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Nanozymes are nanomaterials with intrinsic enzyme-like properties. They can specifically
catalyze substrates of natural enzymes under physiological condition with similar
catalytic mechanism and kinetics. Compared to natural enzymes, nanozymes exhibit
the unique advantages including high catalytic activity, low cost, high stability, easy
mass production, and tunable activity. In addition, as a new type of artificial enzymes,
nanozymes not only have the enzyme-like catalytic activity, but also exhibit the
unique physicochemical properties of nanomaterials, such as photothermal properties,
superparamagnetism, and fluorescence, etc. By combining the unique physicochemical
properties and enzyme-like catalytic activities, nanozymes have been widely developed
for in vitro detection and in vivo disease monitoring and treatment. Here we mainly
summarized the applications of nanozymes for disease imaging and detection to explore
their potential application in disease diagnosis and precision medicine.
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INTRODUCTION

Nanozyme is a new type of artificial enzyme with intrinsic enzyme-like characteristics. In 2007, we
reported the landmark paper that Fe3O4 nanoparticles (NPs) have intrinsic peroxidase-like activity
(Gao et al., 2007), and since that time nanozymes have increasingly attracted attention from a
broad spectrum of scientists and technologists because of their high catalytic activity, low cost,
and high stability (Gao and Yan, 2016). To date, there are more than 300 types of nanomaterials
that have been found to possess the intrinsic enzyme-like activity, including the peroxidase activity
of Fe3O4 (Gao et al., 2007), Co3O4 (Mu et al., 2012), CuO (Liu et al., 2014), V2O5 (André et al.,
2011), MnFeO3 (Chi et al., 2018), FeS (Dai et al., 2009), graphene quantum dots (Nirala et al.,
2017), CeO2 (Xue et al., 2012), BiFeO3 (Wei et al., 2010), CoFe2O4 (He et al., 2010), FeTe (Roy
et al., 2012), gold@carbon dots (Zheng et al., 2016); oxidase activity of Au (Comotti et al., 2004),
Pt (Yu et al., 2014), CoFe2O4 (Zhang et al., 2013), MnO2 (Xing et al., 2012), CuO NPs (Hu et al.,
2017) and NiCo2O4 (Su et al., 2017); catalase activity of CeO2 NPs (Talib et al., 2010), Pt-Ft NPs
(Fan et al., 2011), Ir NPs (Su et al., 2015), MoS2 nanosheets (Chen et al., 2018), Prussian Blue NPs
(Zhang W. et al., 2016); superoxide oxidase activity of CeO2 (Tarnuzzer et al., 2005), Fullerene
(Ali et al., 2004), FePO4 microflowers (Wang W. et al., 2012), Gly-Cu (OH)2 NPs (Korschelt et al.,
2017), N-PCNs (Fan et al., 2018); haloperoxidase activity of V2O5 nanowire (Natalio et al., 2012),
CeO2x Nanorods (Herget et al., 2017); sulfite oxidase activity of MoO3 NPs (Ragg et al., 2014);
phosphatase activity of CeO2 (Kuchma et al., 2010), Fe2O3 NPs (Huang, 2018); phosphotriesterase
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GRAPHICAL ABSTRACT | Nanozymes for disease imaging and diagnosis.
Adapted with permission from Fan et al. (2012), Li et al. (2017),
Ding et al. (2019).

activity of Co3O4/GO nanocomposites (Wang et al., 2017), CeO2
NPs (Vernekar et al., 2016), MOF-808 (M = Zr) (Mondal and
Holdt, 2016), UiO-66@LiOtBu (M = Zr) (Mondal and Holdt,
2016); CO oxidase activity of Cu2O@CeO2 core@shell nanocubes
(Wang et al., 2015); chymotrypsin activity of Cr-MIL-101 (Nath
et al., 2016); G-selective DNA cleaving activity of fullerene
carboxylic acid (Tokuyama et al., 1993); protease activity of
Cu-MOF (Li et al., 2014); restriction endonuclease activity of
CdTe NPs (Sun et al., 2018); carbonic anhydrase activity of Co-
BBP@Tb-MOF (Sahoo et al., 2013), etc. With the emergence
of the new concept of “nanozymology” (Jiang B. et al., 2018),
“Nanozymes” have now become an emerging new field bridging
nanotechnology and biology.

