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Abstract: One of the most challenging goals in modern pharmaceutical research is to develop models
that can predict drugs’ behavior, particularly permeability in human tissues. Since the permeability is
closely related to the molecular properties, numerous characteristics are necessary in order to develop
a reliable predictive tool. The present study attempts to decode the permeability by correlating
the apparent permeability coefficient (Papp) of 33 steroids with their properties (physicochemical
and structural). The Papp of the molecules was determined by in vitro experiments and the results
were plotted as Y variable on a Partial Least Squares (PLS) model, while 37 pharmacokinetic and
structural properties were used as X descriptors. The developed model was subjected to internal
validation and it tends to be robust with good predictive potential (R2Y = 0.902, RMSEE = 0.00265379,
Q2Y = 0.722, RMSEP = 0.0077). Based on the results specific properties (logS, logP, logD, PSA and
VDss) were proved to be more important than others in terms of drugs Papp. The models can be
utilized to predict the permeability of a new candidate drug avoiding needless animal experiments,
as well as time and material consuming experiments.

Keywords: steroids; Partial Least Squares regression; in vitro permeability; predictive model

1. Introduction

Steroids are an important category of active pharmaceutical ingredients (APIs). Their structure is
characterized by a rigid steroid ring of cyclopentane-perhydro-phenanthrene or sterane [1]. Steroids
are small lipophilic molecules and based on their genomic characteristics, they can enter the target cell
by a passive diffusion mechanism (mainly by the transcellular route) across plasma membranes [2,3].
As they are derived from cholesterol, they are insoluble in water, and have many pharmacologic effects
in almost every major system of the body including the endocrine, cardiovascular, musculoskeletal,
nervous, and immune systems [4]. Due to their properties they can be administrated almost through
every available administration route such as oral [5], buccal [6,7], transdermal [8], vaginal [9], otic [10],
ocular [11], nasal [12], inhalation [13], intravenous [14].

A candidate drug should have appropriate physicochemical and pharmacological properties in
order to successfully pass the pre-clinical and clinical trials. Such compound, must exhibit acceptable
pharmacokinetic scheme in terms of absorption, distribution, metabolism, excretion and tolerable
toxicity (ADMET). The simultaneous optimization of the above processes is one of the main challenges
of current pharmacological research [15–17]. Unfortunately, these methods are laborious and extremely
time-consuming, and they typically require 10–13 years [18,19].
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Nowadays, there is a huge number of new candidate drugs that are designed and synthesized in
the laboratory. In order to minimize the consumed cost and time, the pharmacokinetic behavior of
the compound can be predicted using computational tools (e.g., cheminformatics) providing reliable
pharmacokinetic models [15].

Quantitative structure activity/property relationship (QSAR/QSPR) studies correlate the
physicochemical properties of a compound to biological activity [16]. Such studies have been
extensively used for developing predictive models in which the chemical structures and biological
properties are correlated. Alternately, such data could be obtained through in vitro, ex vivo and in vivo
experiments [15].

Due to development of cheminformatics, there are plenty of QSAR modeling techniques, such as
support vector machine (SVM), artificial neural networks (ANNs), multiple linear regression (MLR),
principal component analysis (PCA) and partial least squares (PLS) regression [15]. The PLS method
provides the possibility for linear correlation of numerous observations and multiple X variables with
one or more Y variables [17].

Generally, PLS is a rapid and effective method for developing robust and reliable QSAR models.
It has been widely used for the design of plenty of predictive patterns, such as for the placental-barrier
permeability [18], blood–brain-barrier permeability from simulated chromatographic conditions [19],
central nervous system (CNS) drug exposure [20], blood–brain barrier permeation of α-adrenergic
and imidazoline receptor ligands using the parallel artificial membrane permeability assay (PAMPA)
technique [21]. Additionally, PLS tool was used to discover potent Wee1 inhibitors [22], to evaluate
2-cyano-pyrimidine analogs as cathepsin-K inhibitors [23] and also to characterize the performance of
dry powder inhalers [24].

The main scope of this research is to develop a new model that would be able to predict the
permeability of a compound having the chemical structure of steroids. This approach is based on the
correlation of its characteristics (physicochemical and structural properties) with the permeability of the
molecule determined by in vitro experiments. In the present study the permeability of 33 steroids has
been investigated using vertical Franz type diffusion cells including a synthetic cellulose membrane as
model membrane [25]. Due to low water solubility of steroids, solubility enhancers (e.g., Polyethylene
Glycol and Polysorbate 80) were used in order to achieve the desirable concentration for each compound.
The obtained experimental results were treated using the Partial Least Squares (PLS) methodology.
The developed models were validated and were found to be statistically significant with good
predictive ability.

2. Results

2.1. Partial Least Squares (PLS) Methodology

2.1.1. Dataset Compilation

The present study involves the data processing of the derived experimental results using the PLS
methodology. A Soft Independent Modeling of Class Analogies Simca-P (version 9; Umetrics, Uppsala,
Sweden) [26,27] chemometric software was used to construct the classical PLS models.

