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Mussels (Mytilida) are a group of bivalves with ancient origins and some of the

most important commercial shellfish worldwide. Mytilida consists of approxi-

mately 400 species found in various littoral and deep-sea environments, and are

part of the higher clade Pteriomorphia, but their exact position within the group

has been unstable. The multiple adaptive radiations that occurred within

Pteriomorphia have rendered phylogenetic classifications difficult and uncer-

tainty remains regarding the relationships among most families. To address

this phylogenetic uncertainty, novel transcriptomic data were generated to

include all five orders of Pteriomorphia. Our results, derived from complex ana-

lyses of large datasets from 41 transcriptomes and evaluating possible pitfalls

affecting phylogenetic reconstruction (matrix occupancy, heterogeneity, evol-

utionary rates, evolutionary models), consistently recover a well-supported

phylogeny of Pteriomorphia, with the only exception of the most complete

but smallest data matrix (Matrix 3: 51 genes, 90% gene occupancy).

Maximum-likelihood and Bayesian mixture model analyses retrieve strong sup-

port for: (i) the monophyly of Pteriomorphia, (ii) Mytilida as a sister group to

Ostreida, and (iii) Arcida as sister group to all other pteriomorphians. The

basal position of Arcida is congruent with its shell microstructure (solely com-

posed of aragonitic crystals), whereas Mytilida and Ostreida display a

combination of a calcitic outer layer with an aragonitic inner layer composed

of nacre tablets, the latter being secondarily lost in Ostreoidea.
1. Introduction
Mussels (the members of the superfamily Mytiloidea) are a ubiquitous and

common group of bivalves and a main source of protein for humans and

non-human animals alike. Despite being the dominant organisms in many

littoral, shallow sub-littoral, deep-sea hydrothermal vent and cold seep ecosys-

tems [1]—including rocky and sediment shores on open coasts and in estuaries

and marshes [2]—the position of mussels in relation to other pteriomorphian

bivalves remains unresolved (e.g. [3]). Because of their economic and ecological

importance, mussels have been the subject of considerable research effort.

Taxonomically, Mytiloidea is a diverse group of pteriomorphian bivalves recog-

nized by characteristics of shell form, hinge and mussel attachment scars [4].

Mytilidae, by most authors considered the only family in the superfamily

Mytiloidea and the order Mytilida (but see Carter [5]), is an ancient group with

roots extending to the Devonian [6]. It comprises eight recognized extant subfami-

lies [7,8], with approximately 400 species worldwide [9], probably constituting the

largest family of bivalves in number of species. Like mussels, in particular, bivalves

of the subclass Pteriomorphia in general form a commercially important clade with
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species harvested and cultured worldwide both for food (e.g.

oysters, scallops, ark shells), and ornament industry (pearl

oysters). They are characterized bya large variability in ligament

structure and in shell size, shape and composition. Some shells

are constituted of aragonite tablets only (e.g. Arcida), others of

calcite crystals (e.g. Ostreoidea), whereas some species present

a shell that has both crystal forms of calcium carbonate, calcite

and aragonite (e.g. Mytilida, Pectinida, Limida, Pinnoidea and

Pterioidea) [10]. Shell composition is important because most

pteriomorphians are sessile as adults, their calcified shells

being the only mechanism against predation and desiccation

[11]. In addition, understanding the evolution of shell formation

can help assess the impacts of ocean acidification on bivalves.

Pteriomorphia appears in the fossil record in the Early

Ordovician where mytiloid, arcoid and pterioid forms are

recognized. These groups experienced periods of radiating

diversification in the Late Devonian, as well as in the beginning

and the end of the Mesozoic [12]. The diversity of this group

reflects several adaptive radiations and the shell forms have

attracted the interest of many palaeontologists and neontolo-

gists (e.g. [13–21]). The multiple adaptive radiations have

rendered phylogenetic classifications difficult owing to con-

vergence and/or parallel evolution at various levels [22].

Although the most recent phylogenies agree on the monophyly

of Pteriomorphia, uncertainty remains regarding the internal

relationships of the majority of pteriomorphian clades (families

and superfamilies), despite considerable phylogenetic

(e.g. [16,18,23–27]) and even recent phylogenomic [28] efforts.

