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To identify possible mechanisms by which maternal consumption of non-nutritive

sweeteners increases obesity risk in offspring, we reconstructed the major alterations in

the cecal microbiome of 3-week-old offspring of obese dams consuming high fat/sucrose

(HFS) diet with or without aspartame (5–7 mg/kg/day) or stevia (2–3 mg/kg/day)

by shotgun metagenomic sequencing (n = 36). High throughput 16S rRNA gene

sequencing (n = 105) was performed for dams, 3- and 18-week-old offspring. Maternal

consumption of sweeteners altered cecal microbial composition and metabolism of

propionate/lactate in their offspring. Offspring daily body weight gain, liver weight and

body fat were positively correlated to the relative abundance of key microbes and

enzymes involved in succinate/propionate production while negatively correlated to that

of lactose degradation and lactate production. The altered propionate/lactate production

in the cecum of weanlings from aspartame and stevia consuming dams implicates an

altered ratio of dietary carbohydrate digestion, mainly lactose, in the small intestine vs.

microbial fermentation in the large intestine. The reconstructed microbiome alterations

could explain increased offspring body weight and body fat. This study demonstrates

that intense sweet tastants have a lasting and intergenerational effect on gut microbiota,

microbial metabolites and host health.

Keywords: non-nutritive sweeteners, metagenomic construction, gut microbiome, maternal diet, obesity risk

INTRODUCTION

Low-calorie sweeteners, also known as non-nutritive sweeteners, have been used for decades
to replace sugar and reduce the caloric content of foods and beverages while maintaining the
sweet taste (1). The consumption of non-nutritive sweeteners has raised concerns about potential
detrimental effects of long-term intake which have been demonstrated in some rodent studies
(2–5) but less consistently in human studies (4, 6–8). Aspartame and stevia are two commonly
used low-calorie sweeteners whose metabolism has been investigated in different species (3, 9–
14). Aspartame is a dipeptide-methyl ester (4) which, upon ingestion, is rapidly metabolized
into methanol, aspartate and phenylalanine and absorbed into the systemic circulation (4, 13).
Rebaudioside A, the stevia glycoside used in this study, is resistant to hydrolysis by pancreatic or
brush border enzymes but is converted to the aglycone steviol by ileal or colonic bacteria expressing
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β-glucosidases; absorption and metabolism of steviol in the liver
occurs in a similar manner in humans and rats (11, 12, 15).
Bacteroides isolates from human microbiota were identified as
the most efficient bacteria in hydrolyzing rebaudioside A to
steviol (12).

Non-nutritive sweeteners are non-toxic to human adults (3, 9,
11) but detrimental effects, including disrupted gut microbiota,
impaired glucose homeostasis and higher risk of obesity have
been observed in offspring of rodents consuming non-nutritive
sweeteners and infants of pregnant women consuming beverages
with non-nutritive sweeteners (2, 3, 5, 7, 9). We recently reported
that maternal consumption of aspartame and stevia altered the
expression of genes related to the mesolimbic reward system in
3-week and 18-week old rat offspring, and altered gut microbiota
in the 3-week old offspring (9). Both changes could plausibly
explain the associations between maternal aspartame and stevia
consumption with the higher body weight gain and body fat of
their offspring (9). The former could promote higher food intake
while the latter is related to the energy derived from intestinal
absorption of nutrients and microbial metabolites. At the same
time, we transplanted fecal microbiota of the offspring from
aspartame and stevia consuming dams to germ free mice, which
resulted in an increase in glucose intolerance, body weight gain
and body fat of the recipient mice (9). Despite the compositional
changes detected in this study and the convincing transfer of the
obese phenotype into germ free mice through fecal microbiota
transplant, our understanding of the functional changes that
occurred in the offspring microbiome in response to maternal
consumption of low-calorie sweeteners remains limited.

