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Inflammatory factors play an important role in the pathogenesis of Alzheimer’s disease (AD). Byu d Mar 25 (BM25) has been
suggested to have protective effects in the central nervous system. However, the effect of BM25 on AD has not been determined.
*is study aims to investigate the neuroprotective effect of BM25 in AD. A total of 40 AD model mice were randomly assigned to
the following five groups (n� 8 per group): the AD+NS group, the AD+donepezil group, and three AD+BM25 groups treated
with either 58.39mg/kg (AD+BM25-L), 116.77mg/kg (AD+BM25-M), or 233.54mg/kg BM25 (AD+BM25-H). *e Morris
water maze test was performed to assess alterations in spatial learning andmemory deficits. Nissl staining was performed to detect
Nissl bodies and neuronal damage. *e expression of IL-1β and TNF-α was evaluated by ELISA.*e protein expression of P-P38,
P38, P-IκBα, caspase 1, COX2, and iNOS was determined by western blotting. *e expression of Aβ, p-Tau, and CD11b was
measured by immunohistochemistry. *e mRNA expression levels of IL-1β, TNF-α, COX2, and iNOS were measured by qRT-
PCR. Spatial memory significantly improved in the AD+BM25-M and AD+BM25-H groups compared with the AD+NS group
(p< 0.05).*e expression of Aβ and p-Tau significantly decreased in the AD+BM25-M and AD+BM25-H groups (p< 0.05).*e
neuron density and hierarchy and number of pyramidal neurons significantly increased in the AD+BM25-M and AD+BM25-H
groups (p< 0.05). In addition, the expression levels of CD11b, IL-1β, TNF-α, COX2, iNOS, caspase 1, p-IκBα, and p-P38
significantly decreased in the AD+BM25-M and AD+BM25-H groups (p< 0.05). In conclusion, our findings suggest that BM25
may exert anti-inflammatory and neuroprotective effects in ADmodel mice by suppressing the activity of microglia and inhibiting
the phosphorylation of IκBα and p38 MAPK.

1. Introduction

Alzheimer’s disease (AD) is a common neurodegenerative
disease in the elderly population that causes declines in
learning and memory [1–4]. *e incidence of AD in people
over the age of 65 is approximately 5% [5]. However, the
pathogenesis of sporadic AD is still not fully understood.
Neuroinflammation has been suggested to play an important

role in the development of AD [6, 7]. At present, the role of
glial cell activation, especially microglial cells, in neuro-
inflammation has been widely confirmed [8, 9].

Byu d Mar 25 (BM25) was developed by the Tibetan
Medicine Master Dima Danzeng Peng Cuo in the 18th
century and is still used today for multiple neurological
disorders [10]. BM25 is composed of 25 rare herbs, such as
saffron, calamus, and musk. It has the functions of opening
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the orifices and relieving pain. A clinical study has shown
that BM25 has positive effects on neuropathic pain, epilepsy,
stroke, and multiple peripheral neuropathies and neuro-
logical disorders [11]. In addition, BM25 has been shown to
attenuate neuronal and astrocyte injury by inhibiting the
neuronal denaturation and astrocyte overactivation induced
by D-galactose [12]. *ese findings may indicate a potential
therapeutic role for BM25 in AD.

*e pharmacological mechanism of BM25 at the mo-
lecular level has been less studied. Du et al. found that BM25
reduced the expression levels of nitric oxide (NO) and nitric
oxide synthase (NOS) in the plasma of migraine rat models
[11]. Liu et al. reported that BM25 inhibited the phos-
phorylation of NF-kB P65 in human neuroblastoma cells
(SH-SY5Y) [13]. *e results of network pharmacological
analysis suggested that the anti-AD mechanism of BM25
might be related to the regulation of the MAPK, insulin, and
mTOR signal transduction pathways; intervention in in-
flammation and immunity; apoptosis and autophagy; and
intervention in Aβ expression and clearance in brain tissue
[14].

However, no systematic research on the effect and
mechanism of BM25 in AD has been conducted. In the
present study, we aimed to illustrate the effect and mech-
anism of BM25 in an LPS-induced AD mouse model.

