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CARMA1 is a novel regulator of T-ALL disease and leukemic
cell migration to the CNS
Leukemia (2017) 31, 255–258; doi:10.1038/leu.2016.272

Pediatric acute lymphoblastic leukemia (ALL) is the most common
type of malignancy in children with 15% bearing markers for the
T-lineage (T-ALL) and 20% of T-ALL patients still suffering disease
relapse. Many genes are implicated in T-ALL disease, including
Notch, and Notch mutations have been identified in a majority of
T-ALL patients.1 Patients with T-ALL relapse with disease usually in
the central nervous system (CNS).2 Despite the use of intrathecal
therapy and cranial radiation, successful management of CNS
disease continues to be problematic in T-ALL.3 Few molecules are
known to be associated with T-ALL CNS disease including CCR7, a
chemokine receptor normally expressed on naive T cells.4 CXCR4 has
also recently been shown to have a role in T-ALL initiation and
progression.5–7 The involvement of chemokine receptors as well as
other molecules regulating cell motility suggests that regulation of
T-ALL cell migration is likely to have an important role in T-ALL.
Cell signaling molecules that drive normal T-cell proliferation,

such as PKCθ, can regulate T-ALL.8 PKCθ activates CARMA1 (also
known as CARD11) bringing together Bcl10 and MALT1 leading to
NF-κB activation.9 Although higher expression of CARMA1 has
been seen in a small subset of T-ALL patients, little is known about
how CARMA1 might regulate T-ALL.10 To study the potential role
of CARMA1 in T-ALL disease, we used shRNA to knock down
CARMA1 expression in the human CEM T-ALL cell line expressing
luciferase and GFP (called CARMA1KD), with the level of knock-
down ~ 50% (Supplementary Figure 1A). We transferred the
CARMA1KD CEM cells into the immunodeficient NOD.Cg-Prkdcscid

Il2rgtm1Wjl/SzJ IL2RG (NSG) mice. Animals receiving CARMA1KD
T-ALL cells survived significantly longer than animals receiving
parental CEM cells (Figure 1a). We also used a Notch1-ΔE-induced
mouse T-ALL model in which hematopoietic precursors from WT
C57Bl/6 (called WT/WT Notch1ΔE; labeled WT) or CARMA1− /−
(WT/CARMA1− /− Notch1ΔE; labeled CARMA1KO) animals were
transduced with Notch1ΔE-GFP and develop T-ALL. Like
the xenograft model, we found that WT/CARMA1− /−
Notch1ΔE (CARMA1KO) animals survived significantly longer than
WT/WT Notch1ΔE (WT; Figure 1b).
We then asked whether CARMA1 is also involved in human T-ALL

disease. Using microarray analyses from patient T-ALL cells, we
compared CARMA1 expression in bone marrow (BM) cells from
T-ALL patients with BM cells from a non-leukemia control
population. CARMA1 expression was significantly higher in the
T-ALL patients cells compared with non-leukemic cells (Figure 1c)
and other tumor types including lung, liver and breast (Figure 1d).

These results, along with the animal models, demonstrate that
CARMA1 is an important regulator of T-ALL disease.
We assessed proliferation of CARMA1KD cells compared with

parental CEM T-ALL cells. Surprisingly, we found that CARMA1KD
showed no difference in basal in vitro proliferation measured by
cell growth in culture (Supplementary Figure 1B) or baseline
T-ALL cell apoptosis measured by Annexin V staining
(Supplementary Figure 1C) compared with parental CEM T-ALL
cells. We also assessed tumor growth using in vivo biolumines-
cent luciferase imaging of CEM cells. Animals that received
parental CEM cells showed a higher T-ALL tumor load than
animals receiving CARMA1KD CEM cells at weeks 1, 2 and 3
(Supplementary Figures 2A and B). We examined T-ALL cell
accumulation in specific tissues using anti-human CD45 and GFP
expression to identify CEM cells by flow cytometry. CARMA1KD
CEM cells were significantly decreased in the liver, but we saw
no difference in the BM or in spleens between parental and
CARMA1KD CEMs (Figure 1e). Using the NOTCH-induced T-ALL
model, we found that CARMA1 − / − T-ALL cells accumulated
less in lymph node, but not in BM, spleen or liver
(Supplementary Figure 2C).
Our previous results suggested CARMA1 may regulate