The object of the research was to investigate the effect of several properties of steroids on their
permeability at a hydrophilic cellulose membrane. The number of models developed in this process
was five since the Y response variable was either calculated differently, or refers to four separate
sampling times, after the first hour of the experiments. Therefore, P2h, P4h, P6h, P8h models denote
the number of steroids permeating the artificial membrane at 2 h, 4 h, 6 h and 8 h, respectively
(Y variable: permeability µg/cm2), whereas model Papp expresses the (Y) variable calculated as the
apparent permeability factor. In the present study, the theoretical explanation of steroids permeability
was mainly based on model Papp, which is considered as the most important. Each of the five models
contained 32 observations (analytes which belong to steroids) with 46 X variables and one Y variable.
The large amount of X variables used was considered necessary, even though some of them were
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proved to be of minor interest. In order to implement the proposed models, it was rather important
to carefully collect and record some of their most important properties and structural characteristics.
Each dataset consists of three parts. The first is the column containing the observations (33 analytes).
The second is the main part of each dataset and it is populated by a few physicochemical and structural
characteristics of the analytes. There are 37 descriptors (physicochemical properties), which were
calculated using a series of different software or free online databases (Table 1).

Table 1. X Descriptors of Dataset.

Open Melting
Point Dataset

EPA
DSSTox Data Warrior ACD/Labs Marvin PubChem pkCSM

Melting Point 1_cLogP 2_logP 3_logP Topological
PSA MW

1_cLogS logD, pH 7.4 2_logS 4_LogP
Hydrogen Bond

Acceptors
Refractivity

index
pKa (Strongest

Acidic) 3_logS

Hydrogen Bond Donors Molar
Refractivity

pKa (Strongest
Basic) Double bonds

Aromatic Rings PSA HLB Rotatable Bonds
Carboxyl group Polarizability No of Rings Surface Area

Carbonyl group Molar
Volume Caco2 Permeability

Hydroxyl group Intestinal absorption
Total Surface Area log Kp

Relative PSA VDss
PSA log BB

Shape Index logPS
Molecular Complexity Total Clearance
Molecular Flexibility

Drug-likeness

In more details, the studied compounds were imported in the free cheminformatics program Data
Warrior [28], in order to predict the clogP (calculated partition coefficient, log(Coctanol/Cwater)), the clogS
(water solubility at 25 ◦C, log mol/L), the number of hydrogen bond acceptors and donors, the number of
aromatic rings, carboxyl groups, carbonyl groups, hydroxyl groups, also the molecular complexity, the
total surface area (Å2), the relative polar surface area (Å2), the polar surface area—PSA (Å2), the shape
index, the molecular flexibility and the drug-likeness. Descriptors related with the pharmacokinetic
properties of the compounds were calculated by inserting the simplified molecular-input line-entry
system (SMILES) of the drugs in the freely accessible web server pkCSM [29]. The pharmacokinetic
properties employed were Caco2 permeability (log Papp), intestinal absorption (% absorption), skin
permeability (log Kp), steady state of volume distribution (VDss, log L/kg), blood-brain barrier (BBB)
permeability (logBB), CNS permeability (logPS), and total clearance (log mL/min/kg).

The melting point, ◦C of the compounds was obtained from Open Melting Point Dataset [30]
and also from EPA DSSTox [31]. The topological polar surface area (Å2) [32] was also predicted from
PubChem data [33]. Moreover, Marvin, a free ChemAxon tool [34] was used in order to draw and
characterize chemical structures of the compounds for the calculation of pKa, logP, number of rings,
distribution coefficient (logD) at pH 7.4 and their water solubility at 25 ◦C (logS, log mol/L). Details
about the molar volume Vm (cm3), molar refractivity (cm3), PSA (Å2), polarizability (cm3), molar
volume (cm3) were obtained via ACD/Labs [35]. All the above descriptors represented the X variables
of the model developed and they are summarized in Table 1.

It is important to mention that some descriptors (e.g., logP) were calculated using more than one
software program since there was a need to confirm their dominant role in the model. The structural
features were found in the constitutional parameters and are outlined with nine descriptors used to
decode the chemical structure of the analytes on the same basis. This was achieved by using integer
numbers and zero to indicate the presence, the multiplicity or the absence of a structural characteristic.

The third part of the PLS dataset is a column with Y variable that corresponds to the calculated
permeability of the drugs on Franz cells experiments. The Y variable is expressed as apparent
permeability Papp, or permeability P2h. P4h. P6h. P8h at different sampling times (2h, 4h, 6h, 8h).
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Variables’ Importance in the Projection (VIP) column plots provide information about the
importance of the parameters in the dataset. However, apart from the importance of a descriptor in
a model, it is crucial to know whether its impact on the signal response is positive or negative. For this
purpose, it was necessary to evaluate the loadings plots (w × c[1]/w × c[2]) of the models at the first
two components.

2.1.2. Validation

Normalization of the observations (values of both X and Y variables) was achieved using mean
centering and unit variance scaling. Validation of the PLS models was performed making use of three
techniques, Cross-Validation (CV) the external and the internal validation [26,36].

