, CD45- Multiplex PCR 15 (3) 32

Breast MagSweeper® EpCAM+ Microfluidic RT-PCRb 105 (50) 42

Microfluidic negCTC-iChip EpCAM/HER2/CDH11+, CD45/
CD16/CD14−

Optimized Tang’s method 15 (10) 49

Microfluidic CTC-iChip EpCAM/HER2/EGFR+, CD45− SMART-seq v4c 15 (10) 38

Microfluidic ClearCell® FX CD45/CD31−, Calcein+ d PolarisTM IFC 68 (4) 50

Melanoma MagSweeper® CD45−, Calcein+ SMART-seq 6 (1) 48

Prostate MagSweeper® CD45-, EpCAM+, DAPI- SMART-seq, Advantage 2
PCR (Clontech)

20 (4) 46

ScreenCell® CD45− Microfluidic RT-PCRe 38 (9) 43

Microfluidic CTC-iChip CD45-, EpCAM/CDH11+ Modified Tang’s method 77 (13) 37

Lung Integrated nanoplatform EpCAM+ Multiplex PCR 8 (1), 18 (1), 74 (1) 47

Microfluidic ClearCell® FX CD45− f Multiplex PCR 61 (20) 76

Prostate, breast CellSearch®, ParsortixTM EpCAM/pan-keratins+ Multiplex PCR 13 (1), 8 (1) 41

Pancreas, breast,
prostate

Microfluidic CTC-iChip CD45− Modified Tang’s method 7 (−), 29 (−), 77 (−) 51

aNumber of CTCs (patients) included in the final analysis
bNanoFlexTM 4-IFC Controller and BioMarkTM Real-Time PCR System
cDroplet digital PCR (Biorad ddPCRTM)
dMicrofluidic PolarisTM was used for single-CTC isolation
eBioMarkTM HD MX/HX system
fMicrofluidic chip was used for single-CTC isolation
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versions of SMARTer48 (e.g., SMART-Seq2) and that of Tang’s
method63 are commonly employed in single-CTC transcriptomic
studies aiming to achieve improved transcript detection, cover-
age, accuracy, and yield (Table 1).
For quantitative transcriptomic analysis, an accurate identifica-

tion of technical artifacts from intrinsic biological cellular
variability is critical to prevent spurious readings from single
CTCs. Ideally, quality control (QC) metrics should be performed
with the amplified cDNA products after preamplification step,
given the amount of genetic material minimally required. Current
single-cell transcriptomic studies on patient-derived CTCs have
assessed (1) the yield or concentration of amplified DNA,36,64–66 (2)
Cq values for selected reference, or housekeeping, genes using
qPCR,33,58 (3) fragment size distribution of selected DNA
sequences using gel/capillary electrophoresis,36,58,64,67–71 and (4)
genome integrity index (GII), which ranges from 0 (poor quality) to
4 (high quality) and is computed based on PCR bands of four
primer pairs using gel electrophoresis.23,72,73

Cells harboring QC-passed RNAs are subsequently subjected to
library construction, followed by scRNA-seq36,38,40,46,48–51 or
quantitative profiling with conventional qPCR,24,32 digital droplet
PCR (ddPCR)39,40 or microfluidic dynamic array.42,43 The quality of
constructed libraries are further validated with (1) the proportion
of reads mapping to genome, and/or (2) the number of genes
detected.50 Lineage specificity of CTCs is often confirmed by high
expression of cancer-specific markers and low expression of
leukocyte markers with pre-specified thresholds.37 Low success
rate of <60% for overall amplification and library preparation
attributed to multiple processing steps has been reported in CTC

studies, highlighting the need to systematically quantify QC
metrics prior to the analysis.

EXPRESSION DATA
Single-cell transcriptome of patient-derived CTCs have been
analyzed comparatively with cancer cell lines, white blood cells
(WBCs), matched primary tumors and/or metastases.24,37,42,43,48