Therefore, the objective of the present study was to
reconstruct the major alterations in the cecal microbiome
of 3-week old offspring that are related to maternal consumption
of aspartame or stevia during pregnancy and lactation. Short
chain fatty acids (SCFA), the end products of gut microbial
fermentation, were selected as the most direct mediator to
investigate microbial-associated energy metabolism (16). We
use shotgun metagenomics and 16S rRNA gene sequencing
to elucidate the connections between key microbes, metabolic
functions, and the physiological outcomes of offspring,
with the goal of identifying the possible mechanisms by
which maternal aspartame and stevia consumption exert
effects on offspring that never directly consumed the
sweeteners themselves.

MATERIALS AND METHODS

Animals and Samples
Ethical approval was granted by the University of Calgary Animal
Care Committee (Protocol#AC15-0079) and conformed to the
Guide to the Care and Use of Experimental Animals. Obesity
was induced in 8-week-old female Sprague-Dawley rats using a
10-week feeding period with a high fat/high sucrose diet (HFS,
39% fat and 44% sucrose, Dyets #102412), the composition of
which has been previously published (17). Given that Sprague-
Dawley rats can be obesity-prone or obesity-resistant when fed
a HFS diet (18), we chose the top n = 45 best weight gainers
from the n = 135 rats included in the diet-induced obesity

protocol (Figure 1). The selected obese female rats were bred
with male Sprague-Dawley rats and randomly allocated to one
of three groups of n = 15 each throughout pregnancy and
lactation: (1) WTR (HFS+Water); (2) APM (HFS+ aspartame)
(5–7 mg/kg, Fluka, Ottawa, ON, Canada); (3) STV (HFS +

stevia) (2–3 mg/kg Rebaudioside A, Sigma-Aldrich, Oakville,
ON, Canada). Aspartame and stevia were administered in the
drinking water as described (9). These doses were selected within
the acceptable daily intake (aspartame: 40mg/kg, stevia: 4 mg/kg)
(19) established by the Food Directorate of Health Canada and
reflect physiological daily intake in humans (20). To minimize
the effects of varying litter size, litters were culled to 10 offspring
(5 females + 5 males) at birth. Offspring were weaned at 3
weeks of age and fed a control diet (AIN-93, Dyets, Bethlehem,
PA, USA) until 18 weeks of age. Rats were fed ad libitum and
housed in a temperature- and humidity-controlled room with a
12-h light/dark cycle. Body weight was measured weekly. Body
composition of the dams was measured at weaning and the
offspring measured at 3 and 18 weeks of age using dual-energy
X-ray absorptiometry (DXA) (Hologic QDR 4500; Hologic Inc.,
Marlborough, MA, USA). Each litter was considered as n= 1 and
male and female offspring were housed separately in plastic cages
with wood-chip bedding following weaning at 3 weeks of age.

Distal jejunum and ileum tissue samples, and cecal digesta
were collected at terminate points of dams (at weaning) and
offspring (at 3 and 18 weeks of age) and immediately stored
at −80◦C until use. Total bacterial DNA was isolated from
cecal digesta using FastDNA spin kit for feces (MP Biomedicals,
Lachine, QC, Canada), pre-treated with bead-beating (MP
Biomedicals, Lachine, QC, Canada) for 40 s × 3 times. Purified
DNA was quantified using Quant-iTTM PicoGreenTM dsDNA
Assay Kit (Invitrogen, Burlington, ON, Canada) and diluted to
20 ng/µl for 16S rRNA gene sequencing and 50 ng/µl for shotgun
metagenomic sequencing.

Analysis of Cecal Microbiota by 16S rRNA
Gene Sequencing
To assess the contributions of maternal and offspring factors to
cecal microbiota variations, genomic DNA from 105 samples
were randomly selected for 16S rRNA gene sequencing,
corresponding to 19 dams at weaning, 36 offspring at 3 weeks
of age, and 50 offspring at 18 weeks of age. Microbial 16S
rRNA gene tags were sequenced on Illumina MiSeq platform
(2 × 300 bp) by amplifying the hypervariable V3–V4 regions
(Centre for Health Genomics and Informatics, Calgary, AB,
Canada), and analyzed in QIIME2 platform (21) (QIIME2
2020.2). The quality controlled 16S rRNA were filtered and
denoised using DADA2 in QIIME2 (21) (QIIME2 2020.2).
Frequency of sequence variants less than 10 were discarded.
Taxonomy was assigned to sequence variants using Silva 138
database as reference. Sequence variants classified as genus
Lactobacillus were additionally aligned to Genome Taxonomy
Database release 95 (GTDB, https://gtdb.ecogenomic.org/) to
reflect the current taxonomy of Lactobacillaceae (22) with the
best BLAST hits.
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FIGURE 1 | Study design. HFS, high fat/sucrose diet; APM, aspartame; STV, stevia; WTR, water control; M, male; F, female; W, week.