As a new type of promising artificial enzymes, nanozymes
have shown a broad spectrum of applications because of their
obvious advantages including high stability, high catalytic
activity, low cost, large surface area for functionalization,
and tunable activity. In particular, by combining their unique
physicochemical properties (such as fluorescence, X-ray
absorption, and paramagnetic properties, etc.), nanozymes
have been widely explored from in vitro detection (Leng et al.,
2009; Liang et al., 2010; Roy et al., 2012) to in vivo disease
imaging and therapy (Hyon Bin et al., 2010; Yang et al., 2012;
Kwon et al., 2016; Singh et al., 2017; Fan et al., 2018). In this
review, we summarized the progress of nanozymes in disease
detection and imaging, and discussed the current challenges
and future directions of nanozyme development in disease
imaging and diagnosis.

NANOZYMES FOR PATHOLOGICAL
DISEASE DIAGNOSIS

Peroxidase nanozymes catalyze the oxidation of colorimetric
substrates, such as 3,3,5,5-tetramethylbenzidine (TMB),

diazo-aminobenzene (DAB), and o-phenylenediamine (OPD),
to give a color reaction that can be used for imaging the
recognized biomarkers within tissue sections for pathological
disease diagnosis (Figure 1A). In 2012, Our group developed
a magnetoferritin nanozyme (M-HFn) which is composed
of a recombinant human heavy-chain ferritin (HFn) protein
nanocage encapsulated an iron oxide nanocore for tumor
targeting and imaging (Fan et al., 2012). HFn nanocage
specifically recognized tumor cells via binding to overexpressed
transferrin receptor1 (TfR1) in tumor cells. Iron oxide nanocores
catalyzed the oxidation of color substrates in the presence
of H2O2 to produce an intense color reaction for visualizing
tumor tissues. We examined 474 clinical human specimens
including 247 clinical tumor tissues and 227 normal tissues
and demonstrated that M-HFn nanozymes could identify
nine types of cancer cells with a specificity of over 95% and
sensitivity of 98%. The concentration of M-HFn was 1.8 µM,
and the reactive time was 1 h for DAB staining (Figure 1B).
Likewise, Gu’s groups developed avastin antibody-functionalized
Co3O4 nanozymes as target-specific peroxidase mimics for
immunohistochemical staining of vascular endothelial growth
factor (VEGF) in tumor tissues and the concentration of
Ab-Co3O4 was 15 µg/ml, 100 µL, and the reactive time was
30 min for DAB staining (Dong et al., 2014). Due to the high
peroxidase-like activity, Co3O4 nanozyme has been proved
to be a potential label in place of natural enzymes. So far,
numerous of peroxidase nanozyme-based staining methods
have been developed for pathological diagnosis of breast
cancer, colorectal, stomach, and pancreas (Zhang T. et al.,
2016), hepatocellular carcinoma (Hu et al., 2014; Jiang et al.,
2019), esophageal cancer (Wu et al., 2011), and bladder cancer
(Peng et al., 2019).

By compare with the traditional immunohistochemistry,
the nanozyme-based pathological staining method is
more rapid and sensitive because of their higher catalytic
activity than natural enzymes [e.g., horseradish peroxidase
(HRP)], which greatly shortens the diagnostic time and
reduces the cost and thus has significant implications for
clinical pathological diagnosis. In addition, besides tumor
pathological diagnosis, peroxidase nanozymes have also
been used for pathological identification of human high-risk
and ruptured atherosclerotic plaques (Wang et al., 2019).
M-HFn nanozymes specifically distinguish the ruptured
and high-risk plaque tissues via TfR1, which is highly
expressed in plaque-infiltrated macrophages and significantly
associated with the increasing risk of plaque rupture. As
shown Figure 1C, M-HFn peroxidase nanozymes could
specifically distinguish high-risk plaque tissues from patients
with symptomatic carotid disease, and M-HFn staining
showed a significant correlation with plaque vulnerability
(r = 0.89, P < 0.0001).

