
Synthetic and Systems Biotechnology 9 (2024) 391–405

Available online 21 March 2024
2405-805X/© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Original Research Article 

Discovering peptides and computational investigations of a multiepitope 
vaccine target Mycobacterium tuberculosis 

Truc Ly Nguyen a, Heebal Kim a,b,c,* 

a Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea 
b Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea 
c eGnome, Inc., Seoul, 05836, Republic of Korea   

A R T I C L E  I N F O   

Keywords: 
Mycobacterium tuberculosis 
Tuberculosis 
Multiepitope vaccine 
Docking molecular 
Molecular dynamics simulation 
Immune simulation 

A B S T R A C T   

Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis (TB), a prevalent airborne infectious 
disease. Despite the availability of the Bacille Calmette-Guerin vaccine, its global efficacy remains modest, and 
tuberculosis persists as a significant global public health threat. Addressing this challenge and advancing towards 
the End MTB Strategy, we developed a multiepitope vaccine (MEV) based on immunoinformatics and compu-
tational approaches. Immunoinformatics screening of MBT protein identified immune-dominant epitopes based 
on Major Histocompatibility Complex (MHC) allele binding, immunogenicity, antigenicity, allergenicity, 
toxicity, and cytokine inducibility. Selected epitopes were integrated into an MEV construct with adjuvant and 
linkers, forming a fully immunogenic vaccine candidate. Comprehensive analyses encompassed the evaluation of 
immunological and physicochemical properties, determination of tertiary structure, molecular docking with Toll- 
Like Receptors (TLR), molecular dynamics (MD) simulations for all atoms, and immune simulations. Our MEV 
comprises 534 amino acids, featuring 6 cytotoxic T lymphocyte, 8 helper T lymphocyte, and 7 linear B 
lymphocyte epitopes, demonstrating high antigenicity and stability. Notably, molecular docking studies and 
triplicate MD simulations revealed enhanced interactions and stability of MEV with the TLR4 complex compared 
to TLR2. In addition, the immune simulation indicated the capacity to effectively induce elevated levels of an-
tibodies and cytokines, emphasizing the vaccine’s robust immunogenic response. This study presents a promising 
MEV against TB, exhibiting favorable immunological and physicochemical attributes. The findings provide 
theoretical support for TB vaccine development. Our study aligns with the global initiative of the End MTB 
Strategy, emphasizing its potential impact on addressing persistent challenges in TB control.   

1. Introduction 

Tuberculosis (TB), a bacterial disease that primarily affects the lungs, 
is preventable and treatable, but 10 million people still catch it annually, 
and 1.6 million people died from TB in 2021, almost entirely in low and 
middle-income countries [1]. TB has long been the world’s deadliest 
infectious disease treatment, although it has suffered a setback and has 
been disrupted due to the COVID-19 pandemic [2]. Like the Bacillus 
Calmette-Guerin (BCG) vaccine, tools to fight TB are imperfect. How-
ever, there is “hopeful” innovation in vaccines like DNA vaccines, live 
attenuated and killed whole-cell vaccines (WCVs), multiepitope vac-
cines (MEVs), etc. Among them, the therapeutic DNA vaccine is a 
promising vaccine, which is a promising strategy against tuberculosis. 

However, challenges with the delivery and expression of the DNA vac-
cine and potential issues with inducing an adequate immune response in 
all individuals may limit its efficacy [3]. Live attenuated and killed 
whole-cell vaccines (WCVs) also offer promising vaccination strategies 
against tuberculosis. However, their efficacy may be compromised in 
immunocompromised individuals, and there is a risk of virulence 
reversion in live attenuated vaccines, leading to the potential for disease 
transmission [4]. MEVs are a type of vaccine that can be composed of 
cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and linear B 
lymphocyte (LBL) epitopes in a series or overlapping epitope peptides 
[5]. They are designed to induce multi antigenic immunity against sig-
nificant complex pathogens with different strain variants [6]. MEVs can 
be used to prevent and treat tumors or viral infections [5,7,8]. Besides, 
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the advantage of epitope vaccines over traditional subunit vaccines lies 
in the ability to combine immunodominant human HTL, CTL, and LBL 
epitopes from different antigens, thereby enhancing immunogenicity 
and reducing adverse effects. Currently, many MEVs based on epitope 
designs from multiple antigens against tuberculosis are being researched 
[9–19]. Among them, Jiang et al. selected 17 latent tuberculosis infec-
tion and regions of difference (LTBI-RD) antigens (Rv1511, Rv1736c, 
Rv1737c, Rv1980c, Rv1981c, Rv2031c, Rv2626c, Rv2653c, Rv2656c, 
Rv2659c, Rv2660c, Rv3425, Rv3429, Rv3872, Rv3873, Rv3878, and 
Rv3879) to identify immunodominant epitopes [12]. Similarly, Bellini 
et al. designed and characterized a multistage peptide-based vaccine 
from 15 protein antigens associated with various activities of the MTB 
life cycle, including Rv3908c, Rv1886c, Rv1384, Rv1436, Rv3874, 
Rv0288, Rv0867c, Rv1174c, Rv1334, Rv0475, Rv0440, Rv0125, 
Rv1733c, Rv1039c, and Rv1039c [11]. In addition, a novel 
peptide-based vaccine was designed based on HTL, CTL, and B cell 
epitopes predicted from 17 protective antigens of MTB. These 17 
candidate antigens were Ag85A, Ag85B, ESAT6, EspA, Mpt63, MTB32A, 
PPE18, RpfB, TB10.4, CFP10, MPT51, MPT64, MTB8.4, PPE44, PPE68, 
RpfA, and RpfB [13]. Notably, Bibi et al. showed that MEV might acti-
vate humoral and cellular immune responses and may be a possible 
tuberculosis vaccine candidate [18]. In that work, a novel MEV designed 
by targeting Rv2608, Rv2684, Rv3804c (Ag85A), and Rv0125 (MTB 
32A) which has been predicted to have different B-cell and T-cell epi-
topes. Another promising candidate is an MEV against MTB exploiting 
secreted exosome proteins (Evs) [19]. However, the potential for im-
mune evasion by MTB through antigenic variation may limit the vac-
cine’s effectiveness, and there is a need for ongoing monitoring and 
updating of vaccine components to address this challenge. 