Recovery of Bacterial Genomes From
Shotgun Metagenomic Reads
To reconstruct cecal microbiome of offspring, 36 genomic DNAs
from offspring at 3 weeks of age (weaning) were randomly
selected for shotgun sequencing that included 12 samples
(6 female and 6 males) from each dietary group. Shotgun
metagenomic sequencing was conducted on NovaSeq 6000 (2 ×
300 bp, Centre for Health Genomics and Informatics, Calgary,
AB, Canada) with NEB Ultra II library preparation protocol
(New England Biolabs, Ipswich, MA, USA) to generate 400
GB of data (800M reads). Due to the high percentage of
the unidentified rodent microbiome and the high functional
heterogeneity in microbial community at the strain level, we
adopted de novo assembly-based metagenomic reconstruction
to understand the complexity of functional alterations in
offspring’s gut microbiota (23, 24). Adapters were checked
and removed by Trimmomatic (25). Quality-controlled reads
were assembled into contigs/scaffolds by samples using default
parameters in IDBA_UD (26). Long contigs (> 3,000 bp) were
further clustered into bins using MaxBin2 (27) based on G
+ C content and abundance of contigs through Expectation-
Maximization algorithm. The 16S rRNA gene sequences data
and shotgun metagenomic sequences data generated during this
study are available at the National Center for Biotechnology
Information (BioProject PRJNA675294) https://www.ncbi.nlm.
nih.gov/biosample.

Taxonomic Position and Relative
Abundance of Metagenomic Assembled
Genomes
In total, 188 representative bins were chosen by de-replicating
highly similar genomes using dRep (28), which refers
to metagenomic assembled genomes (MAGs). Genomes
completeness and contamination were estimated by
examining a set of ubiquitous genes using CheckM (29)
(Supplementary Table 1).

Phylogenetic trees of MAGs were built with PhyloPhlAn 3.0
(30) by aligning to a set of 400 core proteins. Species-, Genus-
and Family-level taxonomic labels were assigned to genomes
when Mash (31) average genomic distance calculated from at
least 100 makers was < 5%, 15% and 30% to the closest reference
set, respectively (30). The phylogenetic tree was generated with
Randomized AxeleratedMaximumLikelihood (RAxML)method
and visualized by iTOL (32). Raw reads were mapped back
to MAGs to calculate relative abundance using CoverM with
“relative_abundance” formula in “genome” model.

Evaluation of Microbial Metabolism
Potentials by Genome-Wide Screening
To estimate the contribution of the cecal microbiome to
microbial-derived energy harvest, metabolic enzymes were
selected to retrieve pathways for microbial degradation of lactose
and production of lactate, succinate, acetate, propionate, and
butyrate (Supplementary Table 2). Query sequences for the
same enzyme were selected from different bacteria and pre-
aligned tominimize the overlap between BLAST hits for the same
enzyme. Amino acid sequences of biochemically characterized
key enzymes were blasted against amino acid database build
from the open reading frames (ORF) of 188 assembled genomes
(Prodigal 2.0) (33). An alignment coverage of > 70%, e value ≤
1e-5 and amino acid identity of ≥40% or higher (34) were used
as cut-off values for BLAST. The sums of mapped reads (%) for
all the positive hits for the same enzymes were calculated as their
potential capacities to produce the corresponding metabolites in
each sample.

