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A B S T R A C T

Background and purpose Adaptive radiotherapy based on cone-beam computed tomography (CBCT) requires high
CT number accuracy to ensure accurate dose calculations. Recently, deep learning has been proposed for fast
CBCT artefact corrections on single anatomical sites. This study investigated the feasibility of applying a single
convolutional network to facilitate dose calculation based on CBCT for head-and-neck, lung and breast cancer
patients.
Materials and Methods Ninety-nine patients diagnosed with head-and-neck, lung or breast cancer undergoing

radiotherapy with CBCT-based position verification were included in this study. The CBCTs were registered to
planning CT according to clinical procedures. Three cycle-consistent generative adversarial networks (cycle-
GANs) were trained in an unpaired manner on 15 patients per anatomical site generating synthetic-CTs (sCTs).
Another network was trained with all the anatomical sites together. Performances of all four networks were
compared and evaluated for image similarity against rescan CT (rCT). Clinical plans were recalculated on rCT
and sCT and analysed through voxel-based dose differences and -analysis.
Results A sCT was generated in 10 s. Image similarity was comparable between models trained on different

anatomical sites and a single model for all sites. Mean dose differences <0.5% were obtained in high-dose regions.
Mean gamma (3%, 3 mm) pass-rates were achieved for all sites.
Conclusion Cycle-GAN reduced CBCT artefacts and increased similarity to CT, enabling sCT-based dose cal-

culations. A single network achieved CBCT-based dose calculation generating synthetic CT for head-and-neck,
lung, and breast cancer patients with similar performance to a network specifically trained for each anatomical
site.

1. Introduction

In modern external beam image-guided radiotherapy (IGRT), cone-
beam computed tomography (CBCT) plays a crucial role in accurate
patient position verification [1]. Also, CBCT can facilitate online
adaptive radiotherapy (ART) by visualising daily anatomical variations
[2], without recurring to additional rescanning on CT.

CBCT image quality is inferior to that of CT in soft-tissue contrast
and CT number consistency due to the presence of artefacts [3].
Therefore, CBCT is not sufficient to perform accurate dose calculations
and patients need to be referred for a rescan CT (rCT) when anatomical
differences are noted between daily images and the planning CT [4].

However, scheduling and acquiring an rCT adds logistic complexity and
patient burden to the treatment. On the contrary, with ART based on
CBCT these issues can be addressed. For example, by enabling accurate
dose calculations on the daily CBCT images could eliminate the need for
acquiring an rCT [2]. A prerequisite for online ART based on CBCT is
that the CT number accuracy is sufficient to enable dose calculation.

Considerable literature has recently emerged proposing methods for
how to correct CBCT imaging artefacts and increase image intensity
consistency using: look-up table-based approaches [5], deformable
image registration (DIR) of the planning CT to the daily anatomy on
CBCT [6] and model- or Monte Carlo-based methods for scatter esti-
mation and correction [7,8]. Specifically, DIRs enabled accurate dose
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calculations for head-and-neck (HN) [9] but obtained lower dose ac-
curacy in more complex anatomical regions with potential large inter-
fraction changes such as lung [10] and pelvis [11]. Also, Monte Carlo-
based methods were suitable for ART [12]. These techniques can be
deployed on a time scale of minutes, which is not acceptable when
aiming to use CBCT images for daily online dose evaluation or online
pre-treatment adaptation.

Recently, deep learning has been proposed for fast CBCT artefact
correction [13] as it can solve image-to-image translation problems
within seconds [14,15]. In this sense, previous work demonstrated the
use of a two-dimensional (2D) U-net to improve CBCT image quality
[13,16,17]. Moreover, it has been shown that converting CBCT with
deep learning resulted in accurate dose calculation for prostate cancer
patients [18,19] and HN cancer patients [20,21].

In this study, we investigated whether CBCTs converted to
synthetic–CT (sCT) with a single convolutional network can be used as
a surrogate of the daily anatomy for dose calculations of multiple
anatomical regions. We employed a network to synthetise CT from
CBCT of patients with HN, lung, or breast cancer. A single network
trained for all the anatomical sites was compared to three networks
trained per anatomical site. The performances of the single network was
compared to the site-specific networks in terms of image similarity and
dose calculation accuracy.