Pteriomorphia comprises five widely recognized extant

orders (Arcida, Limida, Mytilida, Ostreida and Pectinida) [27].

Among the most unstable results in bivalve phylogeny are the

relative positions of Arcida and Mytilida ([3,29]). As one of the

most diverse and studied bivalve groups, it is unsettling that

to this day relationships among pteriomorphians in general

and mytiloids in particular remain unresolved, impinging on

future studies aiming at exploring extinction, diversification

and biogeographic patterns of this group, including dating

and inference of the evolution of lineages through time. With

the aim of improving resolution within Pteriomorphia, we gen-

erated a novel Illumina-based dataset to evaluate the internal

branching patterns of this clade from a fresh perspective and

infer on the evolution of shell microstructure within pteriomor-

phians. For this, we sequenced, assembled and analysed 12 new

pteriomorphian transcriptomes and combined them with 13

additional transcriptomes previously generated by us [28],

and 22 transcriptomes and one genome from publicly available

data, for a total of 41 pteriomorphian samples and eight out-

groups. The taxonomic sampling used here reflects what is

now acknowledged to be the span of pteriomorphian diversity.
2. Material and methods
(a) Taxon sampling, cDNA library construction and

next-generation sequencing
We sequenced cDNA from 12 pteriomorphian specimens using

an Illumina HiSeq 2500 platform and combined these with 35

published transcriptomes and one genome, including 13 libraries

previously sequenced in our laboratory [28]. Information about the

sampled specimens can be found in the electronic supplementary

material, table S1 and in the MCZ online collections database

(http://mczbase.mcz.harvard.edu). All tissues were collected

fresh and immediately flash frozen in liquid nitrogen or fixed in
RNAlaterw (Life Technologies, Carlsbad, CA, USA) and stored at

2808C. Total RNA was extracted using TRIzol (Life Sciences)

and purification of mRNA was performed using the Dynabeads

(Invitrogen) following the manufacturer’s instructions and as

described in [28]. For each sample, quality of mRNA was assessed

with a picoRNA assay in an Agilent 2100 Bioanalyzer (Agilent

Technologies) and quantity measured with an RNA assay in a

Qubit fluorometer (Life Technologies).

All cDNA libraries were constructed using the PrepX mRNA

kit for Apollo 324 (Wafergen). Libraries were sequenced on the

Illumina HiSeq 2500 platform with paired-end reads of 150 bp

at the FAS Center for Systems Biology at Harvard University,

after their concentration and quality were assessed.

(b) Transcriptome assembly
All reads generated for this study are deposited in the National

Center for Biotechnology Information Sequence Read Archive

(NCBI-SRA; electronic supplementary material, table S1). Each

sample, except for the genome of Pinctada fucata, was prepared

as in [28], as detailed in the electronic supplementary material,

S2. De novo assemblies were conducted for each sample with

Trinity r2014-04-13 [30,31] using paired read files and default

parameters except for ‘–path_reinforcement_distance 50’, which

seems to produce slightly better assemblies, with higher N50

values and longer contigs. Reduction of redundant reads,

peptide prediction and peptide filtration were conducted as in

[28] (detailed in the electronic supplementary material, S2).

(c) Orthology assignment and matrix construction
Orthology assignment for the dataset assemblies was performed

using stand-alone OMA v. 0.99z.2 [32,33] (detailed parameters in

the electronic supplementary material, S2). Three initial data

matrices following occupancy thresholds [34] were generated

for phylogenetic analyses: the first one, Matrix 1, targeting a

minimum gene occupancy of 50%, was constructed by selecting

the OMA orthogroups present in 24 or more taxa (1205

orthogroups). Matrix 2 includes orthogroups present in 36 or

more taxa (gene occupancy greater than 75%; 277 orthogroups).

Matrix 3 was constructed by selecting the orthogroups found in

44 or more taxa (greater than 90% gene occupancy; 51

orthogroups). The orthogroup selection based on minimum

taxon occupancy was executed using a custom Python script

(all scripts and data matrices are available online at https://data

verse.harvard.edu/dataverse/Pteriomorphia_phylogenomics).

