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Glioblastomamultiforme (GBM) is themost common type of malignant brain tumor, among
which IDH1-wild type GBM has a poor prognosis. Recent studies have shown that
ferroptosis-related genes (FRGs) are correlated with the development and progression of
cancer. In GBM, the role of FRGs associated with IDH1 status as biological indicators and
therapeutic targets remains to be clarified. Ten of FRGs (STEAP3, HSPB1, MAP1LC3A,
SOCS1, LOX, CAPG, CP, GDF15, CDKN1A, and CD44) associated with IDH1 status in
GBM were identified as key genes through screening by survival analysis and Random
Forest using The Cancer Genome Atlas (TCGA) datasets, and the protein expressions of
key genes were verified. Transwell and qPCR results showed that ferroptosis promoted
the migration of glioblastoma cells and affected the expression of key genes. Our study
established the ferroptosis-related prognostic model for GBM patients based on ten key
genes by a different modeling method from previous study, the GSVA algorithm. Further,
we took the methods of functional enrichment analysis, clinical characteristics, immune cell
infiltration, immunomodulator, ESTIMATE and single nucleotide variant (SNV) analysis to
study the molecular mechanisms of prognostic model and key genes. The results showed
that ten key genes were strongly associated with immune-related factors and were
significantly involved in the p53 signaling pathway, senescence and autophagy in
cancer, and in the negative regulation of protein kinase activity. Moreover, potential
therapeutic drugs were identified by Virtual Screening and Molecular Docking. Our
study indicated that the novel ferrotosis-related prognostic model for GBM patients
and key genes possessed the prognostic and therapeutic values.
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1 INTRODUCTION

Glioblastoma multiforme (GBM) is the most common malignant
primary intracranial tumor with a poor prognosis despite the
existence of therapeutic modalities including surgery,
radiotherapy, and chemotherapy. The median survival is only
14–16 months (Ricard et al., 2012; Cancer Genome Atlas
Research et al., 2015; Jiang et al., 2016; Chai et al., 2019).
According to the World Health Organization (WHO) central
nervous system (CNS) cancer classification, GBM can be divided
into isocitrate dehydrogenase (IDH)-wild and IDH-mutant types,
and IDH-wild type GBM has a relatively poorer prognosis (Yan
et al., 2009; Louis et al., 2016). IDH1 mutation is one of the most
common and earliest detected genetic alterations in diffuse
gliomas, and evidence supports this mutation as a driver of
glioma development (Agnihotri et al., 2014).

Ferroptosis is a novel iron-dependent, non-apoptotic form of cell
death that kills cells through lipid peroxidation injury occurring on
the cell membrane. Although the physiological role of ferroptosis
remains to be elucidated, there is ample evidence that ferroptosis
plays a very important role in organic diseases such as heart, liver,
kidney, and brain (Fang et al., 2019; Jiang et al., 2021), particularly in
the treatment of cancer by targeted key ferroptosis-related genes
(FRGs) and pathways (Jiang et al., 2021).

In recent years, high-throughput sequencing technologies and
genetic databases have been widely used in cancer diagnosis and
prognosis studies. Although the role of FRGs in GBM has been
initially investigated, few prognosis-related genes have been screened
in previous literature (Zhu et al., 2021). The prognostic effectiveness
and therapeutic performance of differential expressions of FRGs in
IDH1-wild and IDH1-mutant GBM have not been investigated.

Therefore, our study aimed to find FRGs associated with IDH1
status in GBM, which are promising prognostic indicators and
therapeutic targets for GBM. We analyzed the sequencing data of
GBM patients in TCGA databases by bioinformatics, machine
learning algorithm and multi-omics to identify FRGs associated
with prognosis in GBM patients as key genes, and the protein
expression of the key genes was validated. Ferroptosis was
identified by Transwell and qPCR experiments to be
associated with the migration ability of glioblastoma cells and
affected the expression of key genes. We then established and
validated the ferroptosis-related prognostic model for GBM
patients. We also studied the possible regulatory mechanisms
in terms of the impacts of model and key genes on cancer
immunity, biological function, gene mutation and clinical
characteristics. Furthermore, we identified potential therapeutic
compounds through Virtual screening and Molecular docking.