To further improve the detection sensitivity of nanozyme-
based pathological staining method, much effort has been
expended to improve the enzyme-like catalytic activity of
nanozymes, including adjusting their size, shape, composition,
surface modification, and heteroatomic doping (Dong et al.,
2014; Zhang et al., 2017; Jiang et al., 2019; Li et al., 2019). In
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FIGURE 1 | Nanozymes for pathological tissue imaging. (A) Peroxidase nanozymes catalyze the oxidation of various peroxidase substrates (TMB, DAB, and OPD) in
the presence of H2O2 to produce different color reactions. Adapted with permission from ref (Jiang B. et al., 2018), © 2018, Springer Nature. (B) M-HFn nanozymes
specifically stained tumor tissues from different organs. Adapted with permission from ref (Fan et al., 2012), © 2012, Springer Nature. (C) Peroxidase nanozymes for
the pathological identification of unstable atherosclerotic plaques from patients with symptomatic carotid disease. Reproduced with permission from ref (Liang and
Yan, 2019), © 2019, American Chemical Society.

2018, Leong and co-workers engineered a mesoporous silica-
gold nanocluster hybrid nanozymes with excellent peroxidase-
like catalytic activity for selective detection of HER2-positive
(HER2+) breast cancer cell (Li et al., 2019). Owing to their high
catalytic performance, the prepared silica-gold hybrid nanozymes
achieved the detection limit of 10 cells using colorimetric analysis.
The hybrid nanozymes did not stain, or only slightly stained,

normal or lesion tissues, but strongly stained cancerous regions.
Significantly, there was a clear distinction between cancerous
cells and adjacent normal cells in representative sections
(Figure 2A).

Besides enzyme-like activity, the unique physicochemical
properties (such as luminescence, X-ray absorption, and
paramagnetic properties) of nanozymes also have been widely
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FIGURE 2 | Nanozymes for live cell and organelle imaging. (A) A multifunctional mesoporous silica-gold nanozyme platform for selective breast cancer cell detection
using a catalytic amplification-based colorimetric assay. Reproduced with permission from ref (Li et al., 2019), © 2019, The Royal Society of Chemistry. (B) Scheme
of nanozyme-based methods for mitochondrial fluorescent imaging. (C) Representative nanozyme-based light-mediated reversible catalysis for mitochondrial
imaging. Adapted with permission from ref (Wang et al., 2018).

developed for pathological tissue imaging. For instance, Cai’s
group developed a folate receptor-targeting gold nanocluster
as fluorescence enzyme mimetic nanoprobes for tumor
tissues fluorescence visualizing detection. In the work, the
intravenous dose used was 500 mg/kg for fluorescence
imaging, and the concentration of 1.8 mM, 1 h was used
for DAB staining (Hu et al., 2014). For the same tumor
tissue slice, nanozyme staining and fluorescent staining
were obtained simultaneously in a one-step incubation,
and the results were mutually complementary. Thus, the
developed fluorescence/nanozyme nanoprobes could provide
a molecular colocalization diagnosis strategy within clinical
tissue specimens, which efficiently avoids false-positive and false-
negative results, and greatly improves the detection accuracy,
credibility, and repeatability for cancer pathological diagnoses.
Likewise, Zhang et al., also developed a gold nanozyme-based
dark-field imaging assay as a novel immunohistochemical
method for detecting HER2 overexpressed in breast cancer
tissues (Lin et al., 2016). By quantitative analysis of the
optical property of dark-field imaging, cancerous tissue can
be quantitatively divided into four levels: “−, +, ++, and
++.”

Despite the fact that nanozyme-based staining methods
have been broadly developed for pathological disease diagnosis,
there are still many unresolved issues and challenges. The first
is how to improve the enzyme-like activity of nanozymes.
Since the catalytic activity of nanozymes is directly correlated
with their detection sensitivity, the improvement of enzyme-
like activity of nanozymes could help substantially improve
the detection sensitivity of nanozyme-based staining methods.
However, the issue of false positives would arise along
with the improved enzyme-like activity (Wu et al., 2019).