RNA Extraction and Quantification of Gene
Expression
Total RNA was extracted from jejunum and ileum tissue
using Trizol (Invitrogen, Carlsbad, CA) and reverse-
transcribed into cDNA using SuperScriptII RT as previously
described (35). Quantitative PCR was performed on BioRad
iCycler (Bio-Rad, Hercules, USA) with primer sets LCT
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(forward, 5′-AATCTTCTTGGCTGGGAATGG-3′; reverse,
5′-CCTTGAGCACCTCGTTGA TG-3′) and GATA4
(forward, 5′-AATCTTCTTGGCTGGGAATGG-3′; reverse,
5′-CCTTGA GCACCTCGTTGATG-3′) targeted at lactase
gene (lct) and regulatory gene (gata4). The 18S gene was
amplified as reference gene for relative quantification with
primer set (forward, 5′-TGACTCAACACGGGAAACC-3′;
reverse, 5′-TCGCTCCACCAACTAAGAAC-3′). The relative
expression ratio (R) of targets were calculated based on
primer efficiency (E) and the Ct deviations as follow: R =

(Etarget)1 Ct target (control−sample) / (Eref)
1 Ct ref (control−sample) (36).

Statistical Analysis
The data for 16S rRNA gene sequences and shotgun
metagenomic sequences, including relative abundance of
16S rRNA gene sequence variants, weighted UniFrac distances,
relative abundance of assembled genomes and the corresponding
prediction of metabolite production were compared using
Kruskal-Wallis rank-sum test in R version 4.0.0 (2020-04-
24). Statistical significance of ANOSIM was determined
through 999 permutations between dietary groups. The R
value between 0 and 1 reflects the dissimilarity between
the groups and was calculated as follows: R = difference
of mean rank (all distances between groups – all distances
within groups) / (N(N-1)/4). The data for host parameters,
including daily weight gain, body fat (%), liver weight, and
bone mineral density, and Log10 transformed gene expression
were analyzed using linear mixed-effects (LME) models in R
version 4.0.0 0 (2020-04-24). Dietary treatment was treated as
fixed factor; rat was considered as experimental unit and its
random effect was removed. Correlations between genome,
metabolite production and host parameters were analyzed by
Spearman’s rank method. Bonferroni-adjusted p < 0.05 were
considered significant.

RESULTS

Maternal Consumption of Aspartame and
Stevia Influences Gut Microbiota of
Offspring
Consumption of low-dose aspartame and stevia showed limited
influence on the overall structure of cecal microbiota in dams
(Figures 2A1,B1,C1; Supplementary Table 3) but significantly
altered (p < 0.001) cecal microbiota of their 3-week old offspring
(Figures 2A2,B2,C2; Supplementary Table 3). The differences
at 3 weeks gradually dissipated from weaning into adulthood
(Figures 2A2,B3,C3; Supplementary Table 3). Dams and 18-
week-old offspring shared more similarities in cecal microbiota
(Figure 2A1; Supplementary Table 3). Significant litter effects
(male and female from same dam) were observed in 3-week
old offspring, as indicated by the weighted UniFrac distances
(Figure 2A2, R = 0.53, p = 0.001) and a higher number of
highly similar (>99.0% average nucleotide identity) bacterial
genomes that were shared between offspring from the same
dam (Figure 2A3, p < 0.001). Litter effects decreased in 18-
week-old offspring (Figure 2A2, R = 0.07, p = 0.0741). No sex
difference was observed in 3-week and 18-week (p > 0.05) old

offspring. Therefore, subsequent metagenomic analyses focused
on microbiome alterations in 3-week old offspring without
stratification by sex.

Metagenomic Reconstruction of Cecal
Microbiome in 3-Week Old Rats
In total, 188 genomic bins were recovered from 36 3-week old
offspring cecal samples, with an average size of 3.23Mb and
an average N50 of 74,759 bp (Supplementary Table 1). The
high quality of reconstructed bacterial genomes enabled
genome-based analysis of metabolic traits of intestinal
microbial communities. Figure 3 depicts the phylogeny of
188 metagenomic assembled genomes. Five bacterial phyla
were assigned to these 188 assembled genomes, including 1
assigned to Verrucomicrobia, 7 identified as Actinobacteria,
10 as Proteobacteria, 23 assigned to Bacteroidetes, and 137
identified as Firmicutes. Of the 188 assembled genomes,
149 (79%) were assigned to genus or species level with an
average amino acid identity of > 95% to the closest references
calculated from at least 100 protein sequences. The relative
abundance of each genome, referring to the percentage
of mapped reads, was further transferred to Z-scores for
visualization (Figure 4). In total, 92 genomes showed differential
relative abundance (p < 0.05) between dietary treatments
(Supplementary Figure 1).