2. Material and methods

2.1. Imaging protocols

Ninety-nine patients diagnosed with HN (33), lung (33) or breast
(33) cancer undergoing radiotherapy were retrospectively included in
this study (Supplementary Material 1) in accordance to the guidelines
of the local Medical Ethical Committee. Irradiations were performed
between May 2016 and February 2019 on Agility linacs (Elekta AB,
Sweden) with CBCT-based pre-treatment position verification.

An rCT was acquired in case anatomical variations were noted on
the CBCT, including at least fourteen patients with rCT per site.

CBCTs were translated to apply clinical set-up corrections and re-
sampled to the planning CT within the X-ray volumetric imaging (XVI,
v5.0.2b72 Elekta AB, Sweden) system. CBCT acquisition occurred on
ten different linacs. Imaging protocols and clinical registration proce-
dures are detailed in Supplementary Material 2.

2.2. Image pre-processing

CT and CBCT were cropped to the size of the CBCT field of view
(FOV) that was identified according to the following steps. CBCTs were
thresholded at −999.9, obtaining a binary mask. In each transverse
slice, morphological closure was performed, and a bounding box con-
taining a circular mask with diameter of at least 26.9 cm was found for
each transverse plane. The largest circular mask over the transverse
slices was propagated for all the slices obtaining MaskCBCT. CT and
CBCT were cropped in the bounding box containing MaskCBCT.

In addition to cropping, image intensity of CT and CBCT was clipped
within the interval [-1024;3071] and linearly rescaled to [0;1].

2.3. Network architecture and training

To generate sCT from CBCT, a 2D cycle-generative adversarial
network (cycle-GAN) was adopted [22]. Cycle-GANs enable unpaired
training, which, compared to paired training, makes the network less
sensitive to residual registration mismatch of CT and CBCT.

The network consisted of two cycles called “forward” and “back-
wards” during which GANs generated CT from CBCT and vice versa.
Moreover, so-called “cycle-consistency” was enforced with an L1-norm
such that after converting from CBCT to CT and vice versa, the original
image should be obtained. The architecture (Supplementary Material 3)

was based on the cycle-GAN provided by Zhu et al. [22], and it was
implemented in Tensorflow (v1.3.0)1.

Three networks were trained separately on each anatomical site;
another network was trained on all anatomical sites to investigate
whether a single network may generalise for all anatomical sites to-
gether. To train, validate and test the network, the patient population
for each anatomical was split into three datasets: 15 patients per site for
training, 8 for validation and the remaining 10 for testing. For the
single network, the data split in train/validation/test was maintained,
e.g. same patient in each set, for the single network: 45 patients per site
for training, 24 for validation and the remaining 30 for testing. The
validation set was used to aid hyperparameter optimisation and to
determine at which iteration the training should be stopped to avoid
over-fitting (early-stopping), while the test set was used to evaluate the
performance of the network.

Training of the cycle-GAN was performed in the transverse plane;
for each iteration, random CT and CBCT slices of potentially different
patients and different location in the cranio-caudal direction were
supplied. A total of 3668 CBCT and 3668 CT slices were considered for
training composed by 1606x2 slices for HN, 1046x2 for lung and
1016x2 for breast cancer patients.

To investigate the impact on dose calculation of a different CT, the
patients included in the test set were selected among the patients with
an rCT and with CBCT and rCT acquired with minimal time differences
aiming at minimal antomical differences. Patients’ demographics were
controlled to ensure data balancing in terms of the number of patients
in the three sets. Also, we inspected the distribution of male/female,
age, tumour staging and linac on which CBCT were acquired
(Supplementary Material 1).

2.4. Image post-processing

First, the trained model was applied within MaskCBCT of the pre-
processed CBCTs (as described in 2.2). Then, the HU intensity range of
[-1024;3071] was restored with a linear rescaling obtaining the so-
called CBCTconv. CBCTconv were bi-linearly resampled from a matrix size
of 256x256 to the CT matrix size within MaskCBCT.

The CT FOV was about two-four times larger than the size of
MaskCBCT. However, to enable replanning, the volume covered by the
treatment beams should be considered. To generate images with full CT
FOV, the CBCTconv was substituted in the planning CT within the
MaskCBCT, obtaining the so-called synthetic–CT (sCT) (Fig. 1).

