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The number of COVID‐19 confirmed cases rapidly grew since the SARS‐CoV‐2 virus was identified in late 2019.
Due to the high transmissibility of this virus, more countries are experiencing the repeated waves of the COVID‐
19 pandemic. However, with limited manufacturing and distribution of vaccines, control measures might still
be the most critical measures to contain outbreaks worldwide. Therefore, evaluating the effectiveness of var-
ious control measures is necessary to inform policymakers and improve future preparedness. In addition, there
is an ongoing need to enhance our understanding of the epidemiological parameters and the transmission pat-
terns for a better response to the COVID‐19 pandemic. This review focuses on how various models were applied
to guide the COVID‐19 response by estimating key epidemiologic parameters and evaluating the effectiveness
of control measures. We also discuss the insights obtained from the prediction of COVID‐19 trajectories under
different control measures scenarios.
© 2021 Chinese Medical Association Publishing House. Published by Elsevier BV. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

On 31 December 2019, a novel coronavirus (severe acute respira-
tory syndrome coronavirus 2, SARS‐CoV‐2, although the name still
in debate [1]) was reported [2,3]. However, due to the high human‐
to‐human transmissibility (the basic reproductive number, R0

2.2–2.7 [4]), more than 175 million cases were reported, with 3 mil-
lion deaths due to coronavirus disease 2019 (COVID‐19) worldwide
by June 2021 [5]. In addition, the transmission also through asymp-
tomatic cases [6] makes the disease control more challenging [7,8]
because many of them are not identified and isolated.

With the improvement in the case definition of COVID‐19 [9,10]
and fast‐growing accumulated cases, we gradually understood the
transmissibility and severity of this virus in the first wave of China
[11]; many models are employed to provide timely and quantitative
support. The choice of the models depends on the specific questions
that need to be addressed. During the early stage of the pandemic,
especially for a novel pathogen, the first question is to know the epi-
demiological parameters, e.g., the basic reproduction number (R0)
and serial interval. With these parameters, we will learn how fast an
infectious disease will spread without any control and what will hap-
pen if the interventions are introduced. Transmission‐dynamic models
have been most widely used to estimate these parameters. Different
differential equations are used to divide the population into separate
compartments based on epidemiological status (for example, S for sus-
ceptible, E for exposed, I for infectious, and R for recovered in an SEIR
model).

The following questions deal with how to treat infected patients
and prevent others from getting infected. The development of drugs
[12–16] is in progress, but for now, no drugs show significance in clin-
ical outcomes [17–20]. COVID‐19 patients maintained SARS‐CoV‐2‐
specific IgG and neutralizing antibodies five or six months after infec-
tion [21,22], providing effective signs for prevention from reinfection
and vaccination strategy [23]. Although the COVID‐19 vaccines show
safety and high protection against COVID‐19 [24–33], they will not be
available widely soon due to limitations in manufacturing and distri-
bution. Besides, it is still unknown how long the vaccines can protect
us from the SARS‐CoV‐2 virus. Repeated outbreaks can occur if immu-
nity can also maintain several months. Therefore, control measures are
still significant measures to reduce transmission in the foreseeable
future. The intensities of control measures vary greatly, from relatively
(http://
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Table 1
Common terms for epidemiological characteristics and their definitions.

Term Definition

Attack rate A kind of incidence rate that measures the
proportion of persons in a narrowly defined
population observed for a limited period of
time, such as during an epidemic

Basic reproduction number The average number of secondary cases each
primary case generates

Case-fatality rate The rate of death among people who already
have a condition

Effective reproduction number The average number of new infections caused
by a single infected individual at time t in the
partially susceptible population

Generation time The time duration from the onset of
infectiousness in a primary case to the onset
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flexible ones (for example, social distancing) to very stringent
approaches (for example, lockdown). The effects of these control mea-
sures on COVID‐19 transmission also vary correspondingly. It is impor-
tant to quantify these effects quickly to inform the policy‐makers to
address the ongoing outbreaks. Therefore, various models are used
to assess the effectiveness of different control measures [34–36] and
evaluate the intervention strategies under different scenarios [37–41].