Beyond these considerations, H37Rv is the most widely used MTB 
strain, and its protein Rv0256c, also known as PPE2 (Proline-Proline- 
Glutamate 2), has an essential role in immune activation and infection of 
the host [20]. Rv0256c has been found to translocate to the nucleus of 
host cells and bind to the promoter region of inducible nitric oxide 
synthase (iNOS), suppressing iNOS gene transcription [21,22], ulti-
mately protecting the mycobacterium from nitric oxide (NO) mediated 
killing. Additionally, Rv0256c has been found to inhibit myeloid he-
matopoiesis and reactive oxygen species (ROS) production [23,24]. In a 
previous study, Rv0256c induces a strong B cell response in tuberculosis 
patients [25]. These findings suggest that Rv0256c is a crucial protein 
contributing to MTB survival and pathogenesis. Therefore, in the present 
study, we aim to select the Rv0256c protein as the target sequence to 
design a MEV candidate. Through immunoinformatics techniques, we 
predicted CTL, HTL, and LBL epitopes. These epitopes were shown to be 
highly antigenic, nontoxic, and nonallergic. The potential for these 
epitopes to cause autoimmunity was also examined. In addition, the 
Toll-Like Receptor 4 (TLR4) agonist (RpfE) peptide was added to the 
vaccine design as an adjuvant to boost its immunogenicity. We further 
evaluated the vaccine construct’s population coverage, antigenicity, 
allergenicity, toxicity, and physicochemical features. Afterwards, the 
tertiary structures of the vaccine construct were predicted, refined, and 
validated. The resultant tertiary structure was then docked with immune 
receptors TLR2 and TLR4. Furthermore, the stability of interactions was 
verified using molecular dynamics (MD) simulations for all atoms of the 
docking complexes in triplicate. Finally, to assess the immunogenicity 
and immunological response of the MEV, in silico immune simulations 
were carried out. This study provides valuable insights for MTB vaccine 
development and contributes towards the End MTB Strategy. 

2. Materials and methods 

The systematic workflow used in this study is depicted in Fig. 1. 

2.1. Retrieval sequence, screening antigenicity, and allergenicity of target 
protein 

The FASTA sequence of Rv0256c was obtained from the UniProt 
database (https://www.uniprot.org/) with accession number P9WI47. 
To screen for antigenicity, we employed VaxiJen v2.0 to predict the 
antigenicity of the Rv0256c protein, with a threshold value of 0.4 set up 
(http://www.ddg-pharmfac.net/VaxiJen/VaxiJen/VaxiJen.html) [26]. 
This server is focused on auto cross-covariance (ACC) transformation 
and alignment-independent prediction that maintains predictive accu-
racy of 70–89%. Protein Rv0256c showed antigenicity above the 
threshold value and was selected for further analysis [26]. For predict-
ing allergenicity, the Rv0256c protein sequence was expanded for 
further analysis based on AllergenFP v.1.0, a bioinformatics tool for 
allergenicity prediction (https://ddg-pharmfac.net/AllergenFP/) [27]. 
The result with a non-allergen property was selected for further analysis. 
To enhance humoral and cell-mediated immunity, both B-cell and T-cell 
antigens were predicted. 

2.2. CTL epitopes prediction and assessment 

The Immune Epitope Database and Analysis Resources (IEDB) MHC I 
server was used to predict CTL epitopes (http://tools.iedb.org/mhci/) 
[28]. This server predicts CD8+ T cell epitopes based on proteasomal 
C-terminal cleavage, MHC-I binding, and TAP transport efficiency. The 
9-mer and 10-mer epitopes were predicted using the ANN 4.0 algorithm 
weight matrix, artificial neural networks, and IC50 value. We used the 
entire human HLA allele reference set. Finally, the predicted peptides 
were sorted as per the predicted IC50. As in the previous study, only 
epitopes with an IC50 over 500 were chosen [29]. 

2.3. HTL epitopes prediction and assessment 

The MHC II server of IEDB was used to predict HTL epitopes 
(http://tools.iedb.org/mhcii/) [28]. NN-align 2.3 (Net MHC II 2.3) al-
gorithm was used to predict the epitopes. The entire HLA human 
reference set was used. A 15mer epitope length was defined. Finally, the 
results were then arranged as per their modified ranks. Additionally, the 
ability to secrete IFN-γ, IL-4 and IL-10 of these chosen epitopes was 
predicted using the servers IFNepitope (http://crdd.osdd.net/raghava/ 
ifnepitope/) [30], IL4pred (https://webs.iiitd.edu.in/raghava 
/il4pred/) [31], and IL-10 pred (http://crdd.osdd.net/raghava/I 
L-10pred/) [32], respectively. All chosen epitopes showed the ability 
to secrete these cytokines. 

2.4. B-cell epitopes prediction and assessment 

An online server ABCpred was used to predict linear B-cell epitopes 
(http://crdd.osdd.net/raghava/abcpred/) [33]. The ABCpred uses an 
artificial neural network to predict linear B-cell epitopes in an antigen 
sequence. A 0.51 threshold was applied individually to each selected 
protein. Epitopes were chosen to have a 16mer length. 

2.5. Antigenicity, allergenicity, and toxicity prediction of chosen epitopes 

All chosen epitopes were tested to assess their antigenicity, allerge-
nicity, and toxicity. For antigenicity prediction, CTL epitopes, HTL 
epitopes, and conformational B cell epitopes amino acid sequences were 
submitted to the VaxiJen v2.0 server [26]. Both a threshold of 0.4 and 
bacteria were explicitly mentioned. Highly antigenic epitopes were 
selected for further analysis. Consequently, the allergenicity of the B 
cell, CTL, and HTL epitopes was predicted using the freely available 
allergenicity prediction tool AllerTOP v.2.0 (https://www.ddg-pharmfa 
c.net/AllerTOP/index.html). AllerTOP v.2.0 predicts the allergens based 
on machine learning methods like auto and cross-covariance trans-
formation, k nearest neighbors, and amino acid E-descriptors [34]. All 
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Fig. 1. The systematic workflow of this study.  
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settings were left at their default values. Lastly, the toxicity of the B cell, 
CTL, and HTL epitopes was predicted using the freely server ToxinPred 
(http://crdd.osdd.net/raghava/toxinpred/) [35]. Only the epitopes 
identified as antigenic, non-allergenic, and non-toxic were retained for 
further research. 