First, the Cross Validation (CV) was achieved by dividing data into seven parts and each 1/7th of
samples was excluded to build a model with the remaining 6/7th of samples. The Y values for the
excluded data were then predicted by this new model and the procedure was repeated until all samples
had been predicted once. If the original model is valid, then the plot of predicted Y versus actual
measured Y values will be a straight line with the RMSEE (Root Mean Squares Error of Estimation) as
low as possible (Figure 1) and calculated from Equation (1).

RMSEE =

√∑
(
∧
yi − yi)

2

N
(1)

(ŷi represents the estimated Papp value for the ith object and yi the reference Papp value)

Figure 1. Observed versus estimated values of model Papp with apparent permeability values as (Y)
variable, RMSEE = 0.00265379.

The prediction error sum of squares (PRESS) is a good measure of the predictive power of the
model, providing information about the significance of the component (a component is considered
significant when PRESS/Residual sum of squares < 1). Using the appropriate number of significant
components, the total models were fit (Table 2) according to Haaland and Thomas criteria [37].

Table 2. Statistical Parameters in Partial Least Squares (PLS) regression models.

Models R2Y 1 Q2 (cum) 2 Number of Components Excluded Observations

Papp 0.902 0.722 3 3
P2h 0.802 0.567 3 1
P4h 0.847 0.656 3 2
P6h 0.846 0.659 3 2
P8h 0.872 0.605 3 3

1 R2 =
∑N

i=1 (ŷi − yi)
2/
∑N

i=1 (yi − ȳi)
2 (ȳi represents the means of the true Papp values in the predictor set).

2 Q2 = 1−PRESS
SumSquares .

Verification of the reliability of the models was also achieved with the response permutation
methodology (internal validation). During this process, the data for Y are not changed but they are
randomly rearranged. Then the PLS model is applied again on the modified Y data and the R2Y
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and Q2Y values are recalculated. The above are compared with the initial values providing a first
indication about the validity of the model. This process is repeated (20 permutations/model) and the
results represent the statistical evaluation of the significance of the R2Y and Q2Y parameters in the
initial model. In the diagram derived, the y-axis represents the R2Y/Q2Y values of all models and the
x-axis represents the correlation coefficient between the modified and initial responses. In order to
summarize the results of the method, regression analysis is applied on both R2Y and Q2Y and the
regression lines are obtained. Verification of statistical significance of the original assessments is in
accordance with the intercept limits regarding permutations (Figure 2) and they are set to R2Y < 0.3−0.4
and Q2Y < 0.05 [38].

Figure 2. Internal validation test with 20 permutations, for model Papp. Intercepts: R2 = (0.0, 0.405)
marked black, Q2 = (0.0, −0.32) marked red.

External validation was performed dividing data set of model Papp in two equal parts training
and test set. Thereafter, the calculation of the training set and the prediction of the test were completed,
and their roles were swapped. The quality of external prediction was assessed by the Q2 (Q2

train =

75.4, Q2
test = 71.5) and the Root Mean Square Error of Prediction (RMSEP) from Equation (2) value,

where RMSEP was equal to 0.00770361 for the training set and 0.00764925 for the test set, respectively.

RMSEP =

√∑
(obs− pred)2

N
(2)

The fact that the two estimates are similar means that these two subsets have similar information
and can be combined in a total data set. External prediction may also aim the model to predict the
Y values of new entities, in other words, entities excluded from the data set. Hence, the model is
applicable either to interpret the behavior of a steroid based on its physicochemical properties or to
predict the behavior of an unknown drug in the human body. PLS regression analysis is appropriate
since it uses linear correlations and at the same time can predict with high reliability.

2.2. Interpretation of Steroids Permeability Through PLS

The permeability of a group of steroids across an artificial membrane was estimated using
a hydrophilic cellulose membrane and the apparent permeability coefficient values were calculated.
The mainly PLS model Papp was established using 32 compounds and a 47-descriptor analysis aimed at
identification of the most critical molecular properties that influence permeability across the artificial
membrane. According to the VIP plot of Papp model (Figure 3) logS, logP, logD (at pH 5.5 and 7.4),
PSA (topological and relative) and VDss were found to be the most influential descriptors (VIP > 1)
on the apparent permeability of the tested steroids through the cellulose membrane. All the other
descriptors were found to have a similar and non-discriminating effect on the permeability of the
tested compounds (VIP < 1).
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Figure 3. Variables’ Importance in the Projection (VIP) plot for the apparent permeability P values of
model P, at 95% confidence level.

Further information on the positive or negative effect of the X variables on the permeability is
derived from scatter w × c[1] versus w × c[2] plot for Papp model in Figure 4.

Figure 4. A scatter w × c[1] versus w × c[2] plot for Papp model.

Drug dissolution is almost always a precondition for adequate permeability and absorption and,
therefore, poor aqueous solubility is commonly associated with limited drug bioavailability [39]. It
has been also exemplified that poor solubility may originate from high lipophilicity, resulting in poor
permeability [40]. Compliant to this consensus, the findings of the current study support the positive
contribution of logS (marked red in Table 3) and the respective negative effect of logP (marked blue in
Table 3) on the Papp of the tested steroids.