Alignments were generated for each matrix using MUSCLE v. 3.6

[35] (details in the electronic supplementary material, S2).

In order to assess the effects of rate of molecular evolution

and heterotachy on tree topology, 10 additional matrices were

constructed by selecting subsets of Matrix 2 based on evolution-

ary rate, for which per cent pairwise identity was employed as a

proxy (see figure 1 and the electronic supplementary material,

S2, for details). This method was chosen to approximate

evolutionary rate because it is agnostic to tree topology. Accumu-

lated conservation values were generated for each locus using

TRIMAL 1.2b (-sct flag). Matrices were produced as follows:

(i) Matrices A–D were constructed with incremental addition of

loci to produce four matrices (figure 1). This strategy has been

used in previous phylogenomic analyses [36–38], but masks the

possible contribution of the fastest evolving genes, as the slowest

ones are always used. In order to investigate the contribution of

the different blocks of evolutionary rates in the absence of the

other genes, we designed another strategy: Matrices E–J were con-

structed by parsing 50 loci matrices and one 27 loci matrix, with no

addition (figure 1). Compositional heterogeneity among taxa and

within each orthogroup can affect phylogenetic results and lead to

incorrect tree reconstructions. In order to discern if this was the

case in our dataset we used the package BACOCA v. 1.1r [39]
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to estimate relative composition frequency variability (RCFV) in

Matrix 2.

(d) Phylogenetic analyses
All matrices, but Matrix 1, were analysed using maximum-

likelihood inferences conducted by PHYML-PCMA [40].

PHYML-PCMA estimates a model through the use of a principal

component (PC) analysis. We selected 10 PCs in the PHYML-

PCMA analyses. Because of its large size and the intense compu-

tation required by PHYML-PCMA, Matrix 1 was analysed with

EXAML v. 3.0 [41] (see the electronic supplementary material, S2,

for detailed parameters).

The initial three matrices (Matrices 1, 2 and 3) were also

analysed using Bayesian inference with EXABAYES v. 1.21 with

openmpi v. 1.64 ([42]; see the electronic supplementary material,

S2, for detailed parameters). Additional Bayesian tree searches

were also conducted for Matrices 2 and 3 in PHYLOBAYES MPI

v. 1.4e [43] using the site-heterogeneous CAT-GTR model of

evolution [44]. Four independent Markov chain Monte Carlo

(MCMC) runs were conducted for 2196–3187 cycles. The initial

cycles in each MCMC run were discarded as burn-in and deter-

mined using the ‘tracecomp’ executable. Convergence was

assessed using the ‘bpcomp’ executable and chains were con-

sidered to have converged when the maximum bipartition

discrepancies (maxdiff ) across a minimum of two independent

chains reached 0.2.

Finally, because Matrix 3 showed inconsistent tree topologies

across analyses (see Results), we conducted additional tree

searches after partitioning this matrix into genes, using RAXML

7.7.5 [45] with the GAMMA model of rate heterogeneity, the

WAG protein substitution model and 1000 bootstraps.
To test for putative gene incongruence, we inferred individual

gene trees for each orthogroup included in each of the three initial

matrices (Matrices 1, 2 and 3) using RAxML 7.7.5 [45] and SUPERQ

v. 1.1 [46] (see the electronic supplementary material, S2, for

detailed parameters).
3. Results
(a) Phylogenetic relationships based on the three main

matrices
The number of sequence reads, used reads, accession

numbers, contigs, and other values to assess the quality of

the assembled transcriptomes, can be found in the electronic

supplementary material, table S1. Orthology assessment

of this 49-taxon dataset with the OMA stand-alone algorithm

recovered 149 182 orthogroups. The three super-matrices

generated yielded 1205 (Matrix 1: occupancy of more

than 50%; 316 219 aa), 277 (Matrix 2: occupancy of more than

75%; 64 318 aa) and 51 (Matrix 3: occupancy of more

than 90%; 11 066 aa) orthologs, respectively.