2.6. Population coverage of the epitopes 

The diversity in MHC allele distribution reflects the world’s 
geographical and cultural diversity. As a result, vaccination coverage is 
determined by the MHC alleles that its epitopes recognize. By using the 
population coverage tool in the IEDB database (http://tools.iedb. 
org/population/) [36], the epitopes and their corresponding MHC 
class I and class II alleles as input, we calculated the combined coverage 
of our T lymphocyte epitopes. These alleles genotypic frequencies 
employed in the IEDB database were obtained from the Allele Frequency 
Net Database (AFND) (http://www.allelefrequencies.net/) [37]. 
Currently, AFND offers allele frequencies for 115 countries and 21 
different ethnicities grouped into 16 different geographical areas. 

2.7. Multiepitope vaccine design and its properties evaluation 

Highly antigenic, nonallergenic, and nontoxic epitopes were selected 
to design the vaccine. These best epitopes were linked through EAAAK, 
GPGPG, KK, and AAY linkers to construct a potential MEV. These linkers 
were incorporated into separate domains to let them act separately and 
enhance the vaccine’s immunogenicity [38] as they are cleavable, 
flexible, and rigid [39]. Apart from these epitopes and linkers, the TLR4 
agonist (RpfE) peptide was added to the vaccine design as an adjuvant 
for increasing the immune response [40]. 

The ability to elicit humoral-cellular immune responses and the 
knowledge of a particular antigen associated with an immune response 
are referred to as immunogenicity and antigenicity, respectively. 
Therefore, the antigenicity and immunogenicity of a candidate vaccine 
are vital [41]. ToxinPred and AllerTOP 2.0 were used to predict the 
toxicity and allergenicity of the vaccine construct. Allergenicity was 
checked to ensure that the vaccine did not exhibit any reactions 
(allergic) once injected into the body. The vaccine candidate should 
have a high level of antigenicity because this attribute defines an anti-
gen’s capacity to trigger an immune response and the development of 
memory cells. Antigenicity prediction was made using VaxiJen v2.0 and 
ANTIGENpro server [42]. Both methods are alignment-free. VaxiJen 
v2.0 functions by utilizing several physicochemical properties of the 
protein, while ANTIGENpro is a machine learning algorithm-based 
microarray analysis data-based server. Using the open web server 
ProtParam, many physiochemical features, including amino acid 
composition, Aliphatic Index (AI), molecular weight, Instability Index 
(II), Grand Average of Hydropathicity (GRAVY), and theoretical iso-
electric point (pI) were evaluated [43]. 

2.8. Structure prediction, refinement, and validation of the vaccine 
construct 

The vaccine’s secondary structure motifs calculated with PDBsum 
[44] were computed using v.3.0 of Gail Hutchinson’s PROMOTIF pro-
gram [45]. PDBsum is a web server (http://www.ebi.ac.uk/pdbsum) 
that offers structural details about the entries in the Protein Data Bank 
(PDB). Protein secondary structure, interactions between proteins and 
ligands and DNA, PROCHECK structural quality evaluations, and 
numerous more analyses are among the mostly image-based analyses. 
The PROMOTIF program examines a protein coordinate file and gives 
information regarding the structural motifs present in the protein. 
Currently, the program evaluates the following structural features: 
secondary structure, β- and γ-turns, helical geometry and interactions, 
β-strands and β-sheet topology, β-hairpins, etc. In order to illustrate each 
type of motif in the protein, PROMOTIF generates postscript files along 

with a summary page. 
For predicting the three-dimensional (3D) structure of the vaccine, 

we used several servers such as SWISS-MODEL (https://swissmodel.ex 
pasy.org/) - a fully automated protein structure homology-modeling 
server [46], Iterative Threading ASSEmbly Refinement (I-TASSER) (htt 
ps://zhanggroup.org/I-TASSER/) [47], or a deep learning approach 
AlphaFold2 via ColabFold v1.5.5 (https://colab.research.google.com/ 
github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb) [48,49]. 
Afterwards, the GalaxyRefine module of the GalaxyWEB server (http:// 
galaxy.seoklab.org/) was used to refine the vaccine’s 3D structures [50]. 
Through the process of 3D structural refinement, the vaccine’s 
near-accurate native structure was preserved while local mistakes were 
corrected and the accuracy of initially anticipated structures was 
improved. Subsequently, ProSA-web (https://prosa.services.came.sbg. 
ac.at/prosa.php) [51] and PROCHECK v.3.5 (https://www.ebi.ac.uk/ 
thornton-srv/software/PROCHECK/) [52] were two of the many pub-
licly available tools utilized for 3D structural validation. ProSA-web is a 
web server that evaluates the overall quality and local model quality of 
3D models based on the Z-score value [53,54]. Meanwhile, the PRO-
CHECK program analyzes the Ramachandran plot for the 3D structure of 
the vaccine construct to assess residual coverage in favored, allowed, 
and disallowed regions. A good quality structure would be expected to 
have over 90% of residues in the most favored regions. 

2.9. Molecular docking and molecular dynamics simulations studies 

The structure of TLR2 and TLR4 were downloaded from the Protein 
Data Bank (PDB) with ID 2Z7X and 3FXI, respectively. The 3D structure 
of MEV and immune receptors were docked using the ClusPro server 
(https://cluspro.bu.edu) - a widely used protein-protein docking server 
that predicts the 3D structures of protein complexes [55]. The following 
three steps are used by ClusPro to examine the molecular docking of 
vaccine with TLRs: (1) rigid body docking by sampling billions of con-
formations, (2) grouping of the 1000 lowest energy structures generated 
to identify the largest clusters based on root-mean-standard deviation 
(RMSD), (3) energy minimization for steric clash removal. Accordingly, 
the server provided 30 model complexes, out of which the model having 
the lowest binding energy (kcal/mol) was selected for dynamics. Sub-
sequently, PDBsum was used for analysis and to find interacting residues 
between the vaccine and TLR2, 4 (https://www.ebi.ac.uk/thornton-sr 
v/databases/pdbsum/Generate.html) [44]. 