Alternatively, expression levels were assessed and compared
between CTC subgroups defined by unsupervised hierarchical
clustering or other classification methods.41,49 In the following
sections, we focus on the most relevant gene signatures that are
perceived to be critical determinants of metastasis and disease
outcome and that are commonly differentially expressed in CTCs
at the single-cell level: EMT, stemness, interaction with blood
components, DNA repair, signaling pathways and drug targets
(Table 2).
In line with molecular evidences supporting EMT-driven

metastasis,24,32,41–43,49 bulk-cell studies have suggested the
contribution of EMT to early steps of the metastatic spread (i.e.,
tumor invasion, intravasation, CTC generation and survival, and
early seeding in secondary organs).74 Nonexclusive hypotheses of
EMT’s contribution to CTC biology suggest that (1) CTCs may have
been mesenchymally-shifted in primary tumors to have enhanced
survival properties through activation of genes involved in survival
pathways and escape from immune surveillance, or (2) undergo
EMT processes within the bloodstream by means of TGFß
liberated from circulating platelets.74 At the center of the research
axis is to identify and characterize such premetastatic subsets of
CTC population that are favored to be liberated from primary
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Fig. 1 Microfluidic technologies for single-cell molecular characterization of patient-derived CTCs. a ClearCell® FX-integrated workflow. Single-
cell genomic analysis: High concordance rate of EGFR mutations (T790M and L858R) was found between NSCLC CTCs and matched primary
tumors.12 Single-cell transcriptomic analysis: Patient classification was done for breast cancer and NSCLC through full-length mRNA
transcriptomic analysis50 and targeted gene expression profiling,76 respectively. Single-cell metabolomics analysis: Supervised principal
component analysis (PCA) revealed unique metabolic profiles between CTCs and lymphocytes in gastric and colorectal cancer patients.117 b
Single-cell proteomic analysis: Microfluidic single-cell western blotting (scWB) enabled the rapid analysis of an eight-plex protein expression in
ER+ breast cancer.60 c Single-cell secretomic analysis: The integrated microfluidic on-chip system revealed highly heterogeneous expression
profiles of two secreted proteins (i.e., IL-8 and VEGF) in CTCs from lung cancer patients.118
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tumors and survive in the bloodstream to succeed in the early
colonization phases. scRNA-seq is particularly well suited in this
regard to discover distinct subsets of CTCs capable of forming
metastasis.
Emerging single-cell profiling data provide clear evidence of a

continuum in the development of CTC phenotypes, including
epithelial (E), epithelial-mesenchymal (E/M), mesenchymal (M) and
stem-like phenotype. Highly heterogeneous expression of epithe-
lial markers (e.g., EpCAM, CK18, CK19) was observed in CTCs across
colorectal,24 ovarian,32 breast,42 and prostate37,41,43 cancers.
Similarly, mesenchymal or EMT-related genes (e.g., CDH2, VIM,
TGFß1, ZEB1/2) were commonly enriched in single ovarian,32

breast,42 and prostate41,43 CTCs. Compared to matched primary/
metastatic tumor tissue and cell lines, migration-related and cell-
cell adhesion genes (e.g., TSPAN8, CD151, CD44v6, and FN1) were
generally downregulated in colon24 and prostate CTCs,43

respectively, possibly suggesting a lack of their need for mobility
and migratory capabilities in the bloodstream in these
cancer types.
While some studies have suggested that CTCs that are ‘frozen’

in either E or M state lacking EMT plasticity are unable to form
metastases,75 the repetitive observation of patient-derived CTCs
expressing mesenchymal attributes directly correlated with the
appearance of metastases in recent studies suggest that these
mesenchymal-shifted cells, and not benign cells passively
detached from a primary tumor, are precursors of metastasis.76

Clinical data linking CTC-derived EMT markers with multiple
clinical parameters are discussed elsewhere.74 It remains to be
elucidated whether there exist specific hybrid E/M states that are
particularly prone to perturbations triggering extensive pheno-
typic and functional change in circulation. Computational
analytical tools enabling pseudo-time reconstruction of transition-
ing cells77–79 and the topography underlying E/M plasticity80 from

Table 2. CTC phenotypes and the related gene signatures expressed in patient-derived single CTCs