Molecules 2020, 25, 1387 7 of 16

Table 3. Models’ VIP values.

Models’ VIP Values

P2h P4h P6h P8h

Var ID
(Primary) M2.VIP[3] Var ID

(Primary) M3.VIP[3] Var ID
(Primary) M3.VIP[3] Var ID

(Primary) M3.VIP[3]

Total Clearance 1.62825 1_cLogS 1 1.41597 1_cLogS 1.48033 1_cLogS 1.47640

Shape Index 2 1.45142 Shape Index 1.31645 logD, pH 5.5 3 1.19879 No. of triple
bonds 1.27167

Molar Volume 1.27798 Molar Volume 1.21737 3_logP 1.19154 Chlorine 1.22264
cMelting Point 1.25731 cMelting Point 1.18929 3_logS 1.18122 3_logS 1.18501

Refractivity
index 1.21565 Molar

Refractivity 1.15522 2_logS 1.17849 3_logP 1.17937

1_cLogS 1.21432 logD, pH 5.5 1.15097 Molar Volume 1.17612 Molar Volume 1.17567
Molar

Refractivity 1.19812 3_logS 1.15097 Drug-likeness 1.16409 Drug-likeness 1.17289

Polarizability 1.17929 Polarizability 1.14560 cMelting Point 1.14712 Fluoride 1.16495
Total Surface

Area 1.15973 2_logS 1.14311 Chlorine 1.13175 logD, pH 5.5 1.16166

No of triple
bonds 1.14692 Chlorine 1.14308 Fluoride 1.12684 2_logS 1.15902

2_logS 1.12114 carboxylate
group 1.13474 Molar

Refractivity 1.12456 cMelting Point 1.13450

carboxylate
group 1.11557 No of triple

bonds 1.12947 Polarizability 1.11544 Molar
Refractivity 1.11508

MW 1.09348 Fluoride 1.12462 1_cLogP 1.11174 Polarizability 1.10855

H-Donors 1.09223 Total Surface
Area 1.12262 logD, pH 7.4 1.10117 Refractivity

index 1.10584

Chlorine 1.08855 3_logP 1.12234 No of triple
bonds 1.09925 Total Surface

Area 1.08631

3_logS 1.07715 Refractivity
index 1.10689 Total Surface

Area 1.09019 1_cLogP 1.08316

logD, pH 5.5 1.05540 exper_Melting
Point 1.07645 4_LogP 1.08878 hydroxyl group 1.07759

Rotatable Bonds 1.05147 MW 1.06777 Refractivity
index 1.08517 4_LogP 1.06769

Surface Area 1.04603 H-Donors 1.05761 2_logP 1.08068 H-Donors 1.06767
exper_Melting

Point 1.03503 logD, pH 7.4 1.05533 hydroxyl group 1.06590 logD, pH 7.4 1.06241

hydroxyl group 1.03056 1_cLogP 1.05320 H-Donors 1.06502 2_logP 1.0599

logD, pH 7.4 1.00956 hydroxyl group 1.04762 MW 1.04701 exper_Melting
Point 1.05272

3_logP 0.97296 2_logP 1.04431 exper_Melting
Point 1.03706 MW 1.04095

Caco2
Permeability 0.96943 Surface Area 1.04168 carboxylate

group 1.03300 Surface Area 1.02086

4_LogP 0.96517 4_LogP 1.03678 Surface Area 1.02096 Shape Index 0.99368
1_cLogP 0.95059 Druglikeness 1.01070 Shape Index 0.99572 Relative PSA 0.98728

2_logP 0.93301 Rotatable Bonds 0.98079 Relative PSA 0.98111 carboxylate
group 0.97549

H-Acceptors 0.88952 Caco2
Permeability 0.96573 Caco2

Permeability 0.96947 Rotatable Bonds 0.95868

1 red indicates positive contribution, 2 green indicates size related descriptors, 3 blue indicates negative contribution.

PSA has been recently recognized as a useful predictor of permeability. It defines the polar part of
a molecule and correlates with passive molecular transport through membranes. It has been previously
observed that compounds with PSA < 60 Å are highly permeable, in contrast to those with PSA >

120 Å that are poorly permeable [41]. In that context, optimal permeability has been recognized when
PSA is below 120 Å. Apart from prednisolone 21-sodium succinate (PSA = 141 Å), which has been
classified as an outlier, PSA values for all steroids evaluated in the present study were below the cutoff

value (PSA < 110 Å) suggested for the identification of poorly permeable compounds. Even though it’s
been recognized that lower PSA contributes to higher permeability [41], that trend was not confirmed
here, mainly due to the absence of extreme variations in the PSA values and considering the relatively
narrow range of PSA for the tested steroids.