All the phylogenetic analyses conducted on all three

matrices revealed well-supported consistent topologies

for most pteriomorphian superfamilies (figure 2). The maxi-

mum-likelihood (ML: PHYML, EXAML and RAXML) and

Bayesian (EXABAYES and PHYLOBAYES) phylogenetic analyses con-

ducted on the three main matrices (Matrix 1, Matrix 2, Matrix 3)

recovered the monophyly of all five pteriomorphian orders,

superfamilies and families, except for Arcoidea, which was
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not recovered as monophyletic and included Limopsoidea in all

analyses conducted with Matrix 2 (figure 2). Ostreoidea and

Pterioidea appeared as sister clades with maximum support

(100% bootstrap support (BS) and a posterior probability (pp)

of 1.00; for all ML and Bayesian analyses, respectively) with Pin-

noidea as their sister group in all analyses except in analyses

conducted with Matrix 3, mostly refuting prior morphology-

based hypotheses (e.g. [47]; figure 4). The relationships among

superfamilies of Pectinida were consistent and well supported

in all analyses: Anomioidea and Pectinoidea were sister clades

(figure 2). Similarly, Limida was unvaryingly recovered as the

sister group to Pectinida with 100% BS or a pp of 1.00 in all ana-

lyses and with all the analysed matrices.

The position of Mytilida was consistent and well supported

in the five analyses with Matrices 1 and 2 (figure 2), constituting

the sister group to Ostreida with a 99% BS and a pp of 1.00.

However, the phylogenetic analyses with Matrix 3 were incon-

sistent across methods and placed Mytilida either more basally,

as sister group to Arcida (ML and PHYLOBAYES; 27% BS and

pp ¼ 1.00, respectively), as sister group to the clade constituted

by Pectinida and Limida (EXABAYES; pp ¼ 0.89), or as a sister
group to all pteriomorphians except Arcida (RAXML with

gene partitions; 47% BS). The lack of nodal support for this

smallest matrix thus indicates that not enough information

was available in Matrix 3 to resolve the position of Mytilida

and that more than 51 genes may be needed to resolve this

ancient divergence. Nonetheless, Arcida was always recovered

at the base of the pteriomorphian tree, either as sister group to

all other pteriomorphians, or as sister group to Mytilida, even

with Matrix 3.

The supernetworks obtained for each matrix using

SUPERQ v. 1.1, displayed a tree-like structure with relatively

long edges and similar topologies as to the concatenated

species trees (figure 2; electronic supplementary material,

figure SA). All three networks show a long edge leading to

the clade formed by Ostreida (sensu [27]); however, they

also indicated gene conflict for the position of Mytilida

with respect to Arcida, and the clade including Limida and

Pectinida, especially in the supernetwork for Matrix 3. Reticu-

lations were also visible in the supernetwork obtained with

Matrix 3 relative to the position of Pterioidea and gene con-

flict was detected in more derived nodes within Ostreida,
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probably reflecting on the poor quality of the P. fucata
genome (electronic supplementary material, figure SA).

(b) Concatenation by per cent pairwise identity
and compositional heterogeneity

As the position of Mytilida has been in flux, we focused our

analyses on the putative node uniting Mytilida with Ostreida.

When evaluating the matrices obtained by sequentially

adding genes based on their evolutionary rates (Matrices
A–D and Matrix 2; see figure 1 for details), we observed a

monotonic trajectory of nodal support increasing from 97%

to 100% BS (full line in figure 3d ). A similar result was

obtained for the monophyly of Pteriomorphia and the sister

group relationship of Limida and Pectinida (full lines in

figure 3a,c). The nodal support for the basal placement of

Arcida, i.e. monophyly of all other pteriomorphians (full

line in figure 3b), showed a more gradual and fluctuating

increase when adding sets of genes with higher evolutionary

rates, going from 81% to 100% BS. By contrast, when looking

at Matrices E–J (no addition; figure 1), we observed a fluctu-

ating trajectory of BS for the sister group relationship of

Mytilida and Ostreida, with maximum support obtained

with the 50 most conserved genes (96% BS) but thereafter

nodal support oscillated between 35 and 93%, with no clear

trend (diamonds in figure 3d ). The support for the basal pla-

cement of Arcida also showed some fluctuation: between 90

and 100% BS was found for all but two sets of 50 genes.