2.5. Image evaluation

Image similarity between sCT and rCT was compared to evaluate
whether the single network trained with all the anatomical sites was
comparable to the three networks trained per anatomical site. The ap-
propriateness of the CBCT conversion on the test set was assessed
performing an image and a dose comparison.

Similarities between the image intensity of the rCT and either the
sCT, CBCT, or planning CT were calculated within MaskCBCT in terms of
mean absolute error (MAE) and mean error (ME) over the 30 patients in
the test set. The rCT was considered as ground truth, and the metrics
were calculated in terms of mean ± 1 and range. Wilcoxon signed-rank
tests were conducted between sCT/rCT and planning CT/rCT for MAE.
Additional metrics, e.g. peak signal-to-noise ratio and structural simi-
larity, are reported in Supplementary Material 4. The comparison
planning CT/rCT was conducted to understand the impact of set-up
position and anatomical differences.

1 https://github.com/xhujoy/CycleGAN-tensorflow
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2.6. Dose evaluation

For the patients in the test sets, clinical plans were recalculated on
planning CT, sCT and rCT images in Monaco (v 5.11.02, Elekta AB,
Sweden) using a Monte Carlo algorithm on a grid of 3 × 3 × 3 mm3

with 5% statistical uncertainty for volumetric-modulated arc therapy
and 3% for intensity-modulated radiotherapy plans. Clinical contours,
delineated by a radiation oncologist on the planning CT, were rigidly
transferred to the sCT and rCT except for the body contour, which was
automatically re-delineated. These contours were considered as vo-
lumes of interest (VOIs).

Dose distributions were analysed through voxel-wise relative dose
differences ( =DDsCT

sCT rCT
rCT and =DDCT

CT rCT
rCT ) in the high dose re-

gion (dose >90% of the prescribed dose, inside MaskCBCT). Also, 3D
-analysis [23] with 3%,3 mm and 2%,2 mm criteria relative to dose on

rCT for regions with a dose > 10% of the prescription dose were per-
formed. For all dose comparisons, a 15 mm cropping for planning CT,
sCT and rCT in the proximity of body contour was performed to take
account of dose build-up [24] in the proximity of the skin [25].

To investigate the impact of dose difference within VOIs, analysis of
dose-volume histogram (DVH) points was performed on sCT and rCT.
Maximum dose and mean dose were inferred from the DVH. OARs were
considered for such analysis when they were present in at least four of
the patients for each anatomical site: submandibular and parotid
glands, spinal cord, larynx and brain stem for HN patients; lungs, heart,
oesophagus, spinal cord and trachea for lung patients; lungs, heart,
oesophagus, humerus and spinal cord for breast patients.

3. Results

Cycle-GANs required about eight days and five hours on a Tesla
P100 GPU (NVIDIA Corporation) to train 200 epochs. As a result of the
early stopping investigation, we opted for utilising 160000 iterations
(~100 epochs) for HN, 180000 (~170 epochs) for lung, 180000 (~160
epochs) for breast, and 360000 iterations (~100 epochs) for the net-
work trained on all the three sites combined. Generating sCT required
<10 s for an entire CBCT volume (~70 slices) on GPU and about 40 s on
a Intel Xeon(R) CPU (E5-2690 v4 @ 2.60 GHz, with 56 threads).

3.1. Image comparison

The time between rCT and CBCT in the test set was on average (±
[min; max]) ±1 3 [0;8] days and ±29 11 [8;67] days between CT and
CBCT. Image similarity metrics over the test patients are reported in
Table 1.

Generic network vs site-specific networks
Considering the HN case, the network trained on sole HN patients

resulted in an MAE of 51 ± 12 HU with a range of [35;74]; while,
when considering the network trained on all the patients, MAE was
53 ± 12 HU with a range of [35;77]. Similar results were obtained for
lung and breast cancer patients. In this sense, MAE between networks
trained per separate anatomical site and the single network trained on
all sites together were compatible in terms of range and with average
values within one , with p > 0.35.