To focus on how the models were applied to guide the COVID‐19
pandemic response, we summarize the recent estimations of some
key epidemiologic parameters and evaluate the effectiveness of control
measures using various models in this review. We also discuss the
insights obtained from the predictions of the trajectories of COVID‐
19 under different control measures scenarios, with the genomics
and applications in the COVID‐19 pandemic also summarized.
of infectiousness in a secondary case infected
by the primary case

Incubation time The time from exposure to a disease to when
the first signs or symptoms of the disease
occur

Primary case A person who acquires a disease from an
exposure, for example, to contaminated food

Secondary attack rate A measure of the frequency of new cases of a
disease among the contacts of known cases

Secondary case A person who gets a disease from exposure to
a primary case

Serial interval The duration of time between onset of
symptoms in a primary case and a secondary
case
2. The parameters estimation in the early stage of the COVID-19
pandemic

For the parameter estimation, the reproduction number (the aver-
age number of secondary cases each case generates) is of primary
interest (see Table 1 for the definitions of epidemiological characteris-
tics). It indicates that the disease continues to grow if the value is more
than 1 and reduces in frequency but may die out if it is smaller than 1.
Thus, this is the first important parameter usually assessed about the
disease and directly indicates control measures.

In the early stage of the COVID‐19 pandemic, diverse models with
different assumptions were used to estimate the R0 of the SARS‐CoV‐2
virus across regions/countries. Insightful results were obtained based
on the COVID‐19 case surveillance data. Using the model formulated
renewal equations, R0 was about 2.2 by January 22, 2020, in Wuhan
[42]. By modelling the transmission with a Poisson process, this
parameter in Wuhan was reported to be 2.7–4.0 before December
31, 2019 [43] and above 3.0 before January 26, 2020 [44]. In Niger,
it fluctuated between 0.4 and 3.0, with a wide 95% CI before March
17, 2020, using the same Poisson process transmission model [45].
Following the classic susceptible‐exposed‐infectious‐recovered (SEIR)
model, R0 was 2.68 in Wuhan by January 25, 2020 [46] and 3.15
before the introduction of the emergency response on January 23,
2020, at the province level in China [47]. With the extension of a clas-
sic SEIR model to seven compartments (adding pre‐symptomatic infec-
tious, unascertained infectious, and isolation in hospital
compartments), R0 was estimated to be 3.54 before control measures
were taken in Wuhan [48]. The susceptible‐infectious‐recovered(SIR)
model (similar to the SEIR model, but without E compartment) strati-
fied by age groups and contact patterns were also proposed, and R0

was 1.0–4.0 before interventions for Wuhan and Shanghai, China
[49]. With the spread of this virus to the world, the R0 was estimated
at an international scale. In Japan, it was reported to be 4.66, calcu-
lated from a susceptible‐infectious‐recovered‐deceased (SIRD) model
[50]. Based on the likelihood‐based estimation procedure for severe
acute respiratory syndrome (SARS) [51], R0 was 4.02 on March 17
in the United States [52] and about 2.0 on March 20, 2020, in Canada
[53]. Case surveillance data suffers from the limited PCR testing capac-
ity or the undocumented infection [54–56], especially for the emer-
gence of a novel pathogen. Considering that, Flaxman et al. [57]
proposed a set of statistical models (death model and infection model)
based on death data to estimate R0. They performed a comprehensive
analysis by including the countries of Europe. R0 was estimated to be
3.8 (95%CI: 2.4–5.6) on average across all European countries.
Although the variance of R0 exists from different models or regions,
all of them were larger than 1 (see Table 2 for R0 before and after con-
trol measures). This was a consistent indication that the outbreak of
SARS‐CoV‐2 would worsen, and actions should be taken to prevent
the spread of this virus.

Besides R0, other parameters are also of interest and estimated
using statistical methods, including incubation time, serial interval,
generation time, and attack rate. The mean incubation period for the
time window from December 24, 2019, to February 17, 2020, was esti-
mated to be 5.2 days (95%CI: 1.8–12.4), and the mean serial interval
at 5.1 days (1.3–11.6) outside Hubei Province, China [58]. The gener-
ation time was 4.6 (95%CI: 4.2–5.1) days based on the data from Jan.
1, 2020, to Feb. 11, 2020, in China [59]. The attack rate of health care
workers in Wuhan was about 11.9% [60], and the secondary attack
rate among household contacts was 12.4% (95%CI: 9.8–15.4) [61].
Some other characteristics of COVID‐19 were also significant and esti-
mated. For example, rates of symptomatic cases, medical consulta-
tions, hospitalizations, and deaths in Wuhan from December 1,
2019, to March 31, 2020, were estimated to be 796 (95%CI:
703–977), 489 (95%CI: 472–509), 370 (95%CI: 358–384), and 36.2
(95%CI: 35.0–37.3) per 100,000 persons, respectively [62]. By March
2, 2020, The overall estimated case‐fatality rate was 3.6% (1.1–7.2)
[63]. After the COVID‐19 pandemic was under control, the overall hos-
pitalized case fatality rate (CFR.) in China was estimated to be 4.6%
(95%CI: 4.5%–4.8%) [64], and the overall symptomatic case fatality
risk of COVID‐19 in Wuhan became 1.4% (0.9%–2.1%) [65]. Clinical
characteristics were also reported [66]. These epidemiological param-
eters enable us to deepen our understanding of this disease that pro-
vided vital information to policymakers.
3. Search strategy and selection criteria