Reconstruction of Cecal SCFA Production
Related Metabolic Pathways in 3-Week Old
Rats
To estimate the contribution of the cecal microbiome to
microbial-derived energy harvest, pathways for microbial
degradation of lactose and for production of lactate, succinate,
acetate, propionate, and butyrate were reconstructed (Figure 4;
Supplementary Table 1). Intracellular GH2 β-galactosidases
BbgI, LacM, LacZ and Lacdeb, specifically distributed in
Lachnospiraceae, Lactobacillaceae and Clostridiales were
determined as the major metabolic enzymes hydrolysing
milk-derived lactose in rats (Figures 4A1–A5). The relative
abundance of these β-galactosidases significantly decreased in
the stevia and/or aspartame groups compared to water control
(Figures 4A1,A2,A4,A5, p < 0.05). Phospho-β-galactosidase
LacG (Figure 4A3) showed low abundance and no differences
between sweeteners and water control groups in the cecal
microbiota. The abundance of enzymes for pyruvate to
lactate conversion (Figure 4B) was significantly reduced (p
< 0.05) in the aspartame group compared to the stevia and
water control.

Rat cecal microbes (90.43%) were generally able to produce
acetate through acetate kinase (AK) (not shown) and due to
the multiple mapping of identical reads, the average of mapped
read ratio for acetate was higher than 130%. Variable bacterial
types and abundance were involved in acetate production,
but no difference was observed in total abundance between
dietary groups (Figure 4A). Very few bacteria produce both
propionate and butyrate as major products of carbohydrate
fermentation (Supplementary Figure 1). Firmicutes genomes
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FIGURE 2 | Influence of maternal consumption of aspartame and stevia on cecal microbiota in rat dams and their offspring. Principle coordinate analysis (PCoA) (A1,

B1–B3) of rat cecal microbiota; litter effects in offspring (A2); shared metagenomic assembled genomes (A3) between 3-week-old offspring from the same litter (left)

and from different litters (right); Dietary effects in dams (C1), 3-week-old offspring (C2), and 18-week-old offspring (C3). Each dot represents an individual cecal

sample. Data with asterisk (*) represents a significant difference (p < 0.05). W3, week 3; W18, week 18; APM, aspartame; STV, stevia; WTR, water control.

were identified as the major butyrate producers. Of these
butyrate producers, 15 of 28 butyryl: acetate CoA-transferase
carrying genomes and 10 of 17 butyrate kinase carrying
genomes were significantly enriched in both aspartame and
stevia groups or specifically enriched in aspartame (p <

0.05). Of the three pathways for propionate production, the
succinate pathway, dominated by Akkermansia muciniphila
and 14_Bacteroidaceae unclassified, was the most abundant
(30 of 46 propionate-producing genomes). This pathway was
significantly enriched in the aspartame group. Of the 30
succinate-propionate producers, 9 genomes were enriched
by aspartame and stevia or only by aspartame (4 of 9).
The propanediol pathway for propionate production was less
abundant in the stevia group although the production of 1,2-
propanediol was not different between dietary groups. Genes
coding for the acrylate pathway were rare in the rat cecal
microbiome. Production of cobalamin (vitamin B12), a co-factor
required by multiple metabolic processes including propionate
production, also showed variable abundances in aspartame
and/or stevia offspring.