In addition, the false positive issue would become even
more severe due to the limited substrate specificity of
nanozymes. We proposed a strategy to improve both the
catalytic activity and the substrate specificity by introducing
histidine residues onto the surface of Fe3O4 nanozymes to
mimic the natural peroxidase enzymes (Fan et al., 2017).
Juewen Liu engineered a specific nanozyme using molecular
imprinting method to enhance the substrate selectivity and
activity of enzyme mimics (Zhang et al., 2017). In addition,
the oriented immobilization of the recognizing moieties to
the surface of nanozymes could also reduce false positives
greatly. Guo et al., constructed an inorganic/protein hybrid
nanozyme by oriented immobilizing nature enzymes on the
surface of inorganic graphene NPs (Liu Y. et al., 2019).
The prepared nanohybrid nanozymes exhibited outstanding
peroxidase-mimicking activity and excellent substrate selectivity.
The second challenge for nanozyme staining method is
how to quantically analyze the pathological staining results.
Currently, the clinical pathological analysis mainly relies on
experienced judgment, which is subjective, and variation between
observers is high for certain categories of pathological diagnosis
(Qian and Jiao, 2017). By combining the unique optical
property and enzyme-like catalytic activities, nanozymes hold
promise to achieve quantitative analysis for pathological disease
staining diagnosis.

NANOZYMES FOR LIVE CELL AND
ORGANELLE IMAGING

Cytological examination is an important means of clinical
disease diagnosis (Bromberg et al., 2007; Mosterd et al., 2008;
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FIGURE 3 | Nanozymes for in vivo imaging of disease progression. (A) Schematic illustration of exosome-like nanozyme vesicles for the H2O2-responsive catalytic
photoacoustic imaging of tumors. Reproduced with permission from ref (Ding et al., 2019), © 2019, American Chemical Society. (B) Representative nanozyme-based
tumor photoacoustic imaging images. Reproduced with permission from ref (Liu F. et al., 2019), © 2019, John Wiley and Sons. (C) Carbon-gold hybrid nanozymes
for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy of tumors. Reproduced with permission from ref (Zhang et al., 2019).
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Hao et al., 2011; Venugopal and Prasad, 2015). Exfoliated
cells from blood, cerebrospinal fluid, spinal fluid, chest water
and mucous liquid can provide a large amount of clinical
information (including cell morphology, cell type, and cell
proportion, etc.), which can be used for cancer screening
(Schiffman et al., 2000; Dillner et al., 2008), CNS hematologic
malignancies (Bromberg et al., 2007) anemia diagnosis (Hao
et al., 2011), and Langerhans cell granulomatosis detection
(Mosterd et al., 2008).

Currently, the most commonly used cytological detection
methods are flow cytometry, cytological smear and nucleic
acid testing. These traditional methods are characterized by
high technical requirements, time consuming or high cost.
Nanozymes-driven color reaction can be used for qualitative
and quantitative analysis of cytological features. Trau et al.
extended the application of nanozymes to the detection of
circulating tumor cells (CTCs) (Li et al., 2017). The targeting
antibody-conjugated Fe3O4 nanozymes simultaneously achieved
CTC magnetic isolation and visualization by catalyzing the
oxidation of colorimetric substrate TMB into blue colored
products. In addition, the visualized CTCs can be further
quantified using UV-vis measurement. The developed nanozyme
platform successfully detected 13 melanoma CTCs per mL blood
within 50 min, and the concentration of Fe3O4 nanozymes
used was about 0.2 mg/ml for TMB colorimetric development.
Later, Wang et al. (2018) also developed an Fe3O4 NPs-based
ultrasensitive electrochemical CTCs detection strategy (Tian
et al., 2018). Under the optimized experimental conditions, the
proposed nanozyme cytosensor exhibited significant analytical
performance for MCF-7 CTCs detection with a detection limit
of 6 cells mL−1 with a linear range from 15 to 45 cells
mL−1 at the acceptable stability condition and reproducibility.
Recently, nanozyme-based detection strategies have been broadly
developed for the cytological detection of breast cancer cell (Li
et al., 2019), cervical cancer cells (Yu et al., 2013; Maji et al., 2015),
human chronic myelogenous leukemia cell (Ge et al., 2014),
melanoma tumor cell (Li et al., 2017), and squamous cancer
(Wang et al., 2014) etc.