We used google scholar to search the literature related to the effec-
tiveness of control measures published from December 1, 2019, to
December 30, 2020, in each country. The following keywords were
used: non‐pharmaceutical interventions (or NPIs, control measures),
name of the country, and COVID‐19 (or SARS‐CoV‐2). To include all
possible control measures, we did not specify the control measures



Table 2
The reproduction number of COVID-19 before and after the introduction of control measures for the countries. The time and type of conducting the control measures
was defined in the corresponding reference.

The
reproduction
number

Before control
measures

After control
measures

Data Type Model Time Reference

China 1 ∼ 4 <1 The daily case data The classic SEIR model, the model formulated with
the use of renewal equations, Poisson process, the
extension of a classic SEIR model to seven
compartments, the SIR model stratified by age
groups and contact patterns

12/8/2019 to 3/8/2020 [42–44,46–49]

Niger 0.4 ∼ 3 Around 1 The daily case data Poisson process 3/19/2020 to 7/4/2020 [45]
Japan 4.66 1.79 The daily case data A susceptible-infectious-recovered-deceased

model
1/22/2020 to 5/14/
2020

[50]

United States 4.02 1.51 The daily case data The likelihood-based estimation procedure 3/17/ 2020 to 4/1/2020 [52]
Canada 2 <1 The daily case data The likelihood-based estimation procedure 3/20/2020 to 6/10/

2020
[53]

France 4 ∼ 5 <1 The death data A set of statistical models (death model and
infection model)

2/2020 to 5/4/2020 [57]

Italy 3 ∼ 4 <1 The death data * * [57]
Spain 4 ∼ 6 <1 The death data * * [57]
UK Around 4 <1 The death data * * [57]
Belgium 4 ∼ 6 <1 The death data * * [57]
Germany 3 ∼ 5 <1 The death data * * [57]
Sweden 2 ∼ 3 <1 The death data * * [57]
Switzerland 3 ∼ 4 <1 The death data * * [57]
Austria 3 ∼ 5 <1 The death data * * [57]
Norway 2 ∼ 4 <1 The death data * * [57]
Denmark 3 ∼ 5 <1 The death data * * [57]

*Same with above one.
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for each country. Instead, titles and abstracts of papers published in
English were screened, meeting that a model (either a statistical or a
mathematical model) was used to evaluate the effectiveness of imple-
mented control measures on COVID‐19 for countries. We excluded
studies that evaluated the effects of control measures related to eco-
nomics, other diseases, or the optimal control measure strategies.
4. The evaluation of the effects of control measures using various
models

4.1. The different control measures and related effectiveness

On January 23, 2020, the first lockdown strategy in the world to
prevent the dispersal of COVID‐19 was implemented in Wuhan, China.
At the same time, other types of control measures, such as case isola-
tion, suspending public transport, closed down schools and entertain-
ment venues, and banning public gatherings, were also applied.
Additionally, the highest level of emergency for public health response
was initialized nationally in China to prepare against outbreaks in
other regions. In the pioneering analysis of evaluating the control mea-
sures’ effectiveness in Wuhan, the Wuhan shutdown was related to the
delayed arrival of COVID‐19 in different cities in China by 2.91 days
[47,67]. Wuhan's ‘travel restriction’ strategy showed a more marked
effect on the international scale, where case importations were
reduced by nearly 80% until mid‐February [68].

Most countries adopted similar interventions to contain the trans-
mission of COVID‐19, such as case‐based self‐isolation mandates,
encouragement of social distancing, banning public events, and order-
ing school closures and lockdowns. During the 1918 influenza pan-
demic 100 years ago, similar control measures had also been
employed [69,70]. The various control measures [71] showed substan-
tial effects on economics [72] and the physical and mental health of
individuals [73–80]. Therefore, evaluating the effectiveness of timely
control measures is recognized as a crucial step to combat this virus.