Accuracy of CT numbers
Similarity was higher between sCT and rCT compared to between

CBCT and rCT, e.g. MAE decreased from 195 ± 20 (CBCT/rCT) to

Fig. 1. Schematic of the image workflow for applying the trained generator on a new 2D transverse slice of the CBCT of a breast cancer patient to create a sCT. After
image acquisition, registration (1) and pre-processing (2) the trained network is deployed producing converted CBCT (CBCTconv , 3) which substituted the original CT
within MaskCBCT obtaining the so-called synthetic CT (sCT).

Table 1
Overview of the image comparison. Image comparison calculated as mean (± 1 ) and range ([min;max]) of the test dataset (30 patients; 10 patients for each
treatment site) compared to the reference dataset in terms of mean absolute error (MAE) and mean error (ME) between the test (Test) image minus the reference (Ref)
image.

Site Head-and-Neck Lung Breast

Test Ref MAE ME MAE ME MAE ME
[HU] [HU] [HU] [HU] [HU] [HU]

CBCT rCT 195 ± 20 [160;230] −122 ± 33 [−183;−71] 219 ± 44 [133;280] 153 ± 48 [94;230] 152 ± 40 [98;213] 71 ± 37[7;115]
sCT single networka rCT 53 ± 12 [37;77] −3 ± 7 [−15;10] 83 ± 10 [72;104] −2 ± 11 [−25;10] 66 ± 18 [41;95] −6 ± 13[−24;13]

sCT separate networksb rCT 51 ± 12 [35;74] −6 ± 6 [−16;4] 86 ± 9 [73;105] −5 ± 14 [−28;10] 67 ± 18 [41;98] −5 ± 11[−18;14]
CT rCT 63 ± 17 [−40;90] −18 ± 15 [−46;3] 94 ± 23 [68;146] 9 ± 22 [−33;36] 63 ± 24 [40;115] 8 ± 20[−14;54]

a sCT obtained from a single network trained on all the anatomical sites.
b sCT obtained from three different networks trained on each anatomical site.
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53 ± 12 HU (sCT/rCT) for HN. All the similarity metrics calculated
between sCT/rCT and CT/rCT can be considered equivalent, with no
large differences when considering the range, for all three anatomical
sites. The mean MAE and range for sCT/rCT were smaller, about 5–10
HU, compared to CT/rCT due to the reduced time between sCT/rCT,
which resulted in less anatomical differences.

Fig. 2–4 show examples of CBCT and sCT obtained from the single
network for a HN, lung and breast cancer patient. The network reduced
scatter artefacts while retaining anatomical accuracy. For the lung pa-
tient shown in Fig. 3, atelectasis occurred between CT and rCT, which
was conserved in the sCT.

3.2. Dose comparison

Fig. 2–4 reports dose distributions calculated on CT, rCT and sCT
along with their DVHs. Dose comparison was performed on the sCT
generated with the network trained on all sites. We observed small

differences between doses on rCT and sCT. On average over the ten
patients for each site, dose differences between sCT/rCT (DDsCT) were
lower than for CT/rCT (DDCT), e.g. in the high dose region (D>90%) the
maximum absolute mean differences were below 0.2% for DDsCT and
below 0.9% for DDCT (Table 2).

The mean gamma pass rates with the 2%, 2 mm criteria were >95%
and higher for sCT/rCT compared to CT/rCT for all VOIs, which is in
line with the dose differences observed. The mean and maximum doses
on the sCT differed on average <0.5% compared to the rCT. Images of
the patients with dose differences in VOIs >2% were inspected on a
single-case basis, as reported in the Supplementary Material 5. DVH
points differences were <2% except for left lung and spinal cord of two
lung patients (L25, −2.1% and L27, 3.8%), the heart of a breast patient
(B31, −5.6%), and the oesophagus of two breast patients (B30, 3.1%
and B31, 2.3%). For one lung case (L25, Fig. S4), dose differences to
lung and spinal cord of about 2–3% were observed due to anatomical
differences of the lung. Also, residual artefacts characterised by