differential migration patterns to specific organs. We used the
transwell migration assay to compare the migration of parental
and CARMA1KD CEM cells in vitro. We assessed T-ALL cell
migration toward CCL21, the ligand for CCR7 and found that
CARMA1KD CEM cells showed a significant decrease in migra-
tion to CCL21 and LFA-1 ligand ICAM1 compared with parental
CEM cells (Figure 2a). CCR7 has been shown to regulate T-ALL
migration specifically to the CNS.4 Using the CEM xenograft
model, we could detect the presence of parental CEM cells in
both the calvarial BM (indicated by *) as well as the meninges of
the CNS (arrows, Figure 2b).11 In contrast, animals receiving
CARMA1KD CEM cells showed little to no accumulation in the
meninges, but still showed accumulation in the BM. We
measured the total area of meningeal T-ALL infiltrate in four
coronal sections per mouse and parental CEM cells showed
higher levels of cell infiltration compared with CARMA1KD CEM
cells (Supplementary Table 1A). We also analyzed CNS infiltra-
tion of T-ALL cells in the NOTCH model of T-ALL and found
similar results to the xenograft model (Supplementary Figure 3,
Supplementary Table 1B). These data show that CARMA1
expression in T-ALL cells leads to an increase in T-ALL cell
infiltration into the CNS.
We then evaluated CARMA1 expression in a cohort of T-ALL

patients who initially presented with T-ALL cells in the CNS versus
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patients who showed no CNS disease at time of diagnosis. T-ALL
patients with CNS involvement showed significantly higher
expression of both CARMA1 probes in the microarray compared
with patients with no CNS involvement (Figure 2c). These results
suggest that CARMA1 may specifically regulate T-ALL cell migration
to the CNS.
In this study, we show that CARMA1 is a novel regulator of

T-ALL disease in animal models as well as data from T-ALL
patients. CARMA1 expression is associated with increased T-ALL
disease severity as well as leukemia cell accumulation in the CNS.
Many studies, including whole-genome studies, have identified
novel regulators of T-ALL disease.12 A previous study showed that

CARMA1 is upregulated in a small group of T-ALL patients10 but
did not find a specific role for CARMA1 in CNS disease. Only a few
molecules including chemokine receptors CCR7 and CXCR4 have
been specifically shown to be involved in CNS disease in T-ALL.4,5

We find that animals with CARMA1− /− T-ALL show similar
survival advantage to CCR7− /− T-ALL (Supplementary Figure 4).
We also find that CARMA1 colocalizes with CCR7 (Supplementary
Figure 5) and CARMA1KD cells show decreased migration to the
CCR7 ligand CCL21 in vitro. Although some of our results suggest
that CARMA1 affects migration of T-ALL cells directly downstream
of CCR7, it is also possible that CARMA1 and CCR7 independently
regulate T-ALL cell migration. In T cells, CXCR4 has also been

Figure 1. CARMA1 expression exacerbates T-ALL disease. (a) Survival curves of NSG recipients xenografted with parental (n= 22) or
CARMA1KD (n= 25) CEM cells. (b) Lin− cells from bone marrow of C57Bl/6 and CARMA1− /− mice were transfected with Notch1ΔE-GFP and
transferred into irradiated B6.LY5.1 animals. Survival curves for WT/WT Notch1ΔE (labeled WT) animals (n= 12) and WT/CARMA1− /− Notch1ΔE

animals (labeled CARMA1KO; n= 11) are shown. For (a) and (b), P-values were determined using the Mantel–Cox test. (c) Data from non-
leukemic bone marrow and T-ALL patient bone marrow from GEO accession # GSE13204 were analyzed using the indicated CARMA1 probes.
(d) Data from CCLE were analyzed for CARMA1 as shown for indicated solid tumor cell lines and T-ALL. For comparisons in (c) and (d), the
number of patients in each group is shown by n and P-values calculated using the Mann–Whitney Wilcoxon test and exact P-values shown.
(e) Specified organs were processed from animals receiving parental or CARMA1KD cells at week 3 and GFP+ CEM cells were enumerated.
P-values shown used the Student’s t-test.