2 MATERIALS AND METHODS

2.1 Data Collection
TCGA-GBM transcriptome expression profile data and genomic
mutation data were downloaded through xena (Goldman et al.,
2020), 166 TCGA-GBM tumor samples and five normal tissue
samples were obtained. 290 FRGs were obtained by merging the
datasets from literature (Liang et al., 2020; Zhuo et al., 2020),

FerrDb (Zhou and Bao, 2020), MSigDB (Liberzon et al., 2015),
and genecards (Stelzer et al., 2016). In addition,
immunomodulators, including immunoinhibitors,
immunostimulators and MHC molecules, were downloaded
from the TISIDB database (Ru et al., 2019).

2.2 Identification of Key Genes and Survival
Analysis
PCA scatter plot was analyzed using the R package ggplot2
(Wickham, 2016) and screening of DEG using R package
limma (Ritchie et al., 2015). Genes with p < 0.05 and |log2 fold
change (FC)| > 0.5 were considered as DEGs. Further genes
screening using the R package randomForest (Liaw and Wiener,
2002), and genes with negative horizontal coordinate values (%
IncMSE <0) were filtered, andWIPI1 and SOCS1 were deleted, but
SOCS1 was strongly associated with GBM and retained. Ten key
genes were obtained finally. Kaplan-Meier curves were plotted, and
p-value < 0.05 was deemed to be a significant difference between
high- and low-risk groups. Immunohistochemical results for key
genes were obtained from the Human Protein Atlas (HPA)
database (Uhlén et al., 2005). The sample sizes for each group
were much larger than three. Antibody staining in the annotated
cell types in the current human tissue is reported as not detected,
low, medium, or high. The score is based on the staining intensity
and fraction of stained cells, therefore the staining scores in
different groups are comparable.

2.3 Biological Functional Analysis and
Correlation Analysis of Clinical
Characteristics
GO and pathway functional enrichment analysis of ten key genes
were performed using R package cluster profiler (Yu et al., 2012).
The correlation between each gene expression with the GBM
clinical characteristics (IDH1 status, gender, and risk level) were
analyzed and visualized by drawing mosaic plots with the R
package mosaic (Pruim et al., 2017).

2.4 Cell Culture and Migration Assay
The human glioblastoma cell line U87MG was obtained from the
Cell Resource Centre of Peking Union Medical College and
U251MG from American Type Culture Collection. Cells were
cultured in DMEM medium supplemented with 10% FBS and
placed in a standard constant temperature CO2 incubator (5%
CO2, 37°C). The Transwell system (24-well, 8 μm pore size
polycarbonate membrane) was for in vitro migration assays.
U251MG and U87MG cells were pretreated with ferroptosis
activator erastin (10 μM) or control solvent for 24 h. Finally
the cells attached to the lower surface of the filter membrane
were fixed with 4% PFA and then stained with crystal violet. The
migrated cells were photographed with a light microscope and
counted using ImageJ software. The qPCR primer sequences were
all obtained from Primerbank and synthesized by Sangon Biotech
(Spandidos et al., 2009), and PCR primer sequences was shown in
Supplementary Table S1. All experiments were repeated more
than three times.
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FIGURE 1 | Principal Component Analysis (A) GBM vs normal brain tissue (B) IDH1 wild vs. IDH1 mutant.

FIGURE 2 | Screening of DEGs (A) Volcano plot demonstrates DEGs of GBM vs. normal brain tissue (B) Volcano plot shows DEGs of IDH1 wild type vs. mutant
type (C) Wayne plot indicates shared DEGs.
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2.5 Construction of Prognostic Model and
Nomogram
Enrichment scores based on key gene sets were calculated for each
sample using the GSVA algorithm (Hänzelmann et al., 2013) and KM
curvewas plotted. Survival scatterplotwas analyzed using theRpackage
ggplot2 and heatmap using the R package pheatmap, showing the
expression of the key genes both in high- and low-risk groups. GSVA
score was combinedwith the clinical indicators (age, sex, and radiation)
for univariate andmultifactor Cox regression analysis, respectively, and
the nomogram and calibration curves were drawn.