Fig. 2. Sagittal views for the head-and-neck cancer patient H24 of: (1st row) CBCT (1st column), CT (2nd column), rescan CT (rCT, 3rd column) and synthetic CT
(sCT, 4th column), along with (2nd row) the respective difference to rCT, and the doses (3rd row). The red, black, or green dotted rectangles indicate the position of
MaskCBCT. The days refer to the acquisition date relative of the planning CT. In the 4th row, the DVH is shown for target and OARs of sCT (solid lines) and rCT (dashed
lines). Note that for the clinical target volume (CTV) of the node (CTVnode) and the right (R) submandibular, the DVH differed between rCT and sCT. This is due to
anatomical differences between sCT and rCT.
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inhomogeneous CT numbers seem to be present along the craniocaudal
direction in the lungs for sCT; it appears that for this case the CBCT
artefacts were not fully corrected by the network within the lungs. Also
for the other lung case (L27, Fig. S5), anatomical differences were ob-
served in the lung. In addition, the CBCTs were characterised by severe
scatter artefacts due to obesity. On sCT, the spinal cord was not entirely
recovered, possibly resulting in local differences. Besides, the spinal
cord is located in a low-dose region, which may be highlighted when
considering metrics as voxel-wise relative differences.

4. Discussion

The cycle-GAN increased the accuracy of CT numbers compared to

CBCT, enabling sCT-based calculations for HN, lung and breast cancer
patients. Our main finding is that a single network trained on all the
three sites performed similarly to three networks trained on each ana-
tomical site, as justified by the results from the image comparison.

When investigating the accuracy of CT numbers on sCT calculating
image similarity to rescan CT, we found that HU values were compar-
able to values observed between CT and rCT. We observed a slight
improvement in performance for HN compared to lung and breast
cancer patients. The network was trained with higher amount of slices
for HN (1606) compared to lung (1046) and breast (1016). We hy-
pothesise that this data imbalancing may have resulted in relatively
increased performances for HN cancer patients. Also, the use of im-
mobilisation masks for HN case may increase the reproducibility of

Fig. 3. Axial views for the lung cancer patient L26 of: (1st row) CBCT (1st column), CT (2nd column), rescan CT (rCT, 3rd column) and synthetic CT (sCT, 4th
column), along with (2nd row) the respective difference to rCT, and the doses (3rd row). The red, black, or green dotted rectangles indicate the position of MaskCBCT.
The days refer to the acquisition date relative of the planning CT. In the 4th row, the DVH is shown for target and OARs of sCT (solid lines) and rCT (dashed lines).
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patient set-up or reduce motion artefacts in the images (both for CT and
CBCT) [26]. Though variations in the CBCT imaging protocol were
reported, e.g. kV, mAs and linac where the images were acquired, we
did not observe any effect on the quality of sCT. It may be of interest to
investigate the robustness of the method against variations of

acquisition settings, as performed by Maier et al. [17].
In terms of dose calculation accuracy, we compared sCT to rCT,

achieving excellent results for all the anatomical sites. We observed that
the largest dose differences were in low-dose regions, which are more
sensitive to statistical differences due to the low amount of events in the

Fig. 4. Coronal views for the breast cancer patient B27 of: (1st row) CBCT (1st column), CT (2nd column), rescan CT (rCT, 3rd column) and synthetic CT (sCT, 4th
column), along with (2nd row) the respective difference to rCT, and the doses (3rd row). The red, black, or green dotted rectangles indicate the position of MaskCBCT.
The days refer to the acquisition date relative of the planning CT. In the 4th rows, the DVH is shown for target and OARs of sCT (solid lines) and rCT (dashed lines).

Table 2
Statistics of the dose comparison of the thirty patients in the test set for the sCT trained on all the anatomical site together. The values are reported as percentage
mean± 1 and range [min; max].

sCT vs rCT CT vs rCT

Sites DDa
sCT 3%,3mm

b
2%,2 mm

c
DDd

rCT 3%,3mm
b

2%,2 mm
c

[%] [%] [%] [%] [%] [%]
Head-and-neck ±0.1 0.5[ 0.8;0.7] ±99.3 0.4[98.7;99.9] ±97.8 1[95.8;99.2] ±0.9 1.1[ 1.8;2.0] ±98.7 1[96.4;99.7] ±96 3[90;99]