Lipophilicity is considered one of the main factors with a positive effect on drug permeation
across biological membranes. However, an inverse relationship between logP and permeability may be
encountered upon increasing drug lipophilicity, due to a greater tendency for drug partitioning from the
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aqueous phase to the membrane [42]. It has been previously proposed that steroid permeation through
a cellulose acetate membrane is a sequence of adsorption and desorption events with an intermittent
membrane diffusion process, with the latter being dependent on the permeant’s molecular size, its
interaction with the membrane and the membrane’s structural characteristics [43]. Such interaction
might be favored with decrease in steroid polarity because, despite its hydrophilic nature, cellulose
acetate remains more hydrophobic relative to the water [43]. Even though molecular size and
polarity (with the latter being typically expressed as PSA or H-donors and acceptors) have been
adversely associated with drug permeation [44,45], a positive correlation between steroids’ polarity
and permeability has been previously recognized. In particular, among three oestrogens of similar
molecular size and distinctive polarities, an increase in permeability was observed with decreasing
steroid-membrane interactions [46]. An inverse correlation between clogP and steroid permeability
across Caco-2 cell monolayers was also recognized by Faasen et al., [47]. The results demonstrated
a faster diffusion of the more hydrophilic steroids across the cell monolayers compared to the more
hydrophobic ones. These findings coincide with the findings of the current study, concluding that
steroids with lower logP gravitate towards a higher permeability.

Volume of distribution at steady state (VDss) is rendered as a solid indicator of drug distribution
in the body reflecting its ability to permeate membranes and bind in tissues. Certain criteria have been
defined to discriminate between drugs with high and low VDss. LogP has been shown to be a significant
determinant of VDss, which along with the presence of Cl atoms and molecule compactness, have
a positive contribution on this descriptor, while polarity and strong electrophiles have a negative
contribution on VDss [48]. High VDss values (> 42 L), representative of more lipophilic drugs, indicate
a high likeliness of drug distribution throughout body tissues, whereas low VDss values (< 3 L)
associate with a predominant location in the systemic circulation [49]. According to the findings of
the current study, a negative correlation between Papp and VDss was obtained, which aligns with the
positive correlation between logP and VDss also observed in the present study.

Among the steroids evaluated, 4-chlorotestosterone demonstrated the lowest and prednisone and
prednisolone the highest Papp value. As illustrated in Figure 5a, the presence of the Cl atom seems
to be the most determinant descriptor affecting Papp of 4-chlorotestosterone. The chlorine atom as
substituent in a molecule has been shown to increase its lipophilicity [19,50]. This positive contribution
of Cl atoms to logP justifies the decrease in the apparent permeability of 4-chlorotestosterone, due to
the negative correlation between logP and Papp, as already demonstrated in the present study. On the
other hand, for both steroids showing the highest Papp, a combination of the same descriptors (logP
and logS) was identified to be the most discriminative (Figure 5b,c). The steroids with the highest
aqueous solubility and the lowest lipophilicity tend to diffuse faster across the cellulose membrane,
compared to the most hydrophobic and less soluble steroids, which tend to a lower permeability.



Molecules 2020, 25, 1387 9 of 16

Figure 5. Contribution score plot of (a) 4-chlorotestosterone, (b) prednisolone and (c) prednisone,
versus the remaining observations.

Additionally, androstanolone was considered as outlier during the first 4 h of the in vitro
permeability study, showing significantly higher Papp values compared to the rest of the tested steroids.
Based on its contribution plot at both 2 h and 4 h, it is evident that a combination of parameters related
to the molecular size of androstanolone (number of double bonds, shape index, molar refractivity,
polarizability, MW) are lower than the respective average values of the tested compounds, whereas
pKa was found to be higher compared to the average pKa values of the tested steroids. Since all
steroids remain unionized in the pH used in the current study, the contribution of pKa to Papp may be
considered negligible. On the other hand, results signify the importance of molecular size on Papp with
an inverse relationship existing between the two.

As already mentioned, drug diffusion across membranes consists of a series of events including
drug transfer from the hydrophilic aqueous environment of the donor compartment, through the
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more hydrophobic (relative to the water) membrane to the hydrophilic aqueous environment of the
receptor compartment. The ease of drug diffusion may be explained by elucidating the most significant
parameters affecting drug permeability in a time-dependent manner. As seen in Table 3, the most
critical descriptors affecting the amount of drug permeated at 2 h mainly relate to the molecular size
of the permeants including shape index, MW and molar volume which is also directly related to the
refractivity index and polarizability of the steroids tested [19], all the above are marked green in Table 3.

All these parameters contribute negatively to drug permeation, which could translate to hindering
drug diffusion to the receptor phase and, instead, increasing their retention and affinity towards the
membrane. This trend seems to change with time, with logS (red marked on Table 3) and logP (blue
marked on Table 3) being the dominant descriptors affecting drug permeation thereafter.

The utility of in silico models in predicting drug permeability across biological membranes has
been recognized as a time- and cost-efficient tool to facilitate drug discovery and development. The PLS
model has been previously employed to identify the most critical molecular parameters affecting the
permeability and retention of 17b-carboxamide steroids across an artificial membrane (parallel artificial
membrane permeability assay (PAMPA)), as a means to predict their permeability across human
skin [41]. In another study, Zhang et al., (2015) confirmed the good predictability of the PLS model,
highlighting its potential utility as a high-throughput screening tool of placental drug permeability [18].
PLS and the genetic algorithm-PLS method have also been found appropriate in identifying the optimal
subset of descriptors that have a significant contribution on drugs’ permeability across Caco-2 cell
monolayers [51], as well as on in vivo human drug intestinal permeability [52].