The second set of fastest evolving genes only displayed

37% BS and the last set of the fastest-evolving 27 genes

failed to support the topology altogether and instead placed
Arcida as sister group to Pectinida (diamonds in figure 3b).

The latter placement of Arcida was not retrieved in any of

the conducted phylogenetic analyses and probably reflects

on the poor ability of a small subset of fast evolving genes

to recover deep phylogenetic nodes in Pteriomorphia. The

monophyly of Pteriomorphia and the sister group relation-

ship of Limida and Pectinida (diamonds in figure 3a,c) were

supported in all analyses, which found 100% BS for all sets

of 50 genes, irrespective of their evolutionary rate.

The RCFV per taxon and per amino acid ranged from

0.0001 to 0.007 (electronic supplementary material, figure

SB), indicating compositional homogeneity throughout all

of the amino acids and taxa included in Matrix 2 and

thus eliminating possible biases owing to compositional

heterogeneity.
4. Discussion
(a) Cementing mussels to oysters
The phylogenetic dataset generated in this study is, to our

knowledge, the largest ever gathered to clarify the position

of mussels and to test relationships with their closest rela-

tives. As in many other studies, our results support the

monophyly of Pteriomorphia with maximum support and

this node is found under all analyses. Nevertheless, the tree

topologies recovered by the ML and Bayesian analyses of

Matrix 3 (51 genes) recapitulate a recurring phenomenon in

molecular phylogenetic studies of Pteriomorphia: the

unstable position of Mytilida. A major concern in phyloge-

netic reconstruction has been the amount of missing data,
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as they can produce misleading estimates of topology and

branch lengths (e.g. [48,49]). However, with the generalized

use of transcriptome-based data matrices for phylogenetic

reconstruction, large matrices, even if typically incomplete,

have shown the ability to reconstruct relationships with

strong support [34]. Perhaps, less intuitive has been the find-

ing that in some cases the most complete matrices are not

always providing the most accurate reconstructions, even if

nearing 100% completeness, a poorly studied phenomenon,

but that may be owing to limited amount of available genetic

information in the genes selected for completeness [50]. In

our case, Matrix 3 is the only one with conflicting topologies

when using different phylogenetic methods. The PHYML and

PHYLOBAYES analyses conducted with Matrix 3 place Mytilida

as the sister group of Arcida, these two constituting the sister

group of all remaining Pteriomorphia; whereas the EXABAYES

and gene-partitioned RAXML analyses place Mytilida as

sister group to the clade formed by Pectinida and Limida or

as sister group to all pteriomorphians excluding Arcida,

respectively. None of these topologies, however, received sig-

nificant support. We thus conclude that the position of

Mytilida resolved by the two larger matrices, as sister group

to Ostreida, is the best corroborated hypothesis; this result is

also recovered by several other submatrices of genes sorted

by evolutionary rate (Matrices A–D, E, I; figures 1 and 3d ),

including slow evolving genes (Matrices A, B, E) and fast evol-

ving genes (Matrices C, D, I). The fact that several small

matrices, composed of different sets of genes, yield different

tree topologies probably explains the disparity of phylogenetic

results from previous molecular analyses (e.g. [18,24,26,27]).

The position of Arcida has also been unstable throughout

a series of molecular data analyses [18,24,26,27] and hardly

any morphological analysis has proposed a sister group

relationship to all other pteriomorphians, as many authors

have placed Mytilida in a more basal position (e.g. [12,16]).