Significance Gene signatures Cancer type Reference

Epithelial EpCAM, KRT5, KRT7, MUC1 Ovary 32

EpCAM, KRT8, KRT18, KRT19, CTNNB1 Breast 42

EpCAM Breast 49

EpCAM, KRT7, KRT8, KRT18, KRT19 Prostate 37

EpCAM, KRT19 Prostate 41

EpCAM, KRT18, KRT19, CEACAM7 Colon 24

Mesenchymal/EMT CDH2, VIM, SNAI2, CD117, CD146 Ovary 32

TGFB1, FOXC1, CXCR4, NFKB1, VIM, ZEB2 Breast 42

CDH2, MMPs, PTPRC, VIM, ZEB1, ZEB2 Prostate 41

S100A9, NPTN, S100A4 Breast 42

CDH11 Breast 49

CDH2, CDH11, FN1, VIM, SERPINE1 Prostate 37

IGF1, IGF2, EGFR, FOXP3, TGFB3, PTPRN2, ALDH1, ESR2, WNT5A Prostate 43

VIM Colon 24

FN1, CD44v6, CD151, TSPAN8 Ovary 32

Stemness CD44, ALDH1A1, NANOG, OCT4 Ovary 32

CD44, ALDH7A1, KLF4 Prostate 37

CD24, CD44 Breast 42

CD24, CD44 Prostate 41

CD44, PTEN, CD133, NKX3-1, MYC, ATXN1, GATA3, TNFSF11, TNFRSF11B, TACSTD2 Prostate 43

CD166, CD26, CD44s Colon 24

DNA repair PARP1 Breast 42

RAD51 Prostate 41

Interaction with platelets ITGA2B, ITGB3, SELP Breast 49

Immune-related CXCL14 Breast 38

CCL4, CXCL2, CXCL9, IL15, IL1B, IL8 Prostate 41

CD47, CALR Colon 24

HLA-G, HLA-H, HLA-C, HLA-B, TRPM1 Melanoma 48

Signaling pathways, drug
targets

SERPINA3, WFDC2, FAT1, FAT2, SFRP1, SFRP2 Breast 38

AKT1, AKT2, PIK3R1, PTEN Breast 42

EGFR, HER2 Breast 49

Hormone signaling (AR non-genotropic, GR), growth factor signaling (MET, ERBB1
downstream, SMAD2/3 nuclear, SMAD2/3, TGFBR), cell adhesion signaling (Nectin,
EPHA2 fwd, E-cadherin stabilization, E-cadherin nascent AJ)

Prostate 37

AR, AR-V7, ERBB2, EGFR, PIK3CA, MTOR Prostate 41

Drug targets (PIM3, MTOR, ACP5, PIM1, PIM2, AXL, ALPL, SPP1, ADRA2A, HERPUD1,
AURKA, MUC1), Wnt signaling, SHH signaling, TGFB signaling, EGFR signaling

Prostate 43

CD38, SLAMF7, BCMA Multiple myeloma 36
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a static single-cell gene expression data may be applied to
prospective studies to clarify the nature of hybrid E/M states and
define their role in metastasis.
It has been suggested that tumor cells having an intermediate

phenotype of EMT show the highest plasticity and thus represent
cancer stem cells (CSCs).81 Varying expression levels of stem cell
markers (e.g., CD24, CD44, ALDH1A1, NANOG, and OCT4) were
found at the single-cell level in ovarian,32 breast42, and prostate
CTCs.37,41 Interestingly, genes involved in oncogenic signaling
pathway were found to be differentially expressed in single CTCs
depending on the level of cellular plasticity or stemness. In
prostate cancer, for example, expression of the key regulators in
the PI3K/Akt/mTOR signaling pathway (i.e., PI3K, mTOR) were
highly expressed in CD44−/CD24+ CTCs.41 This subset of CTC
populations may thus be more susceptible to perifosine (Akt
inhibitors) and rapamycin (mTOR inhibitors) treated with conven-
tional chemotherapy or radiotherapy.82 Given that both CD44+/
CD24− and CD44+/CD24+ tumor cells have functional significance
in initiating tumor growth83 and that CTCs express these two cell
surface markers across various malignancies, it remains to be
investigated whether their expression has comparable functional
significance in circulation.
The innate immune regulator, CD47, was the only gene that was

upregulated in CTCs compared to matched tumor tissue in
colorectal cancer,24 suggesting a potential immune-escape
mechanism associated with CTC survival in circulation. Another
form of immune evasion was suggested in melanoma, where the
genes associated with the escape from immune surveillance,
including HLA genes (i.e., HLA-G, HLA-H, HLA-C, and HLA-B) and
TRPM1, were significantly downregulated in CTCs compared to
melanoma cell lines, primary melanocytes, human embryonic
stem cells, and lymphoma cell lines.48 Transcriptional repression of
HLA genes has been associated with complete loss of MHC class I
membrane expression, and importantly, the primary resistance to
immune checkpoint inhibitor (ICI)-based immunotherapy.84 The
screening of plasma-membrane proteins through whole tran-
scriptomic analysis is thus of utmost interest to identify not only
CTC-specific diagnostic biomarkers48 but also immune escape and
survival mechanisms underlying resistance to immunotherapy.
Another key player is TGFß-releasing platelet, which may adhere