The present study is initially considered to be a reliable tool for the development of a theoretical
background that will explain the permeability of steroids to biological membranes. In addition,
the remarkable ability of PLS models to predict the behavior of drugs increases the usefulness of the
proposed technique in designing new more effective steroids.

3. Materials and Methods

3.1. Reagents, Materials, Solutions

Acetonitrile (ACN) and water (HPLC grade) were purchased from VWR Chemicals (Radnor,
USA), and Sigma-Aldrich (Darmstadt, Germany) respectively. For LC-MS analyses, water and ACN
were both LC-MS gradient grade and provided by Sigma-Aldrich (Darmstadt, Germany).

Phosphate buffer saline (PBS) pH 7.4 was prepared by dissolving sodium chloride (8.0 g),
sodium phosphate dibasic (1.44 g), and potassium phosphate monobasic (0.24 g), (Merck, Darmstadt,
Germany) and potassium chloride (0.20 g) (Chem-Lab nv, Zedelgem, Belgium) in 1 L of distilled water.
Polyethylene glycol (PEG 200) obtained by Sigma-Aldrich (Darmstadt, Germany) and polysorbate 80
(tween 80) provided by ManisChemicals (Athens, Greece).

The dialysis tubing cellulose membrane (flat width 43 mm) was obtained from Sigma-Aldrich
(Darmstadt, Germany). The corticosteroids substances (Table 4) were United Stated
Pharmacopeia—USP grade and were obtained from Sigma-Aldrich (Darmstadt, Germany).



Molecules 2020, 25, 1387 11 of 16

Table 4. Structures of studied compounds.

Steroids Structures

Compound Double
Bonds C2 C3 C4 C5 C7 C9 C10 C11 C13 C16 C17

17a-hydroxyprogesterone COMP 1 4 = 5 CH3 CH3 COCH3, OH
4-chlorotestosterone COMP 2 4 = 5 =O Cl CH3 CH3 OCOCH3

Androstanolone COMP 3 CH3 CH3 OH
Betamethasone
dipropionate COMP 4 1 = 2,

4 = 5 =O F CH3 OH CH3 CH3 COCH2 OCOC2H5, OCOC2H5

Betamethasone valerate COMP 5 1 = 2,
4 = 5 =O F CH3 OH CH3 CH3 COCH2OH, OCOC4H9

Budesonide COMP 6 1 = 2,
4 = 5 =O CH3 OH a a, COCCH2OH

Cortisone acetate COMP 7 4 = 5 =O CH3 =O CH3 COCH2OCOCH3, OH
Dehydro-isoandrosterone COMP 8 5 = 6 OH CH3 CH3 =O

Deoxycorticosterone
acetate COMP 9 4 = 5 =O CH3 CH3 COCH2OCOCH3

Dexamethasone COMP 10 1 = 2,
4 = 5 =O F CH3 OH CH3 CH3 CCOCH2OH, OH

D-norgestrel COMP 11 4 = 5 =O CH2CH3 C≡CH, OH

Estriol COMP 12
1 = 2,
3 = 4,
5 = 10

OH OH OH

Estrone COMP 13
2 = 3,
4 = 5,
10 = 1

OH CH3 =O

Ethinylestradiol COMP 14
1 = 2,
3 = 4,
5 = 10

OH CH3 C≡CH, OH

Ethisterone COMP 15 4 = 5 =O CH3 CH3 C≡CH, OH
Fludrocortisone acetate COMP 16 4 = 5 =O F CH3 OH CH3 COCH 2OCOCH3, OH

Formebolone COMP 17 1 = 2,
4 = 5 CHO =O CH3 OH CH3 CH3, OH

Hydrocortisone COMP 18 4 = 5 =O CH3 OH CH3 COCH2OH, OH
Hydrocortisone acetate COMP 19 4 = 5 =O CH3 OH CH3 COCH2OCOCH3, OH
Medroxyprogesterone

acetate COMP 20 4 = 5 =O CH3 CH3 CH3 OCOCH3, COCH3

Methandriol COMP 21 5 = 6 OH CH3, OH
Methyl testosterone COMP 22 4 = 5 =O CH3 CH3 CH3, OH

Norethisterone COMP 23 4 = 5 =O CH3 C≡CH, OH

Prednisolone COMP 24 1 = 2,
4 = 5 =O CH3 OH CH3 COCH2OH, OH

Prednisolone
21-sodium succinate COMP 25 1 = 2,

4 = 5 =O CH3 OH CH3
COCH2OCOCH2CH2OCOH,

OH

Prednisolone acetate COMP 26 1 = 2,
4 = 5 =O CH3 OH CH3 COCH2OCOCH3, OH

Prednisone COMP 27 1 = 2,
4 = 5 =O CH3 =O CH3 COCH2OH, OH

Progesterone COMP 28 4 = 5 =O CH3 CH3 COCH3
Spironolactone COMP 29 4 = 5 =O SCOCH3 CH3 CH3 b