Our results, however uniformly place Arcida in a basal

position, as sister group to all other pteriomorphians (as in

the morphological analyses of Giribet & Wheeler [24,27]),
with the exception of two analyses (PHYML and PHYLOBAYES,

Matrix 3) that place Mytilida as their sister group—a partially

unsupported relationship (27% BS, but pp ¼ 1.00) that had

been suggested previously [51]. These findings do not sup-

port the hypothesis of Carter et al. [5] that

arranged Pteriomorphia into two major clades, Mytilomorphi

(with Mytilida) and Ostreomorphi (with the other groups

treated herein).
(b) Implications for the evolution of shell microstructure
Early bivalves built aragonite shells, a character retained in

Nuculida, Trigoniida, Unionida and most Anomalodesmata

[12,52,53]. Pteriomorphians all develop an outer calcitic

layer in addition to the inner aragonitic shell layer, with the

exception of Arcida, whose shell microstructure still consists

of both outer and inner crossed-lamellar layers of aragonite

crystals only [10,27]. Since Arcida displays a basal position

with respect to other pteriomorphians, this character requires

no homoplasy, as arcoids present the plesiomorphic state

found in closely related bivalve outgroups. The development

of an outer calcitic layer is thought to be a recent adaptation

against shell dissolution in cold and undersaturated waters

[54,55]. There are two main types of calcite prisms from the

viewpoint of the microstructure: simple prismatic or foliated.

The simple prismatic microstructure is found in the outer

layers of Pterioidea (except for Malleidae), Pinnoidea and

Mytilida (the latter has the particularity of also being fibrous)

[10,14]. The outer simple calcitic prismatic layer is a flexible

structure that allows tight sealing of the two valves, thus

better isolating the inner chamber from changing ambient

water conditions and minimizes damage from unsuccessful

predation. This shell ultrastructure is usually associated

with epi- and endo-byssate life-habits (e.g. Mytilida, Pterioi-

dea, Pinnoidea). By contrast, the clades that developed a

foliated calcite layer (Pectinida, Ostreoidea and the family

Malleidae) gained the opportunity to produce more convex

valves with a wide repertoire of ornamentations and new
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shell morphologies, making this character a key innovation in

the adaptive radiation of Pteriomorphia. The foliate micro-

structure is a derived feature that is more rigid but less

resistant to breakage than the simple prismatic structure

[56]; clades that adopted this arrangement are more wide-

spread, have higher generic diversity and have repeatedly

evolved more derived life-habits, e.g. cementing (Ostreoidea),

swimming (Pectinoidea) or free reclining (Anomioidea) [57].

The calcitic outer layer of Limida consists of a combination

of calcitic fibrous prismatic and crossed-foliated structures,

and because this combination is not observed in the other

pteriomophians it has been argued to justify the ordinal

level of Limida [19]. The inner aragonite shell layer of all pter-

iomorphians is composed of cross-lamellar crystals, with the

exception of Ostreida and some Mytilida, which display nacr-

eous tablets (Pinnoidea and Pterioidea) or in the case of

Ostreoidea, a complete loss of aragonite [58,59]. In addition,

the clade comprising Limida and Pectinida is the only one

that combines an outer foliated calcitic structure with an

inner crossed-lamellar aragonitic layer, which makes it a

synapomorphy for this clade. Altogether, the distribution of

this character is concordant with the classification recovered

by our analyses. Interestingly, both mussels and oysters

have compound latero-frontal cilia in their gills, unlike the

rest of pteriomorphians [60].

(c) Revised higher-level classification
Our results, derived from complex analyses of large datasets,

and evaluating possible pitfalls affecting phylogenetic recon-

struction (matrix occupancy, heterogeneity, evolutionary

rates, evolutionary models) consistently recover a well-sup-

ported phylogeny of Pteriomorphia, with the only

exception of the most complete (but smallest) Matrix 3.

After exploring this potential phylogenetic inconsistency,

we conclude that this result is not necessarily owing to the
small matrix size, but that it may be related to the specific

genes of this partition, which cause considerable conflict

(electronic supplementary material, figure SA).

To conclude, we recognize five orders as shown in the

figure 4: Mytilida (including superfamily Mytiloidea),

Ostreida (including superfamilies Pinnoidea, Pterioidea,

and Ostreoidea), Pectinida (including superfamilies Pectinoi-

dea and Anomioidea), Limida (including superfamily

Limoidea) and Arcida (including superfamilies Limopsoidea

and Arcoidea).
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