to CTCs in the bloodstream.19,85 In line with this hypothesis,
platelet markers were frequently expressed in isolated single CTCs,
as well as in CTC clusters in breast cancer.49 Labelle et al. showed
that TGFß liberated from platelets may induce EMT in tumor cells
within the bloodstream and further promote the formation of the
early metastatic niche.85,86 Based on these observations, it is
speculated that TGFß expressing CTCs may represent a specific
subpopulation having high metastatic potential. Importantly,
platelet-dependent natural killer (NK) cell escape mechanism has
been suggested by in vitro and preclinical models across diverse
mouse and human cancer cell lines.74 It is thus posited that the
presence of platelets may equip tumor cells with enhanced ability
to escape elimination by the immune system through EMT,
ultimately promoting their metastatic competency.
Genes involved in DNA repair (e.g., RAD51, PARP1) and G2/M

DNA damage checkpoint (e.g., AR, TK1, PLK1, MAGEA1, MAGEC1,
MAGEC2, CTAGB1, BIRC5, TOP2A) were frequently expressed in
prostate CTCs.41,46 While several transcripts (e.g., PLK1, TOP2A)
have been associated with aggressiveness in localized prostate
cancer,46 it is noteworthy that CTCs derived from advanced cancer
patients also highly expressed these markers relative to normal
prostate tissues. In contrast, compared to cancer cell lines and
matched primary tumors, genes involved in cell proliferation (e.g.,
MYC, ATF3, TERT, RAC1, FOXA1, RRM1, CCNB1, BIRC5, Ki-67, c-Myc)
were significantly downregulated in CTCs across breast42 and
colorectal24 cancers, suggesting a non-proliferative, or dormant,
state of CTCs in circulation.

Given the generally diminished expression of proliferation-
related genes, conventional therapeutic strategies targeting
proliferating cells may not be the best for eradicating “seeds” of
metastasis. Promisingly genes involved in the PI3K-AKT-mTOR
signaling pathway, in which many are currently in (pre)clinical trial
stages or FDA-approved, and other potentially targetable genes
were frequently expressed in CTCs at high levels across various
malignancies including multiple myeloma,36 and breast,38,42

prostate41,43 and colorectal24 cancers. The incorporation of
single-CTC analysis into clinical trials may thus be ideal from
clinical perspective for the development of companion
diagnostics.42

CLINICAL SIGNIFICANCE
scRNA-seq or scPCR technologies have been widely applied to
study early mammalian development, neuronal diversity, and
immune system, revealing spatial and temporal dynamics, cellular
heterogeneity, clonal distribution, pathways, and crosstalk.87–89

Their application in the context of CTC-based liquid biopsy,
however, has been limited primarily to capturing a snapshot of the
cellular states at a given point in time. In clinical contexts, it is the
dynamics of such cellular state (i.e., temporal heterogeneity) that is
of primary interest to monitor therapeutic response during the
course of treatment. Despite technical challenges, a few single-cell
studies have successfully demonstrated clinically-promising use of
CTC-derived transcripts particularly for serial monitoring of the
disease in a prospective cohort.
Prior knowledge of genes of interest is often required in

traditional gene expression analysis for clinical diagnosis of tissues
or cells in circulation using immunohistochemistry, in situ
hybridization, or flow cytometry, yielding semi-quantitative data.
In contrast, scRNA-seq generates high-throughput expression data
in an unbiased, objective manner, with superior diagnostic
sensitivity over existing technologies. For example, scRNA-seq-
acquired expression data of a few selected, well-established
markers, which were previously used to sort multiple myeloma
(MM) cells by flow cytometry, achieved near perfect accuracy in
differentiating normal and malignant plasma cell.36 Similarly, the
improved diagnostic performance of CTC-based multiplex assays
was observed in advanced breast cancer, supporting the robust
detection capability of single-CTC-derived markers.38

The benefits of scRNA-seq technologies in the CTC field are
particularly pronounced in classifying sub-populations of cells that
may be clinically distinct, which are overlooked by conventional
diagnostics due to the insufficient resolution. Unsupervised
hierarchical clustering of single circulating MM cells-derived
transcripts, for example, differed considerably from one patient
to another, indicating the presence of different subtypes in MM.36

The existence of key chromosomal translocations associated with
clinical risk may further be inferred from scRNA-seq data;
circulating MM cells overexpressed CCND1 and CCND3 indicative
of chromosomal translocations of CCND1/IGH fusion from t(11;14)
and CCND3/IGH fusion from t(6;14)), respectively, and the
presence of these genomic aberrations were further validated in
matched MM by fluorescence in situ hybridization (FISH).36