Reducing Dimensions of Microbial
Population Differences and Their
Correlations With Host Growth and Body
Composition
To further explore the influence of non-nutritive sweeteners
on the cecal microbiome of offspring, genomes with high
relative abundance and significant differences between groups
were selected as representatives for further correlation
analysis (Figure 5A; Supplementary Table 4). The genome
of 14_Bacteroidaceae unclassified represented the most abundant
microbe that was enriched in both aspartame and stevia
groups; the genome of 1_Akkermansia muciniphila represented
bacteria specifically enriched by aspartame; microbes reduced
by aspartame were represented by 48_Limosilactobacillus reuteri
and 49_Ligilactobacillus murinus. The other genomes, including
176_Eubacterium spp., 151_Blautia spp., 152_Blautia spp., and
175_Lachnospiraceae unclassified, showed variable differences
between dietary treatments. Jejunal and ileal expression of lactase
and its regulator GATA4 can directly affect the availability of
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FIGURE 3 | Phylogeny and abundance of metagenomic assembled genomes recovered from 3-week old rat cecal digesta. The relative abundance of bins was

calculated from percentage of re-mapped reads in the sample and presented as Z-score: Z-score = (relative abundance – mean of relative abundance)/standard

deviation. Phylogenetic tree (the innermost layer) and taxonomic affiliations (the middle layer) of 188 metagenomic assembled genomes (MAGs). Tree branches and

labels with different colors represent different phyla as indicated by the color code in the lower left. The outermost heatmap depicts the relative abundance of the 188

bins in each sample, inside to outside: Water Control (12 layers), Aspartame (12 layers) and Stevia (12 layers).

lactose for fermentation in the cecum. The expression of these
genes was therefore examined as a potential upstream factor
shaping the microbiome, however no significant differences
between dietary treatments were found (Figure 5B). Host
parameters, including daily weight gain, body fat, liver weight,
and bone mineral density were selected for correlation analysis
(Figure 5C). Maternal consumption of aspartame increased
daily weight gain in offspring (Figure 5C). Aspartame and
stevia significantly increased body fat % and liver weight
but decreased bone mineral density in 3-week old offspring
(Figure 5C).

Correlations between bacterial genomes, bacterial
metabolites, and between host parameters depict microbial-
host interactions in weanling pups (Figure 5D). Two distinct
bacterial consortia were identified, showing negative correlations

with each other and consistently opposite correlations
with metabolite production and host parameters. The
propionate- and butyrate-producing consortium, represented
by 1_Akkermansia muciniphila, 14_Bacteroidaceae unclassified,
175_Lachnospiraceae unclassified, and 176_Eubacterium spp.,
was enriched in offspring of sweetener-consuming dams, and
was positively correlated with offspring’s daily body weight
gain, liver weight and body fat but negatively correlated with
bone mineral density (Figure 5D). Conversely, the lactate-
producing consortium, including 48_Limosilactobacillus reuteri,
49_Ligilactobacillus murinus, 151_Blautia spp., and 152_Blautia
spp., which degrade lactose into lactate, were negatively
correlated to the host parameters mentioned above except bone
mineral density (Figure 5D). Significant correlations between
gene expression of lactase/GATA4 gene and selected bacterial
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FIGURE 4 | Predicted potential of cecal microbiome involved in lactose and SCFA metabolism in 3-week old offspring. The potential of each cecal microbial

community to degrade lactose and generate SCFA-related metabolites was calculated by the sum of mapped reads (%) for positive hits of the corresponding key

enzymes as follow: Lactose (A1,A2) beta-galactosidase (LacZ and Lacdeb), (A3–A5) phospho-β-galactosidase (LacG, BbgI and LacM); Acetate (B1) acetate kinase

(AK); Lactate (B2) D/L-lactate dehydrogenase (LacDeh); Succinate, (B3) fumarate reductase (frdA); 1,2-Propanediol; (B4), lactaldehyde reductase (LacRd); Cobalamin

(Vitamin B12), (B5) cobalt transporter protein (CbiM); Butyrate (C1) butyryl:acetate CoA-transferase (BCoA), (C2) butyrate kinase (BK); Propionate, (C3)

methylmalonyl-CoA decarboxylase (McoA), (C4) lactoyl-CoA dehydratase (LacCoRd), (C5) propanediol dehydratase (pduCDE). Data with different superscripts

represents significant difference (p < 0.05). For bars in each panel, left to right: water control (n = 6); aspartame (n = 6) and stevia (n = 6).

genomes and host parameters were only observed between
jejunal lct/gata4 with butyrate formation (Figure 5D).