Testosterone COMP 30 4 = 5 =O CH3 CH3 OH
Testosterone acetate COMP 31 4 = 5 =O CH3 CH3 OCOCH3

Testosterone propionate COMP 32 4 = 5 =O CH3 CH3 OCOC2H5
trans-Androsterone COMP 33 OH CH3 CH3 =O

sterane a

b

3.2. Methods

3.2.1. Solubility Study

Solubility studies were carried out for the most lipophilic corticosteroid based on its logS value,
obtained from Marvin (COMP 9, logS = −5.79, 25 ◦C). The study was conducted in PBS (pH 7.4) in the
presence of polyethylene glycol 200 (PEG 200) and polysobrate 80 (Tween80) used as co-solvents at
different ratios, owing the ability to enhance the water solubility of lipophilic drugs. In detail, an excess
amount of the drug was added in the above-mentioned solvent mixtures and sonicated for 1 h at
30 ◦C. Then, the mixtures were kept under mild agitation for 48 h at room temperature to facilitate
the dissolution. Any visible remaining drug particulates were removed by centrifugation at 2000× g
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for 20 min. The supernatants were quantified by HPLC analysis using the conditions described in
Table 5. Based on the results of the solubility study, PBS, 40 % (w/w) PEG 200 and 0.2 % (w/w) Tween 80
was used as the solvent mixture. The same procedure was followed for all compounds in this solvent
mixture and a final concentration of 100 µg/mL was selected for the in vitro permeation studies.

Table 5. Chromatographic Conditions.

Compound Detector Flow (mL/min) Retention Factor (k’) λ (nm) Quantification Ion 2 (m/z)

COMP 1 DAD 1 0.3 1.11 240 -
COMP 2 MS 3 0.5 4.67 - 365 [(M+CH3CN)+H]+

COMP 3 MS 0.5 4.06 - 332 [(M+CH3CN)+H]+

COMP 4 DAD 0.3 2.18 240 -
COMP 5 DAD 0.5 1.45 240 -
COMP 6 DAD 0.5 1.93 240 -
COMP 7 DAD 0.4 3.05 240 -
COMP 8 DAD 0.4 2.55 230 -
COMP 9 DAD 0.4 2.43 240 -

COMP 10 DAD 0.4 2.46 240 -
COMP 11 DAD 0.4 3.34 240 -
COMP 12 DAD 0.5 1.49 205 -
COMP 13 DAD 0.5 3.98 205 -
COMP 14 DAD 0.4 0.92 240 -
COMP 15 DAD 0.3 2.56 205 -
COMP 16 DAD 0.4 3.12 240 -
COMP 17 DAD 0.4 2.58 220 -
COMP 18 DAD 0.3 0.83 240 -
COMP 19 DAD 0.5 0.96 240 -
COMP 20 DAD 0.5 0.74 240 -
COMP 21 MS 0.5 4.76 - 287 [(M-H2O)+H]+

COMP 22 DAD 0.5 0.87 240 -
COMP 23 DAD 0.4 2.48 240 -
COMP 24 DAD 0.4 2.18 240 -
COMP 25 DAD 0.4 3.11 244 -
COMP 26 DAD 0.4 2.43 240 -
COMP 27 DAD 0.4 2.45 240 -
COMP 28 DAD 0.5 0.87 240 -
COMP 29 DAD 0.5 4.04 238 -
COMP 30 DAD 0.5 0.67 240 -
COMP 31 DAD 0.5 1.12 240 -
COMP 32 DAD 0.5 1.66 240 -
COMP 33 MS 0.5 4.50 - 373 [(M+2CH3CN)+H]+

1 DAD: diode array detector, 2 performed at single ion monitoring (SIM) mode, 3 MS: mass spectrometry.

3.2.2. In Vitro Permeation Studies

Cellulose membrane was properly treated and mounted in the Franz diffusion cells (diffusion
area 4.9 cm2, compartment volume 20 mL). The acceptor compartment was filled with PBS pH 7.4
and the donor compartment was filled with 1 mL of the formulation described above (100 µg/mL
of the compounds). Permeation studies were conducted under constant stirring (90 rpm) at 37 ◦C.
Samples of 0.5 mL were withdrawn from the acceptor compartment at predetermined time intervals
(30 min, 1 h, 2 h, 4 h, 6 h, 8 h) and replaced with fresh and preheated PBS. Experiments were repeated in
triplicates for each compound and blank experiments containing only the medium were also performed.
The samples were analyzed by HPLC without any previous pretreatment.

Steady state flux (Jss) was calculated from the slope of the linear section of the plot of the amount
of permeated compound per unit area (µg/cm2) against to time. The apparent permeability coefficient
(Papp) was calculated using Equation (3), where Cd is the initial concentration of the drug in the donor
compartment and Jss is the steady state flux.