The time‐dependent reproduction number (Rt), also called effective
reproduction number, was employed to evaluate the effects of com-
bined control measures (see Table 2). For countries, this value was
smaller than one after control measures, such as China in Asia
[47,48,81], and the 12 countries in Europe and North America
[53,57]. But for Japan [50] and the United States [52], Rt remained
higher than 1. Other indicators were also used to illustrate the effect
of control measures. Dehning et al. [82] focused on the spreading rate
and found that it was 0.09 around 23 March 2020, showing the control
measures were effective and new cases began to decline in Germany.
Serial intervals were also used to inform the effectiveness of control
measures. It was 7.8 days on average in mid‐January 2020 and
decreased to 2.2 days in early February 2020 in China after imple-
menting control measures on January 23, 2020 [83]. The reduction
of those indicators showed that the control measures were adequate
to control COVID‐19. However, the effectiveness of control measures
appeared different in different countries, revealing differences in pub-
lic response and cooperation with these measures.

Based on the Complexity Science Hub COVID‐19 Control Strategies
List (CCSL) [71], the control measures are classified into a four‐level
hierarchical structure, from eight broad themes at level 1 to <2,000
group codes at level 4. With so many different control measures, it is
essential to understand each type's effectiveness. A series of studies
were conducted based on other models and criteria. In a comprehen-
sive analysis across the 11 European countries, the researchers [57]
found that lockdown had a significant identifiable effect on transmis-
sion (81% (95%CI: 75%–87%) reduction) of the SARS‐CoV‐2 virus in
terms of Rt by a set of statistical models (death model and infection
model). At the same time, public events bans, school closures, self‐
isolation, social distancing, etc., did not significantly reduce the trans-
mission of the SARS‐CoV‐2 virus. Under a stochastic age‐structured
transmission model, the potential impact of four different control mea-
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sures (school closures, physical distancing, shielding of people aged
70 years or older, and self‐isolation of symptomatic cases) was
assessed to mitigate the related burden of COVID‐19 in the U.K. It
was concluded that the four interventions were each likely to decrease
Rt, but not sufficiently to prevent ICU. demand from exceeding health
service capacity, and only the lockdown periods were sufficient to
bring Rt below 1 [84]. The effectiveness of lockdown is consistent with
a previous study of interventions [57], and the same conclusion about
the importance of lockdowns was also made in France [85,86]. By
extended SEIR. model (two additional compartments: A, infectious
and asymptomatic; F, dead) and variance analysis, Chiu et al. [87]
found that the fraction of contacts traced was one of the most signifi-
cant drivers of variation in Rt in the United States and other most sig-
nificant drivers including hygiene effectiveness relative to social
distancing, the degree of mitigation during shelter‐in‐place, and max-
imum relative increase in contacts from shelter‐in‐place. They together
contribute greater than 50% of the variance in Rt. The daily growth
rate of COVID‐19 cases was also used to evaluate the effectiveness of
control measures. Lin et al. [88] studied the effect of the “stay‐at‐
home” order from March 16, 2020, to April 10, 2020, at the state level
in the United States using Poisson regression. They found that the
growth rate had slowed down since March 29, 2020, with an average
reduction of 12.8%. Courtemanche et al. [89] employed an event
regression study and found that the shelter‐in‐place orders in the Uni-
ted States had led to statistically significant (P < 0.01) reductions in
the COVID‐19 case. The growth rates reduced by 3.0% after six to
ten days, 4.5% after eleven to fifteen days, 5.9% after sixteen to twenty
days, and 8.6% from twenty‐one days onward. Their study also
showed that closing restaurant dining rooms and bars or entertain-
ment centers and gyms led to significant reductions in the growth rate
of COVID‐19 cases in all periods after introduction. At the same time,
public school closure did not affect the daily growth rate. As for man-
dating face mask use in public, it was reported that this measure was
associated with a decline in the daily COVID‐19 growth rate by 0.9%,
1.1%, 1.4%, 1.7%, and 2.0% in 1–5, 6–10, 11–15, 16–20, and 21 or
more days after state face mask orders were signed, respectively [90].

Although different models and criteria were employed, the conclu-
sion was reached that control measures are adequate to control the
transmission of the SARS‐CoV‐2 (see Table 3 for the evaluated control
measures). The lockdown was the most effective one in studies from
Wuhan, China to Europe of the various control measures. The impor-
tance of early intervention and aggressive control [91], contact tracing
[92,93], and face masks [94], and eye protection [95] in combatting
the COVID‐19 pandemic were also highlighted. In addition, the model
also explained the sub‐exponential growth of COVID‐19 cases before
February 2020 in China [96] and the impact of socioeconomic factors
on the transmission of this virus [97,98]. An interesting finding is that
the control measures reduced not only the transmission of COVID‐19
but also other respiratory infectious diseases [99–102].
4.2. The evaluation of control measures integrated with big data: mobility
and social media

Big data has been widely used to investigate the COVID‐19 trans-
mission in the current pandemic [103–111]. Successful examples
include the human‐mobility‐based transmission‐dynamic model. With
the assistance of big data and powerful computational resources, a
more detailed picture of SARS‐CoV‐2 dynamics will be available.