DISCUSSION

In this study, we demonstrate that the altered intestinal
microbiota resulting from consumption of non-nutritive
sweeteners by dams explains the negative metabolic changes
occurring in their offspring that were themselves never directly
exposed to the sweeteners. To identify possible mechanisms

by which this intergenerational risk is transmitted, we assessed
the metagenomic reconstruction of intestinal metabolism of
dietary carbohydrates in the offspring alongside host parameters
including weight gain, body fat, liver weight and bone mineral
density. We show that maternal consumption of aspartame or
stevia altered microbial metabolism in the offspring; specifically,
the relative abundance of propionate- and butyrate-producing
species increased, and the abundance of lactose-fermenting
species decreased in offspring at weaning. The resultant altered
propionate and lactate production could explain increased body
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FIGURE 5 | Connections between cecal microbiome alterations and host parameters in 3-week old offspring. The top 10 influenced genomes in cecal microbiota of

3-week-old offspring (ternary plot) and the relative abundance of 3 representative influenced genomes (boxplots) (A); mRNA expression fold change of jejunal/ileal

lactase gene (lct) and GATA4 (gata4) (B); Growth peformance and body composition of weanlings (C); The coefficient matrix of Spearman’s rank correlations between

the most influenced genomes, metabolic enzymes, gene expression, and the corresponding growth and body composition of 3-week old offspring (D). Data with

asterisk (*) represents significant difference (p < 0.05). APM, aspartame; STV, stevia; WTR, water control.

weight and body fat in offspring from aspartame and stevia
consuming dams. Importantly, we show that sweet tastants
have a lasting and intergenerational effect on gut microbiota,
microbial metabolites and host health.

Artificial sweeteners induce compositional and functional
alterations in gut microbiota of human and rats (5, 8, 9). These
shifts in gut microbiota have been linked to the development
of obesity-related glucose intolerance which is transferable to
germ-free mice through fecal microbiota transplantation (5, 9,
37). Maternal dietary intake during gestation and lactation is
known to program offspring health via multiple mechanisms
(37–39), which include transmission of gut microbiota and
its metabolic potential (37, 40). We examined litter effects on
microbiota structural similarities and shared identical bacterial
genomes between offspring from the same dam vs. different dams
and confirmed that maternal microbial transmission plays an
important role in the development of cecal microbiota of 3-week
old offspring.

Given the obese phenotype of offspring derived from
dams consuming non-nutritive sweeteners, we focused

our metagenomics reconstruction on the pathways for the
production of acetate, propionate, and butyrate. We observed
increased readouts of succinate/propionate conversion and
butyrate formation in the cecal microbiome of offspring from
aspartame and stevia consuming dams and their positive
correlation with increased liver weight, body weight gain, and
body fat. Altered SCFA metabolism, especially elevated serum
and fecal propionate, has been shown previously in obese
animals following artificial sweetener consumption (3, 5, 8, 9).
Exogenous administration of propionate to healthy individuals
in a meal resulted in hyperglycemia which was primarily
attributed to an increase in serum glucagon and overexpression
of fatty acid-binding protein4 (5). Beyond higher blood glucose
and hyperinsulinemia, significantly higher body weight gain and
body fat was also observed in mice that were administered a
chronic low dose of propionate in their drinking water compared
to control mice (41). These findings are in line with the impaired
glucose tolerance we observed in male offspring of our aspartame
dams (9). We also observed increased mRNA levels of dopamine
transporter in the ventral tegmental area of the male weanlings of
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sweetener consuming dams (9). Upregulation of the dopamine
transporter could imply an activation of the mesolimbic reward
pathway in the brain that promotes food-seeking behavior,
particularly to highly palatable foods (9). In depth analysis of
central and systemic appetite regulation in offspring of sweetener
consuming dams, including the satiety hormones, PYY and
GLP-1, are warranted to better understand the influence of
altered microbial metabolism on appetite regulation in these
animals (41, 42).