MD simulations were conducted using the GROMACS program on a 
Linux operating system to assess the stability of the complexes [56]. The 
CHARMM27 force field and spce water were employed to generate to-
pology files, resulting in a system with 24,783 atoms from 1603 residues 
for the MEV-TLR2 complex and 26,709 atoms from 1736 residues for the 
MEV-TLR4 complex. Each complex was placed in a cubic box (12x12x12 
for MEV-TLR2 and 11x11x11 for MEV-TLR4) to maintain integrity with 
297,338 and 227,396 solvent molecules, respectively. To neutralize the 
charge, 27 Cl- ions were added to the MEV-TLR2 complex, and 5 Na+

ions were added to the MEV-TLR4 complex. The energy minimization 
utilized the steepest descent algorithm with 50,000 steps, stopping when 
the maximum force was <1000.0 kJ/mol/nm. Position restraints were 
applied during equilibration, including NVT equilibration at 300 K with 
50,000 steps (100 ps) and NPT equilibration at 1 bar reference pressure 
with an additional 50,000 steps (100 ps). Production simulations for 
all-atom systems (916,797 atoms in MEV-TLR2 and 708,897 atoms in 
MEV-TLR4) were carried out using the NPT ensemble for 50,000,000 
steps (100 ns). After completing the 100 ns MD simulation, analyses 
were performed, including calculating the root mean square deviation 
(RMSD) of backbone residues, root mean square fluctuation (RMSF) of 
C-alpha, radius of gyration (Rg), and solvent accessible surface area 
(SASA). Each complex was simulated in triplicate to ensure result ac-
curacy, robustness, and dependability. 
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2.10. Immunological responses induced by the vaccine construct 

C-IMMSIMversion 10.1 is an immune simulation tool that can assess 
the vaccine’s immunological response (https://kraken.iac.rm.cnr.it/ 
C-IMMSIM/) [57]. It predicts a position-specific scoring matrix used to 
understand immune response magnitude, which shows the result of 
vaccine dosage concerning different time intervals. This server describes 
a mammalian immune system’s humoral and cellular response against 
vaccine construct. To quantify the impact of antigens and foreign par-
ticles on immune activity, an agent-based method based on the 
position-specific scoring matrix and machine learning techniques was 
applied. Except for the time steps, which were set at 1, 84, and 168, the 
simulation was run using the default parameters. Injection occurs at 
time = 0 in time step 1, and each time step lasts for 8 h. The entire 
simulation consisted of 1050 steps. Since most commercial vaccines 
prescribe a four-week delay between doses, three injections were 
anticipated to be needed at four-week intervals [58]. 

3. Results 

3.1. Retrieval sequence, screening antigenicity, and allergenicity of target 
protein 

After retrieving the FASTA sequence of the Rv0256c protein from the 
UniProt database, immunoinformatics analysis was used to predict the 
antigenicity and allergenicity of the protein. The Rv0256c protein was 
predicted as a probable antigen (0.4302) based on the VaxiJen v2.0 
server with a threshold of 0.4. AllergenFP v.1.0 results indicated that the 
protein had non-allergenic properties as it held the highest Tanimoto 
similarity index of 0.94. Thus, we confirmed that the Rv0256c protein 
sequence could be considered for CTL, HTL, and B-cell epitope 
prediction. 

3.2. CTL, HTL, and B-cell epitopes prediction and assessment 

The Rv0256c protein sequence predicted CTL epitopes using the 
MHC-I tool from the IEDB server. From the IEDB server, the completed 
human HLA allele reference set was selected for epitope prediction. 
Epitopes with IC50 over 500 were chosen for further study. Further on, 
epitopes were checked for toxicity, antigenicity, and allergenicity. Only 
non-toxic, antigenic, and non-allergenic epitopes were chosen (Supple-
mentary Data Sheet 1). An immunogenicity check was done using the 
IEDB server, and immunogenic epitopes with scores ≥0.3 were selected. 
Finally, six epitopes were included in the vaccine construct (Table 1). 

The IEDB MHC II server was used for HTL epitope prediction. Epi-
topes were checked for toxicity, antigenicity, and allergenicity. Only 
non-toxic, antigenic, and non-allergenic epitopes were chosen. Epitopes 
were checked and selected based on their ability to induce Il-4, Il-10, 
and IFN-γ (Supplementary Data Sheet 2). Finally, we included eight 
possible epitopes in the vaccine that induced the abovementioned cy-
tokines (Table 2). 

B-cell epitopes having a rank <10 predicted using the ABCpred 
webserver were selected for further studies. Furthermore, we selected 
only those epitopes that were non-toxic, non-allergenic, and antigenic to 

further incorporate into the vaccine design (Supplementary Data Sheet 
3). We used the web servers ToxinPred, AllerTOP, and VaxiJen, in that 
order. Finally, seven epitopes were selected for the vaccine construct 
(Table 3). 

3.3. Population coverage analysis 

The population coverage of the 14 T-lymphocyte epitopes (combined 
CTL and HTL) employed in this designed vaccine was evaluated using 
IEDB population coverage analysis. The IEDB database assessed the 
distribution of their 55 corresponding MHC alleles in 16 geographical 
areas and 101 countries. The region-wise coverage of alleles is repre-
sented in Fig. 2. Notably, our vaccine demonstrates a global coverage 
rate of 99.74%. 

3.4. Multiepitope vaccine design and its properties evaluation 

For the MEV construction, highly antigenic, non-allergenic, and non- 
toxic epitopes were selected. According to the results in Tables 1–3, six 
CTL epitopes, eight HTL epitopes, and seven B-cell epitopes were 
selected. The selected epitopes were linked with amino acid linkers like 
EAAAK, GPGPG, KK, and AAY. Furthermore, to increase the immune 
response, the TLR4 agonist (RpfE) peptide was added as an adjuvant to 
the N-terminal of the vaccine since, in their study, Lee et al. discovered 
the new finding that MTB directly binds TLR4 and initiates TLR4 
signaling, which in turn causes DCs to produce IL-1 beta and express co- 
stimulatory and MHC antigen presentation molecules [40]. As a result, 
the amino acid sequence of the constructed vaccine is mentioned in 
Fig. 3. 

The antigenicity, allergenicity, toxicity, and physicochemical ana-
lyses have been listed in Table 4. The vaccine was predicted to be 
antigenic by VaxiJen and ANTIGENpro with scores of 0.9363 and 
0.9399, respectively. The vaccine was expected to be non-allergenic by 
AllerTOP. It was found to be non-toxic by ToxinPred. The ProtParam 
server determined the vaccine construct’s molecular weight to be 53.80 
kDa, and its 10.10 pI suggested that it had basic properties. Of those 
residues, there were 534 amino acids; 64 were positively charged, and 
33 were negatively charged. The II was calculated to be 28.63 in terms of 
instability, indicating that the construct is stable following expression (a 
value above 40 predicts that the protein may be unstable). According to 
the AI calculation, the construct is thermostable, with a value of 62.77. 
The Grand Average of Hydropathicity (GRAVY), which indicates how 
hydrophilic a substance is, was estimated to be negative (− 0.354). Based 
on these results, this MEV construct can be predicted as a potential 
vaccine candidate. 