Human movement is responsible for spreading infectious diseases,
anddata onmovement patterns havebeen successfully applied to under-
stand the transmission of infectious diseases [112–116]. Previous stud-
ies have shown that the spread of COVID‐19 from Hubei Province to
other provinces of China was driven primarily by human mobility
[117–122]. Multiple transmission‐dynamic models are needed to inte-
grate the mobility data for the areas of interest in general. The mobility
fromoneplace to another is incorporated into the transmission‐dynamic
models for these two regions and represents the compartments flow
between these two regions. By taking all the transmission‐dynamicmod-
els as a whole, related parameters can be estimated. At the exact time,
related public health efforts can be quantified, and the control measures
can be evaluated. Aggregatingmobile phone data in Shenzhen, China to
the SEIR model, Zhou et al. [104] found that if intra‐city mobility were
reduced by 20%, the epidemic peak would have been delayed for about
two weeks, with peak incidence decreasing 33%. If the reduction
increased to 40%, the peakwould bedelayedby fourweeks and the peak
daily incidence reduced by around 66%. A 60% reduction in mobility
delayed the peak by 14 weeks and decreased the magnitude of the epi-
demic by 91% (see Table 4). A study in the U.K. showed that human
mobility reduction significantly impacted reducing COVID‐19‐related
deaths [123]. Using COVID‐19 data and travel network information,
Lai et al. [124] developed a stochastic SEIR framework to simulate dif-
ferent outbreaks and interventions (early detection, isolation of cases,
travel restrictions, and contact reductions) across China. They found
that the effectiveness of other control measures varied. Early detection
and isolation of patients averted more cases than did travel restrictions
and contact reductions. However, the combination of these controlmea-
sures was found to achieve the most vigorous and most rapid effect.
Schlosser et al. [125] found that COVID‐19 lockdown induces structural
changes inmobility networks inGermanywhile distancing and isolation
can flatten the curve with a SIR model integrated with the mobility net-
work. Using data on high‐speed train passengers from 19 December
2019 through 6 March 2020 in China, Hu et al. [126] found that
COVID‐19has ahigh transmission risk among trainpassengers. Still, this
risk showed significant differenceswith co‐travel time and seat location.
The transmission rate decreased with increasing distance traveled and
increased with increasing co‐travel time. Besides, smartphone applica-
tions through Bluetooth or GPS. site to track interaction between indi-
viduals are proposed to increase efficiencyof contact tracing [127–130].

Information sharing and transmission have dramatically improved
due to social media tools, such as Facebook, Twitter, YouTube, and
WhatsApp [131]. With these platforms, public health guidelines about
COVID‐19 reached the world with incredible speed. Based on the pen-
etration of social media, many helpful topics were investigated during
the pandemic, such as public attention [132–134], predicting the epi-
demic outbreak [135,136], and human sentiments [137]. The spatial
transmission of COVID‐19 in Wuhan, China was also studied using
the geo‐tagging Sina Weibo data [138].
4.3. Suppression vs. Mitigation

Irrespective of the specific approaches, the critical question is what
we can learn from the current pandemic responses. The governments
in each country adopted customized control measures strategies to
contain the spread of COVID‐19 cases based on their politics, eco-
nomics, and culture, ranging from stringent lockdowns, the “Flatten
the curve” approaches, to voluntary control measures. Although con-
trol measures vary, they can generally be classified into two groups
(see Table 5): 1) Suppression; 2) Mitigation [139]). Suppression aims
to reduce Rt to below one and eliminate human‐to‐human transmission
gradually. Mitigation seeks to slow down the speed of the virus trans-
mission to delay the arrival time of the pandemic peak to have more
time to prepare medical supplies and avoid the over‐extension of med-
ical resources to minimize avoidable deaths. In terms of which strate-
gies were employed by different countries, China, South Korea, and
India opted to focus on suppression, while most other countries pur-
sued mitigation. However, the results of the control measures strate-
gies are still challenging to predict. India employed the Suppression
strategy and locked down the whole country from March 25, 2020,



Table 3
The evaluated control measures and the used models.