Lung ±0.2 0.9[ 1.3;1.8] ±98.2 1[96;100] ±94.9 3[89;98] ±0.1 1.5[ 2.6;3.0] ±98.0 1.7[95;100] ±94 4[86;99]
Breast ±0.1 0.4[ 0.5;0.8] ±97 4[86;100] ±92 8[71;98] ±0.3 0.8[ 1.7;0.7] ±98 3[91;100] ±93 6[80;98]

a =DD ·100sCT
sCT rCT

rCT on dose > 90% of the prescribed dose.
b Pass rates of 3%,3mm on dose > 10% of the prescribed dose.
c Pass rates of 2%,2mm on dose > 10% of the prescribed dose.
d =DD ·100rCT

rCT CT
CT on dose > 90% of the prescribed dose.
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Monte Carlo dose calculations. Previous work with deep learning was
performed only on single anatomies, e.g. prostate [13,18,27,19], HN
[20,28] and lung [16] patients. For HN patients, similar findings were
reported by Liang et al. [20], where also a cycle-GAN was utilised
achieving a mean (± 1 ) 2%, 2 mm pass-rates of 98.4 ± 1.7%
compared to 97.8± 1% of this work. Also, Li et al. used a 2D U-net with
residual convolutional units obtaining mean DVH point difference <2%
[28]. In our study, similar mean differences (<0.5%) were achieved,
which demonstrates the high sCT quality resulting from our approach.
For lung patients, Xie et al. applied patch-based residual learning on
lung patients obtaining a conspicuous correction of cupping and
streaking artefacts [16]. However, they did not perform any dose cal-
culations making it difficult to compare the dose calculation accuracy of
the studies.

Repositioning inevitably occurred between planning CT, CBCT and
rCT. To further minimise anatomical and set-up differences, we could
have used DIR to increase the similarity of CBCT/sCT and CT/rCT.
However, we opted against it for the following reasons: (i) since we
were trying to reproduce the dose derived by CT-based calculations, we
did not want to modify CT or rCT further; (ii) residual deformation
errors should be thoroughly evaluated [29], and this was deemed out of
the scope of this investigation; (iii) recurring to using solely translation
mimics the set-up procedure that is currently performed clinically at the
linacs, and we aimed at observing the impact of dose evaluation in a
comparable setting.

The main limitation of this study is deemed to be the cohort size: ten
patients per anatomical sites in the test set may be considered as a low
number. Before clinical implementation, a study including a larger
number of patients should be initiated, paying particular attention to
the data variability and data balancing among anatomical sites. Besides,
we did not adapt the contours of targets and OARs, which is necessary
to investigate the clinical impact of replanning thoroughly.
Notwithstanding the relatively limited sample, this work offers valuable
insights into the generalisation capability of a single cycle-GAN, and, in
general, it shows that a single neural network can convert CBCTs of
multiple sites. This study was a single-center, and a next study should
investigate the feasibility of applying the same, or a re-trained model, in
a multi-center setting to ensure the robustness of the model.

Specifically, we showed that a single cycle-GAN can be utilised for
multiple anatomical sites as HN, lung and breast. This finding has im-
portant implications for simplifying the training of a convolutional
network since a single network may be adopted for different anatomical
sites. To fully understand whether a single network may facilitate
CBCT-based dose calculations for the whole body, we are currently
performing a novel study including additional anatomical areas, e.g.
pelvis, lower abdomen and brain.

In this work, we proved that a single cycle-GAN can convert CBCTs
into CTs, resulting in sCTs that have sufficient quality to enable dose
recalculation. Also, the conversion occurred in a matter of seconds,
which is line with the sCT generation time reported by other deep
learning approaches for lung [16], prostate [13,18,27,19] and HN
[28,20]. We foresee the speed of conversion as an important step to-
ward online ART. Besides, in conventional non-adaptive radiotherapy,
this methodology could be used to evaluate the dosimetric impact of
anatomical differences occurring during treatment, supporting the de-
cision to perform a rescan CT or not.

A single cycle-GAN was successfully trained to synthesise CT from
CBCT using unpaired training data. The resulted sCT resembled a di-
agnostic quality planning CT and featured the anatomy of the CBCT. In
terms of dose calculation accuracy, good results were obtained for all
the anatomical sites. In general, the proposed approach enables con-
siderably fast image conversion, and it may facilitate online adaptive
radiotherapy treatments.
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