Understanding how shifts in endogenous propionate
production affect the development of metabolic abnormalities,
however, remains challenging. We show that maternal intake
of aspartame and stevia and the resultant early colonizers that
are transmitted from dams impacted the cecal microbiome of
offspring. Host diet and particularly the content of indigestible
but fermentable carbohydrate plays a key role in shaping
the gut microbiome (43). Milk-derived lactose accounts for
12–15% of rat milk solids during late lactation (44, 45). In
human infants and suckling rats, a substantial proportion
of dietary lactose escapes small intestinal hydrolysis and
absorption and is fermented in the large intestine (46, 47).
The cecal/colonic lactate that is produced from lactose
fermentation in turn serves as a substrate for butyrate and
propionate production by other members of the intestinal
microbiota (48–50). Therefore, we extended our pathway
construction to lactose/lactate metabolism and identified
the reduced proportions of metagenomic reads mapped to
lactose hydrolase and lactate formation, and their negative
correlations with propionate/butyrate production and weight
gain and body fat in offspring from dams that consumed non-
nutritive sweeteners. Notably, host glycans, mainly mucin, are
degraded predominantly byAkkermansia and Bacteroides species
(51, 52). In line with the highly enriched glycan degradation
pathways found in mice consuming saccharin (5), the increased
relative abundance of Akkermansia and Bacteroidetes with
a concomitant lower proportion of lactobacilli in our study
also suggests that maternal consumption of non-nutritive
sweeteners increases the relevance of host glycans but decreases
the relevance of lactose as substrate for cecal carbohydrate
fermentation in their offspring. Decreased lactate formation
from lactose by lactobacilli results in an increased cecal pH,
which further benefits the mucin-degrading Akkermansia and
Bacteroidetes(5, 53, 54) and shifts cecal microbial metabolism
(34, 50).

More research is needed to evaluate the possible role of non-
nutritive sweeteners on offspring metabolism via their presence
in breastmilk. Important to the current investigation is that while
some low-calorie sweeteners have been detected in breastmilk
(i.e., saccharin, sucralose, and acesulfame-potassium), this does
not appear to be true for all sweeteners including aspartame
(6). In addition, the concentration of non-nutritive sweeteners
in breast milk after maternal consumption, even if detectable,
is too low to impact gut microbiota through direct provision
of any substrate and these sweeteners are not known to alter
lactose content of milk or host glycans secretions (2, 6, 15, 55).
Given the impact of jejunal and ileal lactase activity on the
availability of lactose for intestinal microbiota in suckling rats

and the decline in lactase activity which is essentially regulated
at the posttranscriptional level during the late lactation period
(56–59), we examined the gene expression of jejunal/ileal lactase
and regulator GATA4 but did not find a difference between
offspring of dams consuming non-nutritive sweeteners or not.
Although we cannot rule out other possibilities, the lack of
difference reduces the likelihood that lactose metabolism had
an upstream effect on cecal SCFA production and suggests
that obesity risk in offspring after maternal consumption of
non-nutritive sweeteners is mediated by the host response
to an altered pattern of bacterial metabolites. The possibility
remains that exposure to altered bacterial metabolites that have
previously been detected in the maternal fecal and/or serum
metabolome when mothers consume sucralose and aspartame
(3, 60), could contribute.

CONCLUSIONS

Our metagenomic reconstruction of cecal SCFAs metabolism
identified decreased lactose fermentation and an altered
propionate and lactate production as the central tenet of
increased body weight and body fat in offspring from aspartame
and stevia consuming dams. Although the mechanisms of
transmission of this phenotype from mother to offspring and
its perpetuation into adulthood remain to be elucidated, this
study demonstrates the intergenerational effect that sweet
tastants have on gut microbiota, microbial metabolites and
host health. This result has important implications for human
health because the diet of mothers during pregnancy and
lactation likely also impacts the gut microbiota, microbial
metabolites, and the metabolic fitness to their children.
Compositional and functional shifts in the microbiome with
non-nutritive sweetener consumption should be investigated
further in human cohorts to inform guidelines for maternal diet
during pregnancy.
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