Papp =
Jss

Cd
(3)
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3.2.3. HPLC Experimental Conditions/Method Validation

The drug content was quantified using either the HPLC-UV (High-performance Liquid
Chromatography–Ultraviolet) or LC-MS (Liquid Chromatography–Mass Spectrometry) instrument.
The HPLC-UV setup was equipped with two LC-20AD pumps, a SIL-20AC HT auto-sampler,
a CTO-20AC column oven and an SPD-M20A diode array detector (Shimadzu). For LC-MS analysis,
a Shimadzu LC-MS 2020 single-quadrupole mass spectrometer with an electrospray ion source (ESI)
was utilized. A nitrogen gas generator N2LCMS (Nitrogen Generator, Claind) was used throughout in
this study. The temperature of the curved dessolvation line was set at 250 ◦C, the N2 nebulizer gas flow
was maintained at 1.5 L/min and the drying gas flow was set at 15 L/min, while the interface voltage
was set at 4.5 kV in positive mode. The analytical column temperature was kept constant at 30 ◦C.
The stationary phase was a C18 column (4.6 × 50 mm, 2.5 µm, Shimadzu). The sample injection volume
was 5 µL in all cases. The mobile phase was a binary mixture of acetonitrile and water at appropriate
ratio for each compound in order to avoid the prolonged analysis time. The HPLC-UV and LC-MS
experimental conditions used for the analysis of each compound are described in Table 5.

Both the HPLC-UV and LC-MS methods were validated in-house according to ICH (International
Conference Harmonization) guidelines [53]. The calibration curves for each compound was linear
(r2 > 0.999) in the range of LOQ-20 µg/mL (six calibration levels). Regression analysis, LOD (Limit of
Detection) and LOQ (Limit of Quantification) values were tabulated in Table 6. Samples were analyzed
in triplicate.

Table 6. Analytical figures of merit of HPLC-UV and LC-MS methods.

Compound R 2 Intercept Slope LOD 1 (µg/mL) LOQ 2 (µg/mL)

COMP 1 0.9997 1123 43133 0.01 0.04
COMP 2 0.9947 −5470 38034 0.27 0.90
COMP 3 0.9997 1252 16203 0.05 0.18
COMP 4 0.9997 −9501 28376 0.11 0.38
COMP 5 0.9998 −4479 20526 0.05 0.18
COMP 6 0.9998 552 16428 0.04 0.12
COMP 7 0.9996 −3723 28562 0.03 0.12
COMP 8 0.9997 −993 4454 0.32 1.07
COMP 9 0.9993 −4166 26523 0.02 0.06

COMP 10 0.9990 −11577 13079 0.18 0.60
COMP 11 0.9998 −12551 43421 0.01 0.03
COMP 12 1.0000 −1090 51548 0.07 0.24
COMP 13 0.9996 −3671 51988 0.06 0.19
COMP 14 0.9990 26763 79974 0.01 0.04
COMP 15 1.0000 706 30294 0.01 0.03
COMP 16 0.9999 7399 25115 0.04 0.14
COMP 17 0.9992 12588 45247 0.05 0.18
COMP 18 0.9997 −6597 62213 0.01 0.03
COMP 19 0.9985 26809 19890 0.03 0.10
COMP 20 1.0000 802 37460 0.01 0.05
COMP 21 0.9996 436 10500 0.05 0.16
COMP 22 0.9999 798 25856 0.02 0.05
COMP 23 0.9999 −162 38688 0.01 0.04
COMP 24 0.9999 1568 38840 0.03 0.10
COMP 25 1.0000 −353 13103 0.04 0.12
COMP 26 0.9997 −2111 22329 0.04 0.13
COMP 27 0.9997 −256 26564 0.04 0.14
COMP 28 0.9997 916 32027 0.01 0.04
COMP 29 1.0000 −1564 26756 0.02 0.06
COMP 30 1.0000 3599 113379 0.01 0.03
COMP 31 1.0000 6794 25375 0.01 0.04
COMP 32 1.0000 11227 54069 0.01 0.02
COMP 33 0.9971 −303 5860 0.03 0.10

1 LOD: based on S/N = 3 criteria, 2 LOQ: based on S/N = 10 criteria.
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4. Conclusions

An attempt to describe, experimentally and theoretically, the ability of a drug to permeate human
tissues and be distributed in the body was carried out. For this purpose, five different PLS regression
models were applied, using the permeability factor Papp as Y variable, for a series of steroids/drugs
versus their physicochemical and structural properties (X variables). The determination of Papp factor
was performed by in vitro drug permeability experiments across a cellulose membrane. According to
the VIP values of the Papp model, the two factors with the stronger effect were logS and logP, which are
dominant to the phenomenon with reverse influence. It is also remarkable that the permeability of
steroids is dependent on the effect of numerous parameters and cannot be considered as a result of
a specific factor (physicochemical property or structural feature). Finally, it is worth noting that one of
steroids (4-chlorotestosterone) with chloro-substituted moiety did not penetrate the membrane at all,
which makes it unique.

The PLS model seems to accurately describe this simulation and predict with reliability the
behavior for an unknown drug. Based on such databases, researchers could use the information
provided to predict whether a drug can be distributed in a tissue via passive transfer.
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