Evaluated control measures Effect Region Model Time Reference

Lockdown 81% (75%–87%) relative reduction in Rt 11 European
countries

A set of statistical models
(death model and
infection model)

2/2020 to 5/4/2020 [57]
Public events <5% relative reduction in Rt

School closure
Self-isolation
Social distancing encouraged
School closures Each could cause insufficient reduction in Rt.

The combined intervention is more effective
(Rt < 1)

UK A stochastic age-
structured transmission
model

12/2019 to 5/11/2020 [84]
Physical distancing
Shielding of people aged 70 years

or older
Self-isolation of symptomatic cases
Lockdown 77% reduction in reproductive number. France A suite of modeling

analyses
3/17/2020 to 5/11/2020 [85]

Social distancing They together contribute >50% of variance in
Rt

US An extended SEIR model
(two additional
compartments: A,
infectious and
asymptomatic; F, dead)

3/19/2020 to 7/22/2020 [87]
Testing
Contact tracing

Stay-at-home The growth rate had slowed down since March
29, 2020 with an average reduction of 12.8%

US Poisson regression 1/21/2020 to 4/10/2020 [88]

Shelter-in-place orders Significant reductions in the growth rate of
COVID-19 cases
Significant reductions in the growth rate of
COVID-19 cases

US An event study regression 3/1/2020 to 4/27/2020 [89]
Bans on large gatherings
Restaurant or entertainment

center closures
Public school closures No effect on the daily growth rate of COVID-19

cases
Face masks or covers A decline in the daily COVID-19 growth rate by

0.9%, 1.1%, 1.4%, 1.7%, and 2.0% in 1–5,
6–10, 11–15, 16–20, and 21 or more days after
state face mask orders were signed, respectively

US An event study regression 3/31/2020 to 5/22/2020 [90]

Lockdown Reduced the number of cases in other cities
across China

China SEIR model;
Regression analysis;

12/31/2019 to 2/9/2020 [47]

The Wuhan travel restriction Prevented almost all of travel movement and
markedly reduced the number of exportations
of COVID-19 from Wuhan

The national emergency response A delay in epidemic growth and a reduction in
case numbers during the first 50 days of the
COVID-19 epidemic in China

Early detection The number of cases of COVID-19 could have
been reduced by 66% (IQR 50%–82%), 86%
(81%–90%) or 95% (93%–97%), respectively

China The stochastic SEIR
model

1/23/2020 to 4/13/2020 [124]

Isolation of cases NA
Travel restrictions If population contact resumed to normal levels,

the lifting of travel restrictions might cause case
numbers to rise again

Contact reductions Maintaining social distancing even to a limited
extent (for example, a 25% reduction in contact
between individuals on average) through to late
April would help to ensure control of COVID-19
in epicenters such as Wuhan

Table 4
The influence of mobility reduction on epidemic peak and epidemic peak incidence.

Mobility reduction Epidemic peak Peak incidence Time Reference

20% Delayed by about 2 weeks Reduced by around 33% 1/10/2020 to 2/20/2020 [104]
40% Delayed by 4 weeks Reduced by around 66%
60% Delayed by 14 weeks Reduced by 91%
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to May 31, 2020. Yet, Rt is still above 1 for most states in India, except
Gujarat [140]. Sweden took a unique approach of not implementing
strict closures instead of relying on personal responsibility. Despite
such loose control measures, Rt was strikingly below 1 [57]. A study
[141] showed that mild mandates overlaid with voluntary standards
could achieve results highly similar to late‐onset strict orders in an
individual‐based model. The data from Google and Apple reported
an 18%–33% decrease in the workplace during April [141,142] in
Sweden supports this conclusion. The phenomenon in India and Swe-
den may be caused by several factors, such as differences in population
density, the degree of policy implementation, the willingness of public
cooperation, and the quality of health services. If the public follows the
guidelines well, lockdown may be unnecessary.

5. Integration of modelling results into decision making

Another essential feature from modeling is that we can predict the
trajectory of COVID‐19 under different control measures scenarios and
appropriately inform policy‐makers (see Table 6). According to the
stochastic SEIR model from a previous study [124], if population con-
tact were to resume to normal levels, the lifting of travel restrictions
might lead to another wave of infections. Thus, maintaining social dis-



Table 5
Two strategy categories of control measures and their related countries.

Strategy Goal Country Reference

Mitigation Reducing peak healthcare
demand while protecting those
most at risk of severe disease
from infection. (Rt < 1)

China, India,
South Korea

[139]

Suppression Reducing case numbers to low
levels and maintaining that
situation indefinitely.