3.5. Structure prediction, refinement, and validation of the vaccine 
construct 

The vaccine’s secondary structure motifs are shown in Fig. 4 which 
were computed using v.3.0 of Gail Hutchinson’s PROMOTIF program. 
Particularly, among 534 residues, there are 0.7% β-strand, 25.5% 
α-helix, 1.1% 310-helix, 10.5% β-turn, 1.2% γ-turn, 0.7% β-hairpins, and 
60.3% others. 

Table 1 
CTL epitopes for vaccine construction.  

Peptide Length Antigenicity scoresa Toxicity Allergenicity Immunogenicity scoresb 

LMATNFFGIN 10 0.9704 Non-Toxin Non-Allergen 0.37602 
FSGFDPWLPS 10 0.9231 Non-Toxin Non-Allergen 0.33227 
PANIAFALGY 10 0.6439 Non-Toxin Non-Allergen 0.33119 
VIQPFINWL 9 0.5510 Non-Toxin Non-Allergen 0.31448 
SPANIAFALG 10 0.5157 Non-Toxin Non-Allergen 0.31063 
GNPATIAFT 9 1.0466 Non-Toxin Non-Allergen 0.30027  

a Scores ≥ 0.4. 
b Score ≥ 0.3. 
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Subsequently, the 3D structure of vaccine construct was predicted 
utilizing SWISS-MODEL, I-TASSER, and AlphaFold2. Firstly, when 
employing SWISS-MODEL, the value of Global Model Quality Estimate 
(GMQE) and QMEANDisCo Global of the two models were too low, only 
0.25 and 0.09 for model 1 and model 2, respectively (Fig. S1). As we 
know, GMQE and QMEANDisCo Global scores give an overall model 
quality measurement between 0 and 1, with higher numbers indicating 
higher expected quality. Therefore, we moved to the I-TASSER server to 
predict and acquire the top five final 3D models. Structure information, 
including C-score, estimated TM-score, estimated root-mean-square 
deviation (RMSD), number of structural decoys, and cluster density, of 
these 5 models is shown in Table S1. C-score is a confidence score for 
estimating the quality of predicted models. In general, the C-score is 
typically in the range of [− 5, 2], where the higher value signifies the 

higher confidence of the model. TM-score and RMSD are usually used to 
measure the accuracy of structure modeling when the native structure is 
known. Based on that, we chose model 1 (Fig. S2A) with the C-score of 
− 2.08, TM score of 0.47 ± 0.15, and estimated RMSD was 12.5 ± 4.3 Å. 
However, analyzing the Ramachandran plot of this model disclosed only 
55.0% of residues in the most favored regions (Fig. S2B). Hence, we 
conducted structural refinement using the GalaxyRefine server and got 
five refined models with the structure information displayed in Table S2. 
Refer to Table S2, model 2 demonstrated the highest global distance test- 
high accuracy (GDT-HA) score of 0.9148 (the higher value, the more 
accurate), and the lowest root mean square deviation (RMSD) score of 
0.524 (lower value indicating greater stability) (Fig. S2C). Nonetheless, 
when we applied the PROCHECK tool to validate the stereochemical 
quality of this model structure, there were only 76.0% of residues in the 
most favored regions (Fig. S2D). A good quality model would be ex-
pected to have over 90% of residues in the most favored regions. For that 
reason, we could not use the prediction result obtained from I-TASSER. 
Consequently, we employed the deep learning approach of AlphaFold2 
and predicted the top five 3D structure models of the vaccine via 
ColabFold v2.3.2 based on the local distance difference test (pLDDT) 
ranking (Fig. S3). Among them, the 1st rank_model 2 with the best 
estimated reliability, was selected as the predicted structure (Fig. S3A). 
Nevertheless, this prediction yielded a pLDDT score below 50 (Fig. S3B) 
and the Ramachandran plot analysis revealed only 44.2% of residues in 
most favored regions (Fig. S3C), we performed further structural 
refinement employing the GalaxyRefine server which generated five 

Table 2 
HTL epitopes for vaccine construction.  

Peptide Il-4 inducer IFN-γ scores Il-10 inducer Toxicity Antigenicity scoresa Allergenicity 

AQARKAVGTGVRKKT Yes 0.08 Yes Non-Toxin 1.1876 Non-Allergen 
ARKAVGTGVRKKTPE Yes 0.02 Yes Non-Toxin 1.2335 Non-Allergen 
LNSAAQARKAVGTGV Yes 0.41 Yes Non-Toxin 0.8428 Non-Allergen 
QAMFSGFDPWLPSLG Yes 0.02 Yes Non-Toxin 0.6122 Non-Allergen 
QARKAVGTGVRKKTP Yes 0.07 Yes Non-Toxin 1.1250 Non-Allergen 
SAAQARKAVGTGVRK Yes 0.39 Yes Non-Toxin 1.1115 Non-Allergen 
VGDLNSAAQARKAVG Yes 0.16 Yes Non-Toxin 0.5454 Non-Allergen 
AAQARKAVGTGVRKK Yes 0.16 Yes Non-Toxin 1.0585 Non-Allergen  

a Scores ≥ 0.4. 

Table 3 
LBL epitopes for vaccine construction.  

Peptide Antigenicity scoresa Toxicity Allergenicity 

TGVRKKTPEPDSAEAP 0.8432 Non-Toxin Non-Allergen 
PVAAIAPSIPTPTPTP 0.9063 Non-Toxin Non-Allergen 
TGSPQGAGTLGFAGTT 0.8953 Non-Toxin Non-Allergen 
RGYEYLDLDPETGHDP 0.9490 Non-Toxin Non-Allergen 
AQARKAVGTGVRKKTP 1.1161 Non-Toxin Non-Allergen 
APQIVKANAPTAASDE 0.7838 Non-Toxin Non-Allergen 
AWLVQASANSAAMATR 0.6719 Non-Toxin Non-Allergen  

a Scores ≥ 0.4. 