Letters to the Editor

256

Leukemia (2017) 234 – 265 © 2017 Macmillan Publishers Limited, part of Springer Nature.



colocalized with ZAP70, suggesting that cross talk between
chemokine receptors and intracellular signaling pathways such
as CCR7 and CARMA1 may act both in normal and leukemic cells
to regulate cell migration.13

In normal T cells, TCR activation activates PKCθ phosphorylation
of CARMA1, leading to NF-kB activation.9 We previously showed
that PKCθ and CARMA1 regulate naive T-cell migration14,15 and
PKCθ has been shown to have a role in T-ALL.8 We find that
animals receiving PKCθKD CEM cells show similar survival to those
receiving parental CEM cells (Supplementary Figures 6A and B).
This suggests that unlike naive T cells, in which PKCθ activates
CARMA1, T-ALL cells may activate CARMA1 independently of
PKCθ. CARMA1 may be aberrantly upregulated in T-ALL, leading to
disease progression and migration of leukemic cells to the CNS. In
the future, inhibitors of CARMA1 or pathways that lead to CARMA1
activation may prove therapeutically useful in controlling CNS
disease in T-ALL.
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Expansion of Th1-like Vγ9Vδ2T cells by new-generation
IMiDs, lenalidomide and pomalidomide, in combination with
zoledronic acid
Leukemia (2017) 31, 258–262; doi:10.1038/leu.2016.273

Multiple myeloma (MM) still remains incurable even with the
implementation of novel therapeutic modalities, leading to the
idea to develop various forms of immunotherapies. One such

approach is the application of γδ T cells. Similar to NK cells, γδ
T cells are important effectors in the first-line defense against
infections and tumors, and have a critical role in host defense and
tumor surveillance.1–3 In human, γδ T cells are divided into two
predominant subpopulations by T-cell receptor V gene usage,
namely Vδ1 γδT cells and Vγ9Vδ2 γδ T (γδ2 T) cells. γδ2 T cells

Figure 1. γδ2 T-cell expansion and activation by Zol in combination with new-generation IMiDs. (a, b) γδ2 T-cell expansion by LEN and Zol in
combination. PBMCs isolated from a normal donor (# 1) were cultured for 1 week alone or in the presence of Zol at 1 μM with or without LEN at
1 μM or IL-2 at 100 IU/ml as indicated (a). Then, the cells were analyzed by flow cytometry to determine a distribution of γδ2 T cells. Vδ2-positive
and CD3-positive cells accumulated in the right upper columns represent γδ2 T cells. PBMCs isolated from additional six normal donors (# 2–7)
(left) or 6 MM patients (right) were cultured for 1 week alone or with Zol at 1 μM in combination with either LEN at 1 μM or IL-2 at 100 IU/ml,
followed by flow cytometric analysis to determine the expansion of γδ2 T cells (b). Results are expressed as a % distribution of γδ2 T cells within
CD3-positive cells. (c) Induction of Th1-like γδ2 T cells by LEN and Zol in combination. γδ2 T cells expanded by Zol in combination with LEN
were stained by PE-labeled anti-Vδ2 monoclonal antibody together with FITC-labeled monoclonal antibodies for the indicated molecules.
Intracellular levels of IFN-γ and Foxp3 in γδ2 T cells are indicated in red lines (upper). Surface levels of NKG2D and DNAM-1 and intracellular
levels of perforin and granzyme B in γδ2 T cells are shown in red lines (lower). Baseline expression of these molecules in γδ2 T cells without
treatment with LEN plus Zol was indicated by blue lines. Gray areas indicate background staining with IgG isotype controls. (d) The cytotoxic
activity against MM cells of γδ2 T cells expanded with LEN and Zol in combination. PBMCs from a normal donor were cultured for 1 week with
LEN and Zol in combination. After expansion, whole PBMCs were used as effectors and added at the indicated effector to target (E:T) ratios
and co-cultured in triplicate with PKH-labeled MM cell lines (■, RPMI8226; □, KMS-11; ■, U266) (upper), and PKH-labeled primary MM cells
(lower). The cells were then stained with 7-amino-actinomycin D (7-AAD) to detect dead cells within the PKH26-lebeled MM cells by flow
cytometry. Results are expressed as a % distribution of dead cells within MM cells. (e) γδ2 T-cell expansion by Zol in combination with LEN or
POM. PBMCs isolated from normal donors (# 8–17) were cultured for 1 week alone or upon treatment as indicated, followed by flow
cytometric analysis to determine the expansion of Vδ2 γδT cells. Zol, LEN, POM and IL-2 were added at 1, 1, 0.1 μM and 100 IU/ml, respectively.
Results are expressed as a % distribution of γδ2 T cells in CD3-positive cells.
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