Most of other
country (e.g.,
Sweden, US)

[139,141,142]

* Although the intervention strategies are summarized into two categories, it
is hard to decide the category for each country, since most of the control
measures are the combination of mitigation and suppression strategies.
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tancing, Chang et al. [143] proposed a metapopulation susceptible–
exposed–infectious–removed (SEIR) model that integrates fine‐
grained, dynamic mobility networks in ten of the largest U.S.
metropolitan areas. According to their model, a small minority of
‘super‐spreaders points of interest (such as restaurants and religious
establishments) account for a large majority of the infections, and
restricting the maximum occupancy at each end of interest is more
effective than uniformly reducing mobility. The IHME COVID‐19 Fore-
casting Team [144] uses a deterministic SEIR (susceptible, exposed,
infectious, and recovered) model to predict possible trajectories of
COVID‐19 in the United States from 22 September 2020 through 28
February 2021. They found that the universal mask use (95% mask
use in public) could be sufficient to avert the worst effects of epidemic
resurgences in many states. This strategy could save an additional
129,574 (85,284–170,867) lives from September 22, 2020, through
the end of February 2021, or another 95,814 (60,731–133,077) lives,
assuming 85% of mask‐wearing, when compared to the current social
distancing mandates. Using mobility and case data, Ruktanonchai et al.
[145] indicated that appropriate coordination could significantly
improve the likelihood of eliminating community transmission
throughout Europe.
6. The application of genomics in COVID-19

With the development of next‐generation sequencing technology,
the SARS‐CoV‐2 genome was quickly released and shared [146]. The
Table 6
Predicted the trajectory of COVID-19 under different control measures scenarios.

Control measures Scenario Result

Contact reduction Resume population
contact to normal level

Another wave of infection

Social distance Limited extend through
late April 2020

Ensuring control of COVID-19

Mobility Restricting the
maximum occupancy at
each high-risk point of
interests

More effective control decision

Mobility Uniformly reducing
mobility from
neighbourhoods to point
of interests

Less effective control decision

Mask 95% mask use in public Less death compared to current soci
mandates; Sufficient to ameliorate t
effects of epidemic resurgences in m

Mask 85% mask use in public Less death compared to current soci
mandates

Lockdown coordination Appropriate
coordination through
communities in Europe

The improvement of the likelihood
eliminating community transmission
Europe
work to trace the zoonotic origin of SARS‐CoV‐2 was also performed
using the methods from the genomics field. Although the genome
sequence showed that this novel virus has high similarity to the bat
coronavirus RaTG13 with an overall genome sequence identity of
96.2% [147], there is a possibility of decades of evolutionary diver-
gence between them [148]. The SARS‐CoV‐2 virus was closely related
to SARS‐like coronaviruses [146]. SARS‐CoV‐2 affects more regions
within a shorter time than SARS‐CoV, infecting older people with a
higher probability [149]. However, the pathway of transmission from
zoonotic reservoirs to humans is still unknown. Therefore, multi‐
source discipline methods (for example, geography and molecular epi-
demiology) and multi‐source data (for example, human mobility and
sequences from wild animals) are needed.

By now, there have been over 250,000 SARS‐CoV‐2 genome
sequences deposited worldwide [150]. The most common SARS‐
CoV‐2 virus clusters/clades in a region/country can be identified from
a phylogenetic analysis of these sequences. The mutation diversity of
the SARS‐CoV‐2 virus can be monitored [151] to identify the virus
with greater transmissibility or pathogenicity (see Table 7). For exam-
ple, the SARS‐CoV‐2 D614G variant is prevalent globally and transmits
significantly faster, and displays increase competitive fitness than the
wild‐type virus in hamsters [152]. During the early stage of the
COVID‐19 pandemic in Washington state in the United States,
researchers found that 84% of viral cases analyzed were grouped into
a clade with SNPs of C8782T, C17747T, A17858G, C18060T, and
T28144C, 9% were grouped into a smaller clade, and the rest of the
viral cases were distributed across the phylogenetic tree [153]. Using
the sequences from May 20, 2020, Yang et al. [154] found that the
clade, featuring SNPs 241T, 3037T, 14408T, 23404G, 25563T, and
1059T, was dominant (∼51.07%) in most states of the United States.
In Brazil, 490 sequences collected from December 24, 2019, to April
30, 2020, were classified into three clades [155]. The first clade
(38% of Brazilian strains) was featured with a nucleotide substitution
(G25088T) in the spike protein in São Paulo state. The second clade
(34%) had two SNPs in ORF6 (T27299C) and nucleoprotein
(T29148C), and the third clade (4%) was especially prevalent in the
Ceará state. It showed that 80% of secondary infections traced back
to 15% of SARS‐CoV‐2 primary infections, indicating the heterogene-
ity in the transmission of COVID‐19 [156]. Similarly, the super‐
spreading events in Boston also revealed high heterogeneity according
Time Model Reference