2. Materials and Methods

2.1. Animals and Drug Administration. *is experiment
followed the ethical standards of the Declaration of Helsinki
as well as national and international guidelines. *e research
procedures were approved by the Ethics Committee of Tibet
University, China (EC20190018). *e LPS-induced AD
mouse model was established according to our previous
study [15]. A total of 40 LPS-induced AD mice were ran-
domly divided into the following five groups:

(1) AD+donepezil group (donepezil (1mg/ml), 0.1ml/
10 g) (n� 8)

(2) AD+NS group (normal saline (NS) (0.9%), 0.1ml/
10 g) (n� 8)

(3) AD+BM25-L group (low dose, L) (58.39mg/kg,
0.1ml/10 g) (n� 8)

(4) AD+BM25-M group (medium dose, M) (116.77mg/
kg, 0.1ml/10 g) (n� 8)

(5) AD+BM25-H group (high dose, H) (233.54mg/kg,
0.1ml/10 g) (n� 8)

*e dosing and duration of BM25 followed the studies
conducted by Du et al.[16] and Li et al.[17]. Drug treatments
were performed by lateral ventricular stereotactic injection
and lasted for four weeks. *e Morris water maze test was
performed on the last day of treatment to assess the alter-
ations in spatial learning and memory deficits. Nissl staining
was performed to detect Nissl bodies and neuronal damage.
*e expression of IL-1β and TNF-α was evaluated by ELISA.
*e expression of P-P38, P38, P-IκBα, Caspase1, COX2, and
iNOS proteins was determined by western blotting. *e
expression of Aβ, p-Tau, and CD11b was measured by

immunohistochemistry. *e mRNA expression levels of IL-
1β, TNF-α, COX2, and iNOS were measured by qRT-PCR.

2.2. Morris Water Maze Test. Spatial learning and memory
deficits in the five groups were evaluated by the Morris
water maze on the last day of treatment. *e test protocols
followed a previously published study by Vorhees
et al.[18]. An ANY-maze Video Tracking System (Stoelting
Co., USA) was used to track and record animal movement
during the trials. *e swim path, escape latency, and
frequency of crossing the target platform were recorded
and analyzed.

2.3. Tissue Collection. *e mice were anesthetized with
pentasorbital sodium (0.2%, 0.1ml/10 g) by intraperitoneal
injection. *e brain tissue samples (n� 8) from each group
were stored in 10% neutral formalin, and other specimens
(n� 8) were stored at −80°C until further analysis.

2.4.Nissl Staining. Nissl bodies in the cytoplasm of surviving
neurons were detected by Nissl staining (Beyotime Institute
of Biotechnology, China). *e number of positive cells per
unit area (mm2) at the same site in the hippocampus was
detected by using Image-Pro Plus 5.1 software (Media Cy-
bernetics, Inc., Bethesda).

2.5. Enzyme-Linked Immunosorbent Assay (ELISA). *e
expression levels of IL-1β and TNF-α in brain tissues were
measured by ELISA with ELISA kits that were purchased
from Sigma (Tokyo, Japan). *e levels of IL-1β and TNF-α
were detected by a microplate spectrophotometer (Multis-
kan MK, Finland). *e measurement data are expressed as
the mean± standard deviation (SD).

2.6.WesternBlotting. *e protein expression levels of p-p38,
p38, p-IκBα, Caspase1, COX2, and iNOS were detected by
western blotting.*e total protein concentration of the brain
tissues was analyzed with a BCA kit (Sigma, CA, USA). *e
blots were separately probed with rabbit antibodies against
p-p38 (1 :1000; 43 kDa, Affinity Biosciences), p38 (1 : 3000;
43 kDa, Affinity Biosciences), p-IκBα (1 :1000; 39 kDa, Af-
finity Biosciences), Caspase1 (1 :1000; 45 kDa, Affinity
Biosciences), COX2 (1 :1000; 72 kDa, Affinity Biosciences),
iNOS (1 : 500; 130 kDa, Affinity Biosciences), and α-Tubulin
(1 : 5000; ProMab). Subsequently, the blots were probed with
horseradish peroxidase- (HRP-) conjugated goat secondary
antibody against rabbit IgG (1 : 80000; Affinity Biosciences).
Quantitative analysis of the protein bands was performed
with Image-Pro Plus 5.1 software (Media Cybernetics, Inc.,
Bethesda).

2.7. Immunohistochemistry. *e tissues were thoroughly
rinsed with PBS, treated with 3% H2O2 for 20min, and
incubated with 5% horse serum at room temperature for 1 h.
*en, the tissues were separately incubated with mouse
antibody against Aβ1-40 (1 :150; Affinity Biosciences), p-Tau
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(1 : 200; Affinity Biosciences), or CD11b (1 :150; Affinity
Biosciences) at 4°C overnight and reacted with biotinylated
broad-spectrum antibody against rabbit IgG (1 : 200; Affinity
Biosciences) at room temperature for 2 h. Finally, the im-
munoreactive product was visualized by incubation in 0.05%
DAB (Affinity Biosciences) for 3min. *e absorbance was
analyzed by Image-Pro Plus 5.1 software (Media Cyber-
netics, Inc., Bethesda).