In addition to detecting CTCs, researchers also employed
the catalytic activity of nanozymes to design real-time detection
probes for organelle imaging in living cells. For example,
Qu et al., designed a heterogeneous palladium nanozyme
that could effectively mediate the bioorthogonal reactions
in situ through light and thus realized the specific imaging of
mitochondria in living cells (Wang et al., 2018) (Figures 2B,C).
Beside CTCs and organelle imaging detection, there are
also several other nanozymes-based colorimetric methods for
specific disease imaging, including jaundice (Santhosh et al.,
2014), acquired immune deficiency syndrome (Lin et al.,
2017), diabetes (Tianran et al., 2014), infectious disease
(Kim et al., 2014; Duan et al., 2015), and neurodegenerative
disease (Wang C. I. et al., 2012; Farhadi et al., 2014).
Thus, compared to traditional methods (such as PCR, cell
flow cytometry, and ELISA), nanozymes methods exhibit
more broaden prospect for live cell and organelle imaging
because nanozyme assay is more fast, cost-effective and much
easier to operate.

NANOZYMES FOR IN VIVO IMAGING

In addition to enzyme-mimicking activity, nanozymes also
exhibit fluorescence, electricity, paramagnetic properties and
other unique physicochemical properties. By employing the
unique physicochemical properties, nanozymes also have been
broadly developed for in vivo monitoring and imaging of
disease. For example, we utilized the unique r2 relaxivity
of iron nanozymes and achieved tumor in vivo magnetic
resonance imaging (MRI) after we achieved the in vitro
tumor tissue imaging by using the peroxidase-like activity of
iron-based nanozymes with a single-dose of 125I-M-HFn NPs
containing 45 µg HFn, 500 µCi 125I, and 11.2 µg Fe by
intravenously injection (Zhao et al., 2016). We also designed
a quantum-dot-based nanozyme vesicle for in vivo H2O2-
responsive catalytic photoacoustic imaging of nasopharyngeal
carcinoma (Ding et al., 2019). In this work, graphene quantum
dots showed intense peroxidase activity and effectively catalyzed
the peroxidase substrate 2,2′-azino-bis (3-ethylbenzthiazoline-
6-sulfonic acid) diammonium salt (ABTS) into its oxidized
form. The oxidized ABTS then exhibited strong near-infrared
(NIR) absorbance, rendering it to be an ideal contrast
agent for photoacoustic imaging. In the study, GQDzyme
was at a dose of 100 µg/mL, 100 µL by an intravenously
injection (Figure 3A). Jiang X. et al. (2018) achieved tumor
phototherapy and simultaneous photoacoustic/thermal imaging
and computed tomography by using a developed iridium oxide
catalase nanozyme with extraordinary photothermal conversion
efficiency and X-ray absorption coefficient showing a typical
example of fully exploiting the multifunctional properties of
nanozymes for tumor imaging and treatment. The BSA-IrO2 NPs
used in the study was 1.5 mM, 200 µL via an intravenously
injection (Jiang X. et al., 2018).

Nanozyme probes have also been broadly developed
for disease therapeutic monitoring. For example, in 2019,
Chen’s group prepared a tumor-microenvironment-activated
nanozyme-mediated theranostic nanoreactor for imaging-guided
combined tumor therapy (Liu F. et al., 2019). In their work,
the constructed activatable nanoreactors achieved non-invasive
imaging of tumor progression by using nanozyme-mediated
photoacoustic imaging signal and photothermal therapy (PTT)
function and the AMP NPs were at a dose of 10 mg/kg,
200 µL (Figure 3B). Cui’s group also prepared a mesoporous
carbon-gold hybrid nanozyme probe for real-time imaging,
photothermal/photodynamic and nanozyme oxidative therapy
of tumors (Zhang et al., 2019). The results demonstrated that the
synthesized nanozyme probes revealed excellent tumor targeting
efficacy, long tumor retention, and favorably diagnostic and
therapeutic effect for tumor (Figure 3C).