Provided that the overexpression of CCND1 has been associated
with resistance to EGFR-, BRAF- and MAF-targeted therapies,90

single-CTC transcriptome may be used as a predictive indicator for
diagnosis, MM classification, and therapeutic efficacy in clinical
settings.
Transcriptomes of single CTCs have been analyzed compara-

tively with that of CTC clusters, which have been associated with
enhanced metastatic competence91–93 and poor prognosis49,94,95

across multiple cancer types. Differential expression analysis
between the two groups identified specific gene signature (e.g.,
cell junction component plakoglobin) required in forming CTC
cluster and distant metastases, in which high expression levels
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were indicative of short metastasis-free survival.49 Further, single-
CTC-derived transcriptomes revealed signaling pathways (i.e., non-
canonical Wnt signaling) relevant to treatment response (i.e., anti-
androgen resistance), which was not evident in matched primary
tumors, in prostate cancer.37 Similarly, the potential role of Sonic
Hedgehog, Wnt, and TGFß signaling pathways in metastatic
castration-resistance and immunotherapy response was sug-
gested by single-CTC expression profiles in prostate cancer.43

By applying label-free microfluidic approaches,12 our group
recently demonstrated how previously developed prognostic
index,96,97 and the resulting prognostication, can be refined with
single-CTC-derived gene signatures while accounting for cellular
heterogeneity.76 Expression of a subset of matrisome genes,
including MMP1 and MMP12, in tumor tissues and CTCs was
consistently associated with metastatic spread and early recur-
rence of non-small-cell lung cancer (NSCLC), respectively. In line
with our earlier observations of EGFR mutations (e.g., T790M/
L858R) in CTCs and matched tumor tissue,12 this study provides
the molecular evidence linking a sold tumor with single-CTC-
based indicator associated with clinical presentation at the
transcript level, highlighting promising predictive value of
circulating biomarkers.
Despite a well-established role as a biomarker prognostic of

survival particularly in breast cancer,98,99 microscopy-based CTC
enumeration alone may not be sufficient to predict drug
resistance in the absence of robust molecular characterization.
As an advanced alternative, single-CTC-derived transcripts may
serve as an excellent source to develop quantitative scoring assay
comprising tissue lineage-specific genes that are not present in
normal blood cells. To date, very few studies have applied such
metrics in a prospectively monitored patient cohort to demon-
strate their practical utility in the clinical setting.38–40

In 2018, the Haber group presented a predictive digital CTC
scoring strategy to identify patients with poor overall survival (OS)
and progression-free survival (PFS) in metastatic castration-
resistant prostate cancer treated with first-line abiraterone.40

Serial monitoring of CTCs further predicted early dissemination in
another independent cohort of patients with localized cancer.40

The same group found that digital quantification of intracellular ER
signaling in single CTCs was predictive of residual disease in
localized breast cancer patients treated with neoadjuvant
therapy.38 Importantly, this 17-gene CTC score predicted early
progression in metastatic breast cancer treated with endocrine
therapy, which was not adequate to suppress ER signaling, despite
having functional ESR1.38

The greatest focus in immuno-oncology has been on tumor
biopsy-derived features, such as PD-L1 expression, tumour-
infiltrating lymphocyte (TIL) density, T-cell receptor (TCR) clonality,
mutational burden, and immune gene signatures, for their
increasingly recognized predictive values for ICI-based immu-
notherapy.100 Although promising, their invasive nature makes
repeated sampling not clinically practical particularly for meta-
static diseases over the course of treatment. The development of
less-invasive CTC-based liquid biopsies as a predictive biomarkers
for response to ICI treatments will therefore be particularly
promising. Hong et al. recently showed that the scoring model
recapitulating temporal dynamics of CTCs identified patients with
better OS and PFS in ICI-treated melanoma patients, demonstrat-
ing the feasibility of quantifying transcripts derived from
microfluidically enriched CTCs for predicting patients likely to
benefit from ICI therapies.39 Larger studies will be required to
develop and establish such generalized framework for guiding
therapeutic decision-making.