2.8. qRT-PCR. TRIzol Reagent (Invitrogen, Grand Island,
NY, USA) was used to isolate total RNA from each brain
tissue sample. *e RNA quantity and integrity were mea-
sured by an ultraviolet spectrophotometer (UV-9000)
(Shanghai Precision Instrument Co., Ltd.). Total RNA
samples were purified with DNase, and cDNA was syn-
thesized by a SuperScript VILO™ cDNA kit (*ermo Fisher
Scientific, NY, USA). qRT-PCR was performed using
HieffTM qPCR SYBR® Green Master Mix (Takara Bio Inc.,
Dalian, China) on a LightCycler® 2.0. *e Ct values were
analyzed with SDS 2.0 software (PE Biosystems).*e relative
mRNA expression levels of IL-1β, TNF-α, COX2, and iNOS
were analyzed using the 2−ΔΔCt method and normalized to
β-actin.

2.9. Statistical Analysis. All the data are presented as the
mean± standard deviation (mean± SD). *e significance of
difference was analyzed by SPSS 22.0 followed by a t-test. A
value of p< 0.05 was considered statistically significant.

3. Results

3.1. BM25 Significantly Decreased the Expression of Aβ and
p-Tau and Improved Spatial Memory in the LPS-Induced
AD Mouse Model

3.1.1. Results of the Morris Water Maze. As shown in Fig-
ure 1, the mice in the AD+BM25-H and AD+BM25-M
groups had shorter latencies and swimming distances to
escape than the mice in the AD+NS group on the visible
platform tests, indicating stronger spatial learning ability in
ADmice treated with BM25 (p< 0.05). In the probe trial, the
mice in the AD+BM25-H and AD+BM25-M groups spent
significantly less time traveling into the fourth quadrant,
where the hidden platform was previously placed, than the
mice in the AD+NS group, which revealed better spatial
memory ability in the AD mice treated with BM25
(p< 0.05).

3.1.2. Expression of Aβ and P-Tau. Figures 2 and 3 show that
the expression of Aβ and p-Tau was significantly lower in the
AD+BM25-H (Aβ: 1937.75± 264.35; p-Tau: 394.87± 36.26)
and AD+BM25-M groups (Aβ: 2040.46± 116.74; p-Tau:
529.98± 78.53) than in the AD+NS group.

3.2. BM25 Reduced Neuronal Damage and Neuronal Loss

3.2.1. Nissl Staining. Under a light microscope, the pyra-
midal neurons in the hippocampal area of the AD+BM25-

M and AD+BM25-H groups were arranged in a regular
order with light staining of nuclei and clear staining of the
cytoplasm in the AD+BM25-M and AD+BM25-H groups.
In contrast, the neuron density and hierarchy decreased, the
number of pyramidal neurons decreased, the neuron ar-
rangement was disordered, the cell spacing increased, and
neurons were significantly lost in the AD+NS group
(Figure 4).

3.2.2. Expression of the Caspase 1 Protein. As shown in
Figure 5, the relative expression of the caspase 1 protein was
significantly lower in the AD+BM25-H (0.081± 0.024) and
AD+BM25-M groups (0.140± 0.014) than in the AD+NS
group (0.400± 0.102) (p< 0.05).

3.3. BM25 Inhibited the Activity of Microglia and Decreased
the Expression Levels of IL-1β, TNF-α, COX2, and iNOS

3.3.1. Activity of Microglia. As shown in Figure 6, the
microglial cells in the hippocampus of the AD+BM25-H
and AD+BM25-M groups were small, rod-shaped, and thin
and had few branches. *e microglial cells in the AD+NS
group were branched, and the cell bodies became larger and
rounder with more branches. *e number of activated
microglial cells (CD11b-positive cells) in the AD+NS group
was significantly increased compared with those in the
AD+BM25-H (1216.63± 217.91) and AD+BM25-M groups
(1404.20± 120.01) (p< 0.05).