Fig. 2. Population coverage for T-lymphocytes.  
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refined models and their properties (Table 5). 
As the result shows in Table 5, model 1 held the highest GDT-HA 

score of 0.8095, the lowest RMSD score of 0.862, and the lowest Mol-
Probity score of 1.211 (lower MolProbity value indicates better model 
quality), and its 3D structure was represented in cartoon in Fig. 5A. 
Subsequently, to validate the quality of this 3D structure after the 
refining process, ProSA-web and PROCHECK tool were utilized. As 
shown in Fig. 5B, the Z-score was determined to be − 5.98. Notably, after 
refinement, the Ramachandran plot showed 92.8%, 5.0%, and 2.2% of 
residues were present in the favored, allowed, and disallowed regions, 

respectively (Fig. 5C). Additionally, corresponding quality scores 
assessed through QMEAN4 are presented in Fig. 5D with a value of 
− 5.58. Overview, model 1 (Fig. 5A) was the best compared to other 
models and was selected as the vaccine candidate for further study, 
including molecular docking and simulations. 

3.6. Molecular docking of vaccine construct with immune receptors 

The molecular docking was performed for two complex systems, 
MEV-TLR2 and MEV-TLR4, using the ClusPro server, which generated 
the top 30 models for each system. Among these models, the model with 
the lowest negative docking score was selected as the best docked 
complex. Specifically, the models with − 1376.3 kcal/mol (MEV-TLR2) 
and − 1545.0 kcal/mol (MEV-TLR4) were selected for further analysis 
(Table 6). 

A 3D representation of the surface and cartoon of the docking com-
plex MEV-TLR2 was presented in Fig. 6A and B, and MEV-TLR4 was 
shown in Fig. 7A and B. In addition, interacting residues between MEV- 
TLR2 (Fig. 6C–F) and MEV-TLR4 (Fig. 7C–F) were visualized using 
PDBsum. Our results showed that 36 hydrogen bonds and 10 salt bridges 
were formed between the residues of MEV and two chains of TLR2 
(Fig. 6E and F). Similarly, 68 hydrogen bonds and 13 salt bridges were 
formed between the residues of the vaccine and two chains of TLR4 
(Fig. 7E and F). Based on these findings, MEV had excellent performance 
in strongly binding to TLR2 and 4 to produce a strong immune response. 

3.7. Molecular dynamic simulations of vaccine with immune receptors 

In order to obtain the stability and dynamic behavior of the in-
teractions between MEV with TLR2 and TLR4 receptors during 100 ns 
simulation, statistical parameters such as root mean square deviation 
(RMSD), root mean square fluctuation (RMSF), the radius of gyration 
(Rg), and solvent accessible surface area (SASA) were examined in 
triplicate (Fig. 8). After 50 ns, the RMSD values for both remained stable, 
indicating that the complexes maintained a comparatively stable 
structure, according to Fig. 8A and B, the complexes consistently 
retained moderate structural stability. During the simulation, the 

Fig. 3. Structural details of MEV. Schematic representation (A) and sequence (B) of the final vaccine construct with linkers, adjuvant, and epitopes sequentially and 
appropriately. 

Table 4 
Evaluation of antigenicity, toxicity, allergenicity, toxicity, and physicochemical 
properties of the vaccine construct.  

Features Assessment Remark 

Number of amino acids 534 – 
Molecular weight 53797.90 Average 
Total number of atoms 7580 Average 
Theoretical pI 10.10 Basic nature 
Total number of negatively charged 

residues (Asp + Glu) 
33 – 

Total number of positively charged 
residues (Arg + Lys) 

64 – 

Aliphatic index (AI) 62.77 Thermostable 
Instability Index (II) 28.63 Stable 
Estimated half-life (mammalian 

reticulocytes, in vitro) 
30 h Satisfactory 

Estimated half-life (yeast cells, in 
vivo) 

>20 h Satisfactory 

Estimated half-life (Escherichia coli, 
in vivo) 

>10 h Satisfactory 

Grand Average of hydropathicity 
(GRAVY) 

− 0.351 Hydrophilic 

Antigenicity 0.9363 (VaxiJen v2.0, 
threshold 0.4) 

Antigenic  

0.9399 (ANTIGENPro) Antigenic 
Allergenicity Non-allergen (AllerTOP 

v2.0) 
Non-allergen 

Toxicity ToxicPred Non-toxic  
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average RMSD values of the MEV-TLR2 and MEV-TLR4 complexes were 
1.767 ± 0.127 and 1.634 ± 0.151 nm, respectively. 

Referring to the trajectories of Fig. 8C and D, the MEV regions dis-
played the most significant fluctuations and an increasing trend in RMSF 
values, suggesting that the MEV regions were more dynamic or flexible 
than the TLRs regions. Besides, the Rg offers valuable information 
regarding the tendency of complex structures to expand during MDs. For 

the MEV-TLR2 complex (Fig. 8E), the Rg values slightly increased from 
the start of the simulations until 10 ns, indicating compaction or tight-
ening of the complex. The Rg values gradually decreased, then stable 
after 50 ns until they reached 100 ns. For the MEV-TLR4 complex 
(Fig. 8F), the Rg gradually reduced from the beginning of the simulation 
up to 40 ns, then stabilized until it reached 100 ns. Throughout the 
simulation, the complexes maintained an overall relatively compact 

Fig. 4. Secondary structure prediction of the vaccine construct representation in schematic “wiring diagram” including strands (pink arrows), helices (purple 
springs), and other motifs in red (e.g., β-hairpins, γ-turns, etc). 
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structure, as indicated by the average Rg value of 4.889 ± 0.187 and 
4.663 ± 0.044 nm for MEV-TLR2 and MEV-TLR4, respectively. 

In addition, Fig. 8G and H shows the average SASA values of MEV- 
TLR2 and MEV-TLR4 complex were 889.117 ± 21.779 and 915.881 
± 7.935 nm2, respectively. The SASA values gradually decreased 
throughout the simulation, indicating that the complexes got more 

compact or less exposed to solvent. Significant structural rearrangement 
may have occurred during the beginning of simulation until 40 ns (for 
MEV-TLR2) and 30 ns (MEV-TLR4) period, as evidenced by the signifi-
cant and quick decrease in SASA during this time frame. After that, both 
were stable until the end of the simulation period. 