Besides cancer imaging diagnosis, nanozymes also have been
broadly exploited for many other disease imaging such as
infections, inflammation and some neurological diseases. For
example, Rotello et al., reported a gold NPs-based charge-
switchable nanozyme for bioorthogonal imaging of biofilm-
associated infections (Tonga et al., 2015). In this work, the
developed gold nanozymes could penetrate and accumulate
inside the acidic microenvironment of biofilms and achieved
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imaging detection of the biofilm-associated infections arising
from different and/or mixed bacteria species. Zhao et al.
fabricated MnO2 nanozymes as the intracellular catalytic DNA
circuit generators for versatile imaging of DNA base-excision
repair in living cells (Chen et al., 2017). MnO2 nanosheet was
used not only as a DNA nano-carrier but also a DNAzyme
cofactor supplier. In this study, DNAzyme strands are blocked
via the hybridization with the damaged bases-containing excision
probes, which could be recognized by the corresponding base-
excision repair enzymes in living cell. The detection signal could
be 40-fold amplified by integrating several sets of probes with
a dose of 20 µg mL−1 MnO2 nanozymes. Likewise, Yang et al.
(2018) reported a nanozyme tag enabled chemiluminescence
imaging probe for simultaneous multiplex imaging of cytokines.
The prepared chemiluminescence nanozyme probe provides a
novel and universal nanozyme-labeled multiplex immunoassay
strategy for high-throughput detection of relevant biomarkers
and further disease diagnosis. Thus, nanozymes open novel
avenues for monitoring the initiation and progress of diseases by
combining the unique physicochemical properties and enzyme-
like catalytic activities of nanozymes.

SUMMARY AND OUTLOOK

The emergence of nanozymes uncovers the biological effects
of inorganic nanomaterials. Nanozymes thus can be used as
an alternative of natural enzymes because of their capability
to address the limitations of natural enzymes such as low
stability, high cost, and difficult storage. Over the past decade,
nanozyme-based probes have been widely developed for disease
imaging and diagnosis from in vitro to in vivo. The typical
nanozymes for disease imaging diagnosis are summarized in
Supplementary Table S1.

Despite the remarkable advantages of nanozymes, there
still remains plenty of limitations while put nanozymes into
practical clinical application, such as poor dispersibility, easy
sedimentation after surface modification, limited catalytic
types, poor substrate selectivity, and potential nanotoxicity.
To further drive the rapid development of nanozyme-based
imaging agents for disease diagnosis, substantial breakthroughs
are expected by overcoming the following challenges: (1)
Rational design and surface modification are still remain
critical challenges to improve their substrate selectivity and

dispersibility of nanozymes. Thus, both experimental and
computational studies should be combined together to aid in
the process of nanozyme design and surface modification. (2) A
detailed understanding of the relationship between the catalytic
properties and the in vivo biological behaviors of nanozymes
is necessary. It is because the size, morphology and surface
property of nanozymes have a direct impact on their catalytic
activity and thus determine the in vivo biological behaviors
of nanozymes. (3) A systematic evaluation of the biological
fates and the biocompatibility of nanozyme systems (including
the cytotoxicity, in vivo uptake and behavior, biodistribution,
immunogenicity, blood compatibility, and tissue compatibility)
should be performed when administrated into living organisms,
since the biocompatibility and biodegradability are the common
concerns when move these systems into clinical practice.
(4) Developing standards and reference materials. Although
nanozymes have shown a broad range of applications from
in vitro biological detection to in vivo imaging diagnosis,
there are rare basic concepts and the corresponding standards
on nanozyme research. Therefore, nanozymes performance
should be fully normalization according to their size, shape,
modification to compare with each other when used for disease
imaging diagnosis.
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