1/23/2020 to 4/13/2020 Stochastic SEIR [124]

Stochastic SEIR [124]

3/1/2020 to 5/9/2020 Metapopulation SEIR [143]

Metapopulation SEIR [143]

al distancing
he worst
any states

9/22/2020 to 2/28/2021 Deterministic SEIR [144]

al distancing Deterministic SEIR [144]

of
throughout

1/28/2020 to 4/6/2020 Model with mobility
and case data

[145]



Table 7
The dominant variants in different regions.

Dominant variant Proportion Region Reference

D614G NA Global [152]
SNPs of C8782T, C17747T,

A17858G, C18060T, and
T28144C

84% Washington, US [153]

SNPs 241T, 3037T, 14408T,
23404G, 25563T and 1059T

51% US [154]

G25088T 38% Brazil [155]
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to the phylogenetic analysis [157]. A long‐term projection was also
obtained from a deterministic model of multiyear interactions between
existing coronaviruses for the United States [158]. Emerging new
COVID‐19 lineages, such as B.1.1.7 [160] and P.1 [161], have shown
higher transmissibility than the existing ones. A recent study in France
shows that current vaccination rates may not be sufficient to compen-
sate for the increased transmissibility of B.1.1.7 [159], which indicates
that the control measures are still needed. Although the vaccines are
being rolled out, a disturbing question is whether the vaccines are still
effective against new lineages. For example, B.1.351 may be associated
with immune escape [160,161]. If this is true, it seems that we need
rely on control measures. Considering the rapid evolution of SARS‐
CoV‐2, suitable control measures will be proposed based on the predic-
tion and the current status of SARS‐CoV‐2 clades [159,162–165].
7. Summary and suggestions

This review discusses how the models (such as SIS, SIR, and SEIR)
can be applied to guide COVID‐19 response [47,50]. Based on these
models, we summarize the estimations of some key epidemiology
parameters and evaluate the effectiveness of control measures. Using
the available data type and the experience of the modelers, the
statistical model is another option [52,53]. In terms of evaluating
the effectiveness of control measures, most researchers adopt the use
of transmission‐dynamic models. Conclusions from models are consis-
tent that the control measures were effective [166,167], and lockdown
is the most effective way to mitigate the spread of the virus [168].
However, the effectiveness of control measures was evaluated in only
a small proportion of countries. We suggest that more studies may be
needed for more countries to complete the control measures, espe-
cially for low‐income countries. With the complete characterization
of the SARS‐CoV‐2 virus, more effective strategies can be applied to
combat this virus.

We also discuss the insights obtained from predictions of the trajec-
tories of COVID‐19 under different control measures scenarios. By a
phylogenetic tree analysis, we can get the complete picture of SARS‐
CoV‐2 clades worldwide and monitor the mutation diversity to guard
against the emergence of new strains using the massive genome
sequence data. The transmission dynamics of COVID‐19 are compli-
cated, which is influenced by the nature of the virus [169–171],
human behaviour [172], and meteorological factors [173–175]. Due
to the difficulty in theory and computation, models have to simplify
this process and focus on specific elements. Better data is needed
[67] to get a more realistic model. More attention should be paid to
inappropriate assumptions and the misinterpretation of data or results,
especially for emerging infectious diseases with limited prior
knowledge.

Based on the study, we proposed some suggestions for policymak-
ers to contain the COVID‐19 outbreak. First, if the COVID‐19 situation
is complicated, a lockdown policy may be employed to cut the trans-
mission chain and bring Rt under one as soon as possible. And supple-
mented actions should be taken to curtail the spreading of the virus
indeed. Second, the measures should be taken as quickly as possible
in case of missing the control window. Since more contagious
COVID‐19 lineages are emerging, it seems that not much time is left
if the more contagious COVID‐19 clans seed in a region. Third, improv-
ing the public understanding of COVID‐19 may increase general com-
pliance with the control strategy. The individuals may be self‐isolated
when they realized the danger of the invisible enemy.

Although we tried to normalize and summarize the results from
previous research, due to the variation of the data sources and models,
the comparison of results from the literature may have left some
unavoidable bias in this review. Furthermore, the evaluation of the
effectiveness of control measures may be affected by other factors
(e.g., the political environment and citizen consciousness) that were
not considered in most of the previous research. Finally, whether the
outcomes of control measures can be replicated in other parts of the
world still needs further investigation.
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