3.8. Immune responses induced by the vaccine 

The immunological simulation data was produced by the C- 
IMMSIMserver following three successive injections of the vaccine 
candidate. Fig. 9A shows that a vaccine’s initial exposure produces a 
relatively low immunoglobulin response, whereas a subsequent expo-
sure produces an increased immunoglobulin response. Additionally, 
Fig. 9A shows that immunoglobulins such as IgM and IgG are more 
abundant than other immunoglobulins such as IgM, IgG1, and IgG1 +
IgG2. Details of the cytokine levels, especially IFN-g, increased signifi-
cantly and were above 400,000 ng/ml, which are visualized in Fig. 9B, 
while Fig. 9C indicates responses of B lymphocytes. Our simulation 
study also identified helper T-cell and cytotoxic T-cell responses (Fig. 9D 
and E), confirming the realistic character of the server-predicted im-
mune response because helper T-cell activity is crucial for activating B- 

Table 5 
Structure information obtained from GalaxyWEB.  

Model GDT- 
HA 

RMSD MolProbity Clash 
score 

Poor 
rotamers 

Rama 
favored 

Initial 1.0000 0.000 3.593 27.4 7.7 45.3 
MODEL 

1 
0.8095 0.862 1.211 1.9 0.3 96.2 

MODEL 
2 

0.8071 0.885 1.295 2.3 0.0 95.9 

MODEL 
3 

0.8062 0.882 1.454 2.8 0.0 94.4 

MODEL 
4 

0.8038 0.883 1.376 2.2 0.3 94.4 

MODEL 
5 

0.7949 0.911 1.214 1.4 0.3 95.1  

Fig. 5. Prediction, refinement, and validation of the tertiary structure of the vaccine. (A) The 3D structure representation in the cartoon by PyMOL. (B) The Z-score 
was obtained from ProSA-Web. (C) Ramachandran plot gained from PROCHECK. (D) Normalized QMEAN score composed of four statistical potential terms 
(QMEAN4) of the vaccine. 

Table 6 
Molecular docking of the vaccine with TLR2 and TLR4.  

Target (PDB ID) Center (kcal/mol) Lowest energy (kcal/mol)  No. of interface residues Interface area (Å2) No. of hydrogen bonds No. of salt bridges 

TLR2 (2Z7X) − 1079.1 − 1376.3 Chain A TLR2A: 8 TLR2A: 414 13 6 
Vaccine: 8 Vaccine: 406 

Chain B TLR2B: 46 TLR2B: 1716 23 4 
Vaccine: 35 Vaccine: 1954 

TLR4 (3FXI) − 1441.9 − 1545.0 Chain A TLR4A: 48 TLR4A: 2298 44 8 
Vaccine: 46 Vaccine: 2278 

Chain B TLR4B: 39 TLR4B: 1486 24 5 
Vaccine: 30 Vaccine: 1641  
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Fig. 6. Molecular docking between TLR2 chains A (purple) and B (red) with the vaccine construct (chain C – dark yellow). (A–B) Three-dimensional representation of 
the docking complex in surface and cartoon, respectively. (C–D) Schematic diagram of interactions between TLR2 and the vaccine. (E–F) Residue interactions be-
tween TLR2 and the vaccine construct. Salt-bridges (red lines), hydrogen bonds (blue lines), and non-bonded contacts (orange dashed line) between residues on 
either side of the vaccine-receptor interface. 
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Fig. 7. Molecular docking between TLR4 chains A (purple) and B (red) with the vaccine construct (chain C – dark yellow). (A–B) Three-dimensional representation of 
the docking complex in surface and cartoon, respectively. (C–D) Schematic diagram of interactions between TLR4 and the vaccine. (E–F) Residue interactions be-
tween TLR4 and the vaccine construct. Salt-bridges (red lines), hydrogen bonds (blue lines), and non-bonded contacts (orange dashed line) between residues on 
either side of the vaccine-receptor interface. 
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cells. During the self-memorization process following pathogen expo-
sure, memory cells play a crucial role in preventing and regulating viral 
infection and reinfection. The successful injection of the vaccine 
candidate resulted in an increase in the regulatory components of the 
immune system, including DC cells, macrophages, NK cells, interleukins, 
and cytokines (Fig. 9C–H). These results imply that the MEV is a highly 

effective next-generation vaccine based on peptides that can stimulate a 
robust immune response against MTB infection. 

4. Discussion 

Despite advances in vaccine technology, there are still no vaccines 

Fig. 8. MD simulations of the docking complexes between MEV and TLR2/4. (A–B) Root mean square deviation plot for MEV-TLR2 and MEV-TLR4 complex, 
respectively. (C–D) Root mean square fluctuation of MEV-TLR2 and MEV-TLR4 complex, respectively. (E–F) Radius of gyration analysis between MEV-TLR2 and 
MEV-TLR4 complex, respectively. (G–H) Solvent-accessible surface area of MEV-TLR2 and MEV-TLR4 complex during MD simulations, respectively. 

T.L. Nguyen and H. Kim                                                                                                                                                                                                                      



Synthetic and Systems Biotechnology 9 (2024) 391–405

403

against some infectious diseases, including tuberculosis. The infectious 
pathogens underlying these diseases evade and alter host immune re-
sponses, making vaccine development difficult. In this study, we aim to 
design a MEV candidate against tuberculosis to contribute towards the 
End MTB Strategy. Several vaccines for MT have been developed to 
provide possible candidates for novel vaccine designs [15,18,19,59]. 
While a few new proteins with antigenic qualities were chosen for the 

current study to identify epitopes and develop the vaccine, most known 
antigenic proteins or proteins found in exosome vesicles were used in 
these previous studies to uncover antigenic epitopes. Besides, although 
many vaccine candidates are available, each vaccine employs different 
algorithms and features. The in vitro and in vivo vaccination production 
process is far more complex, expensive, and time-consuming than the 
MEV. A range of laboratory medical studies are also required for the 

Fig. 9. The innate and adaptive immune responses induced by the MEV in the C-IMMSIMserver. (A) Immunoglobulin responses upon exposure to the vaccine. (B) 
Concentration of cytokines and interleukins. (C) B cell population. (D) T helper cell population. (E) T cytotoxic cell population. (F) Behavior of the population of 
Natural Killer cells. (G) Behavior of the population of Dendritic cells. (H) The population of macrophages after vaccination. 
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final epitope selection. A computational technique that saves time and 
predicts a peptide or epitope sequence that might be used to make a 
lab-based MEV is called in silico methodology. 