CHALLENGES AND BEYOND
The advent of sequencing technologies has created a new era of
precision medicine. The prospect of applying this concept to

develop clinically applicable biomarkers for diagnosis, prognosis,
and prediction of therapy response has been extensively explored
on cancer patients. Particularly, liquid biopsies focusing on the
analysis of CTCs and cell-free tumor DNA (ctDNA) in the
bloodstream are evolving into promising clinical parameters.101

ctDNA may allow mutational analyses to monitor tumor dynamics
during cancer treatment102 and offer easier handling, storage, and
shipping of samples compared to CTCs.103 A small number of
mutant gene fragments present in ctDNA, which are further
diluted by normal circulating DNA fragments released by
apoptotic cells, however, require highly sophisticated methods
to accurately assess tumor-specific genomic alterations (a detailed
comparison between the two types of analytes is beyond the
scope of this review). Nevertheless, a recently developed
CancerSEEK blood test that examines the presence of mutations
in cfDNA has achieved high sensitivity ranging from 69 to 98%
across five cancer types, showing great promise for early cancer
detection.104

CTCs represent intact and viable tumor cells that can be
analyzed at multiple biological levels, allowing sequential
sampling at multiple time points from patients undergoing
systemic drug treatment. It is thus possible to perform multi-
dimensional molecular and phenotypic characterization of these
cells, which increasingly serves as an essential tool in precision
diagnosis.105 Nevertheless, challenges remain in the field as these
putative metastatic precursor cells occur at extremely low
frequency relative to normal leukocytes in any given clinical
sample. Such rare nature of CTCs clearly raises the question of
whether these cells obtained at a single time point alone would
truly recapitulate spatially and temporally evolving landscape of
the entire tumor and its microenvironment, or the metastatic
state. Further, the recovery efficiency varies greatly across the
enrichment technology, posing additional challenges in under-
standing their cellular heterogeneity and the functional and
clinical significance of their appearance in the bloodstream.
Consequently, little is known about the molecular characteristics
and mechanisms, particularly in relation to drug resistance and
their capacity in circulating bloodstream with metastatic potential.
The confounding effects of inherent rarity and heterogeneity of

CTCs on the downstream analysis may further be exacerbated by
biased positive selection during single-cell isolation (i.e., enrich-
ment of target cells based on antibodies specific to CTC surface
markers), missing out cells with low or even no surface marker
expression in circulation which prove to be of clinical signifi-
cance.7 CTCs in advanced disease indeed exhibited predominant
epithelial-mesenchymal-mixed (E/M), or mesenchymal (M) pheno-
types (i.e., expressing mesenchymal markers) across multiple
cancer types, including esophageal squamous carcinoma,106

ovarian cancer,107 pancreatic cancer,108 colorectal cancer,109

triple-negative breast cancer,110 and hepatocellular carcinoma.111

These EMT-shifted CTCs would not have been detected by
immunoaffinity-based enrichment solely facilitated by antibodies
targeting epithelial markers (e.g., EpCAM and pan-keratins).
Capture efficiency may thus be enhanced by using cocktails of
antibodies,7 including both epithelial and mesenchymal biomar-
kers, or by utilizing tumor lineage-specific signatures38 without
making a priori assumption about the type of tumor cells.
In contrast, negative depletion (i.e., removal of non-target cells)

using label-free approaches which leverage unique physical
properties (e.g., cell size) of CTCs may lead to relatively low purity
given the size overlap with leukocytes,112 as observed across
breast, colorectal and prostate cancers.113 Some may even present
a similar immunofluorescence staining pattern with leukocytes
expressing both leukocyte- and CTC-specific markers, adding
layers of complexity. Although such “double positive” cells are
often excluded from the analysis, their occurrence in healthy
blood samples at a much lower frequency point towards their
possible functional role and clinical impact.114 Microfluidic
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approaches are increasingly being applied in this regard to enable
both WBC elimination and selective CTC isolation on a single
platform, as demonstrated by two-stage microfluidic chips.115,116

Finally, many single-CTC studies do not state the total number
of cells initially isolated during the enrichment step, and the
quality and number of CTCs that have failed QC and that have
been excluded from further analysis. This makes the direct
comparison of transcriptional changes found in CTCs between
studies extremely difficult, as such molecular findings may only be
applicable to a small subpopulation of CTCs depending on the
enrichment technology or the QC metrics. The development of a
clearly defined and more uniform workflow is thus urgently
needed to facilitate its clinical application at different stages of the
antitumor therapy or cancer progression across, and within,
patients. The 17-gene CTC-specific assay is an exemplary
quantitative scoring metrics that has achieved high sensitivity
for monitoring of therapy response in localized and metastatic
breast cancer patients.38 Continuous optimization of the devel-
oped platform and prospective clinical validation of CTC-based
liquid biopsy will ultimately provide clinicians with robust, yet
readily understandable, test results in a shorter turnaround time
compared to conventional tissue biopsy.
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