3.3.2. Expression of Proinflammatory Cytokines. *e relative
mRNA expression levels of IL-1β, TNF-α, COX2, and iNOS
in the AD+BM25-H and AD+BM25-M groups were found
to be significantly lower than those in the AD+NS group
(p< 0.05) (Figure 7). *e ELISA results showed that the
protein expression of IL-1β and TNF-α in the brain was
significantly decreased in the AD+BM25-H (IL-1β:
192.64± 22.49; TNF-α: 445.58± 33.73) and AD+BM25-M
(IL-1β: 274.22± 56.87; TNF-α: 461.18± 100.14) groups
compared with the AD+NS group (IL-1β: 505.69± 43.33;
TNF-α: 714.65± 23.00) (p< 0.05) (Figure 8). In addition,
western blotting revealed that the number of COX2-and
iNOS-positive dots (relative content ratio) in the
AD+BM25-M (COX2: 0.096± 0.019; iNOS: 0.182± 0.020)
and AD+BM25-H groups (COX2: 0.063± 0.025; iNOS:
0.108± 0.011) was significantly decreased compared with
that in the AD+NS group (COX2: 0.375± 0.014; iNOS:
0.548± 0.126) (p< 0.05) (Figure 5).

3.4. BM25 Suppressed the Phosphorylation of IκBα and p38
MAPK. Western blotting showed that the relative expres-
sion levels of p-IκBα and p-P38 MAPK were significantly
lower in the AD+BM25-M (p-IκBα: 0.353± 0.012; p-p38 :
0.152± 0.022) and AD+BM25-H groups (p-IκBα:
0.229± 0.015; p-p38 : 0.109± 0.019) than in the AD+NS
group (p-IκBα: 0.758± 0.021; p-p38 : 0.577± 0.024)
(p< 0.05). *us, BM25 can inhibit the phosphorylation of
IκBα and p38 MAPK (Figure 5).
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4. Discussion

*e etiology of AD is complex. Neuroinflammation is one of
the main factors involved in the occurrence and develop-
ment of AD and one of the important therapeutic targets for
AD [19]. At present, the role of glial cells, especially
microglia, in neuroinflammation has become a hotspot of
research. Studies have shown that the inflammatory re-
sponse induced by microglial activation is one of the
pathogeneses of AD [20, 21]. Microglia can be activated and
then produce a large number of proinflammatory factors,
such as interleukin-1β (IL-1β) and tumor necrosis factor-α
(TNF-α) [22]. Research has shown that IL-1β can be induced
by the beta amyloid precursor (beta amyloid, Aβ) and cause
Aβ deposition and Tau protein phosphorylation by reducing
the expression of genes related to Aβ clearance [23]. Ad-
ditionally, Aβ can bind to a specific receptor, activate
microglia, and promote the release a large number of in-
flammatory factors and toxic substances [24]. Furthermore,

activated microglial cells can express large quantities of
iNOS and produce excess NO, which damages neurons by
inhibiting cytochrome oxidase in the mitochondria of
neurons [25]. Cox-2 is an inducible isoenzyme that is
expressed in small amounts in microglia at rest. Under the
action of proinflammatory molecules such as LPS, intra-
cellular COX-2 mRNA levels increase, microglia are acti-
vated, and inflammatory mediators such as TNF-α and IL-6
are released [26].

BM25 is mainly used to invigorate the circulation of
blood and to remove blood stasis. Chen et al. showed that
calamus reduced the expression of the aquaporin-4 gene in
glial cells [27]. Shi et al. reported that musk extract had a
significant protective effect against the inflammatory
damage of nerve cells caused by LPS, possibly by reducing
the secretion of IL-6 by glial cells [28]. Our results con-
firmed that BM25 can significantly reduce the production
of TNF-α, IL-1β, iNOS, COX-2, Aβ, and p-Tau and im-
prove spatial memory, suggesting that BM25 may improve
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Figure 1: Testing of spatial learning and memory in AD+NS, AD+donepezil, and AD+BM25 groups by Morris water maze. (a) *e
swimming trajectory of mice in the AD+NS, AD+donepezil, and AD+BM25 groups. (b) Escape latency in AD+NS, AD+ donepezil, and
AD+BM25 groups. (c) Probe trial; the travel trajectory of mice in the AD+NS, AD+donepezil, and AD+BM25 groups. (d)*e frequency
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AD+BM25 group rather than that in the AD+NS group was detected (∗ ∗p< 0.05). A more significant frequency in crossing the target
platform in AD+BM25 groups than that in the AD+NS group was detected (∗ ∗p< 0.05). Data are expressed as the mean± standard error of
the mean (SEM). (n� 8/group in the AD+BM25 group; n� 8/group in the AD+donepezil group; n� 8/group in the AD+NS group).
BM25: Byu d Mar 25; AD: Alzheimer’s disease; NS: normal saline.
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AD-like symptoms by inhibiting the activation of
microglia, reducing the expression of proinflammatory
cytokines and altering Aβ and p-Tau expression and
clearance in brain tissue.