The present study focuses on a PPE family protein, Rv0256c (PPE2), 
which induced a strong B cell response in tuberculosis patients [25]. We 
carried out a computer analysis using a range of immunoinformatics 
techniques to find 21 potent epitopes that could be helpful in the fight 
against tuberculosis. Therefore, using this method, we may reduce the 
cost and length of wet lab investigations. Finally, we speculate that the 
designed vaccine is extracellular, highly immunogenic, antigenic, 
nontoxic, and nonallergic; as such, it could be a promising MEV candi-
date for MTB based on computational analysis. Additional wet-lab 
validation is required to confirm the 21 epitopes’ effectiveness as MEV 
in this study. 

Firstly, we retrieved the protein sequence and evaluated antigenicity 
and allergenicity. Then, the immunoinformatic techniques were used to 
screen and construct potential epitopes from the sequence of Rv256c 
protein for B and T cells. The antigenicity, allergenicity, and several 
physiochemical properties of the developed multi-epitope vaccination 
were then evaluated. The vaccine construct contains 534 amino acids, 
comprising six cytotoxic T lymphocyte, eight helper T lymphocyte, and 
seven linear B lymphocyte epitopes, along with adjuvants and linkers. 
The antigenicity score of MEV predicted by VaxiJen 2.0 and ANTI-
GENpro was 0.9363 and 0.9399, respectively. The MEV was predicted as 
stable and thermostable with an instability index and aliphatic index of 
28.64 and 62.77, respectively. Afterwards, tertiary structure prediction, 
refinement, and validation were conducted. Ramachandran plot anal-
ysis reveals that 97.8% of the amino acid residues were in the most 
favored and allowed regions. 

Subsequently, molecular docking and MD simulations were utilized 
in evaluating the complex stability. There were a total of 46 interaction 
sites in MEV-TLR2 and 81 interaction sites in MEV-TLR4 (Figs. 6 and 7). 
These results showed that the interactions between MEV and TLR2, 4 
were strong, and the docking effect was good, especially, the MEV-TLR 4 
complex. Triplicate MD simulations were calculated to confirm the poses 
found by docking results. The MD calculation lets us establish if MD 
finds the most populated cluster from docking. The static view provided 
by docking should be verified by using MD. In this study, a MD simu-
lation could be helpful to confirm if the primary contacts found will be 
maintained during the MD to present more reliable results. In general, 
combining two in silico techniques (docking, MD) could improve the 
reliability of the results. We need to ensure that all the system’s chemical 
and physical properties have reached an equilibrium where their aver-
ages no longer change as a function of time. A simple way to test this is 
by measuring the RMSD of the backbone concerning the start (Fig. 8A 
and B). For the RMSD, the average is taken over the particles, giving 
time-specific values; for RMSF, the latter is averaged over time, giving 
each particle (residue) value. RMSF is a simple tool to measure the ri-
gidity of the polypeptide chain. It calculates the deviations of the C- 
alpha atom’s coordinates from their average position. The flexibility 
pattern reflects the location of secondary structure elements in the 
protein structure (Fig. 8C and D). Besides, we studied the compactness of 
the receptors TLR2 and TLR4 interaction with the vaccine using Rg. The 
receptor remains compact, and no unusual folding or unfolding was 
observed throughout the 100 ns. The vaccine with TLR4 is more tightly 
packed than TLR2 (Fig. 8E and F). Furthermore, we calculated the total 
solvent-accessible surface area to understand the system’s SASA of the 
binding region. We observed that initially, the area of structures contact 
by the solvent molecules was higher, and it decreased gradually with 
time and showed stable values, showing significant interaction can be 
assumed between the vaccine and TLR2, 4. In particular, the complex 
between the vaccine and TLR4 showed more stability than TLR2 (Fig. 8G 
and H). To sum up, our molecular docking studies and triplicate MD 
simulations revealed superior interactions and stability of the vaccine 
with the TLR4 complex compared to the TLR2 complex. This aligns with 
the outcomes of a previous investigation [60]. Alderwick et al. in that 

study, demonstrated that human immune cells that were infected with 
MTB express more TLR4, which played a role in the interaction with 
MTB and activated TLR4 related signaling, which in turn enhanced Th2 
signaling and led to the development of tuberculosis disease. 

Finally, we performed in silico immune simulation to characterize 
the immunogenicity and immune response of the vaccine. Fig. 9 shows 
the outcomes of the immunological simulation after the MEV was 
administered. After the host immune system was exposed to MEV 
several times, there was a discernible rise in secondary and tertiary 
antibody levels, which were higher than primary antibody detection 
levels. As a result, there was a quick drop in antigen concentration, 
which suggests quick clearance (Fig. 9A). Interestingly, T-cells were 
found to have increased initially but then somewhat decreased. More-
over, cytokine levels, especially IFN-g, increased significantly and were 
above 400,000 ng/ml (Fig. 9B). Fig. 9C–H shows the distribution of 
immune cell populations in different states. These immune cell pop-
ulations showed a notable overall increase, exemplified by the matu-
ration of memory cells. These results demonstrate that the vaccine 
designs can provide immunity against the MTB and strongly suggest the 
formation of immunological memory. 

5. Conclusions 

Despite the availability of the BCG vaccine, tuberculosis persists as a 
significant global public health threat, which underscores the critical 
need for a prophylactic and immunotherapeutic vaccine against MTB. 
The application of an in silico approach represents the initial crucial step 
in the development of such a vaccine. In this study, we achieved success 
by designing an MEV against MTB, utilizing immunoinformatics and 
computational methodologies. The MEV, composed of highly antigenic 
and immunogenic epitopes, demonstrated safety, stability, and robust 
interactions with receptors TLR2 and TLR4. Notably, our molecular 
docking studies and triplicate MD simulations revealed enhanced in-
teractions and stability of the vaccine with the TLR4 complex compared 
to TLR2. The executed immunological simulation further supported our 
hypothesis by demonstrating a robust immune response induced by the 
vaccination. This investigation not only establishes a scientific founda-
tion for understanding the mechanisms of MEV against TB but also 
provides valuable theoretical support for the ongoing development of TB 
vaccines. Additionally, our contributions align with the global initiative 
of the End MTB Strategy. 
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