*e NF-κB pathway plays an important role in LPS-
induced microglia [29]. Liu et al. showed that LPS activates
the NF-κB signaling pathway in microglia by binding to
TLR4 and activating the expression of chemokines,
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Figure 4: *e results of Nissl staining. (a) Nissl staining in the AD+NS group. (b) Nissl staining in the AD+donepezil group. (c) Nissl
staining in the AD+BM25-L group. (d) Nissl staining in the AD+BM25-M group. (e) Nissl staining in the AD+BM25-H group. (f ) *e
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proinflammatory cytokines and other genes [30]. *e IκB
family includes IκBα, IκBβ, and IκBε. IκBα is the most
important inhibitor of NF-κB. When stimulated by an ex-
ternal signal, the IκB kinase (IKK) complex is activated.
Activated IKK phosphorylates IKKα and IKKβ, which
subsequently bind to ubiquitin ligases. IκBα is ubiquitinated
and degraded by the proteasome, leading to NF-κB acti-
vation [31, 32]. *us, the phosphorylation of IκB is essential
for NF-κB activation. Currently, NF-κB target genes include
cytokines and inflammatorymediators (such as TNF-α, IL-6,
IL-1, and iNOS). Excessive activation of NF-κB leads to the
production of a large number of inflammatory cytokines,
which aggravates the inflammatory response. In the present
study, the phosphorylation of IκBα was detected by western

blotting, and the results showed that BM25 significantly
reduced the phosphorylation of IκBα, which indicated that
BM25 may act as an anti-inflammatory agent by suppressing
the phosphorylation of IκBα and inhibiting the expression of
cytokines and inflammatory mediators (such as TNF-α, IL-
1β, iNOS, and COX-2).

In addition to the NF-κB signaling pathway, MAPK
signaling plays an important role in the expression of in-
flammation-related factors after microglial activation.
Youssef et al. showed that LPS can quickly activate p38, ERK,
and JNK signaling in microglia [33]. Other molecules, such
as ATP, thrombin, and TNF-α, also activate the MAPK
signaling pathway, causing microglial activation [34]. Mi-
togen-activated protein kinases (MAPKs) are a type of
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Figure 6: Light microscopic images show the distribution of CD11b immunolabeling across the brain of AD+NS, AD+donepezil, and
AD+BM25 groups. (a) *e distribution of CD11b immunolabeling in the AD+NS group. (b) *e distribution of CD11b immunolabeling
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group; n� 8/group in the AD+donepezil group; n� 8/group in the AD+NS group). BM25: Byu d Mar 25; AD: Alzheimer’s disease; NS:
normal saline.
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serine/threonine protein kinase in cells [35]. Normally,
MAPK exists in cells in a nonphosphorylated form. Stim-
ulation via recognition of LPS by TLR4 receptors on the
surface of microglia can induce the phosphorylation of
MAPK and activate the expression of related cytokines and
inflammatory mediator genes [36]. Researchers have sug-
gested that, among the three MAPK subfamilies (p38
MAPK, JNK, and ERK), p38MAPK is most closely related to
the inflammatory response [37]. Studies have shown that

LPS promotes the phosphorylation of P38 MAPK in a dose-
dependent and time-dependent manner, thereby promoting
the expression of inflammatory mediators such as TNF-α,
IL-1β, and iNOS. Inhibiting the activation of P38 MAPK can
inhibit the production of inflammatory mediators and
protect neurons [38–40]. In the present study, the phos-
phorylation of P38 MAPK was detected by western blotting,
and the results showed that BM25 significantly reduced the
phosphorylation of P38 MAPK.*erefore, the results of this
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study suggest that BM25 may inhibit the release of in-
flammatory mediators by inhibiting the P38 MAPK
pathway.

However, this study only investigated the effects and
preliminary molecular mechanism of inflammatory factor
release in an LPS-induced AD mouse model treated with
BM25. Cell culture experiments are still lacking at present.
*erefore, it will be necessary to carry out cell experiments to
better explain the anti-inflammatory and neuroprotective
effects of BM25 in neuronal cells.

5. Conclusion

BM25 can significantly improve spatial memory, reduce
neuronal apoptosis and death, and inhibit the production of
Aβ, p-Tau, IL-1β, iNOS, COX-2, and TNF-α in an LPS-
induced AD mouse model. Furthermore, BM25 can exert
anti-inflammatory and neuroprotective effects by inhibiting
the phosphorylation of IκBα in the NF-κB signaling pathway
and p38 MAPK in the MAPK signaling pathway.
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