2.6 Correlation Analysis of Immune Cell
Infiltration, Immunomodulators and
ESTIMATE Score
Calculation of immune cell infiltration levels for each sample of TCGA-
GBMwas performed using CIBERSORTwebsite.Wilcox test was used
to analyze the difference in immune cell infiltration between high- and
low-risk groups and was considered significant with p-value < 0.001.
Correlations between the gene expression and different immune cells
were calculated and considered significant with p-value < 0.001 and |r|
> 0.2. The stromal score and immune score were calculated for each
sample using the ESTIMATE package (Yoshihara et al., 2013).

2.7 Single Nucleotide Variant Analysis of
Key Genes
The maf data of varscan of TCGA-GBM were downloaded from
the TCGA database. The key gene mutations were analyzed, and
the SNV distribution was plotted using the R package maftools
(Mayakonda et al., 2018).

2.8 Virtual Screening and Molecular
Docking
The structural information of corresponding compounds was
downloaded from DrugBank database (Wishart et al., 2018) and

screened according to Lipinski’s rule (hydrogen bond acceptor
≤10, hydrogen bond donor ≤5, rotatable bond ≤10, the
logarithmic value of lipid-water partition coefficient ≤5, the
molecular weight of 180–480, and polar surface area ≤140).
Finally, 5,464 small molecule compounds were obtained. The
spatial structure information of the key gene-encoded proteins
was searched in the PDB database to find the relevant structural
information of CAPG, CP and CD44 (Berman et al., 2000). The
corresponding PDB files 6IGX, 4ENZ, and 4PZ3 were
downloaded, and the approximate docking box range was
determined based on the ligand information therein. We
repaired the missing residues using modeller (Eswar et al.,
2007). After setting other relevant parameters, we used
autodock-vina to dock with the small molecule compounds
separately and performed interaction force analysis using
Ligplus. PyMol demonstrated docking conformations.

3 RESULTS

3.1 Identification of Key Genes
3.1.1 Differentially Expressed Ferroptosis-Related
Genes associated with IDH1 Status
Given the importance of IDH1 status for the prognosis of GBM
patients, we searched for genes related to IDH1 status in GBM
patients. The PCA scatter plots of TCGA-GBM expression
profile data combined with clinical data were divided into: A)
GBM versus normal brain tissue, and B) IDH1 wild versus IDH1
mutant in Figure 1. Screening of differentially expressed genes
(DEGs) using GBM versus normal brain tissue expression
profile data identified 8,518 DEGs, of which 4,680 were
down-regulated, and 3,838 up-regulated (Figure 2A).
Similarly, 2,819 DEGs were found in the screening of IDH1
wild type versus mutant type, among 2,819 DEGs, 1771 were
down-regulated and the rest of them were up-regulated
(Figure 2B). The shared 1,227 DEGs (Figure 2C) were
intersected with the collected 290 ferroptosis-related genes

FIGURE 3 | Univariate Cox regression screening for prognosis-related genes.
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(Supplementary Table S2). Consequently, 21 FRGs with
significantly differential expressions were obtained.

3.1.2 Ferroptosis-Related Genes associated with
Prognosis
After obtaining the differentially expressed FRGs, we wanted
to verify whether these DEGs were associated with patient

prognosis, which would have great clinical significance. So we
further screened these FRGs for prognosis-related genes.
Because the prognosis of GBM patients is usually poor, the
identification of genes that indicate poor prognosis may
facilitate the discovery of new therapeutic targets. Using
Cox proportions for univariate survival analysis, 11 FRGs
associated with prognosis (p < 0.05) were found and all of

FIGURE 4 | Survival analysis of key genes (A) Random Forest screening for ten key genes (B) Heat map of expression of key genes in different groups (C–M)
Kaplan-Meier survival curve and ROC curve.
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them indicated poor prognosis (HR > 1) (Figure 3). The gene
WIPI1 was excluded by applying Random Forest to continue
the screening (Figure 4A), then ten key genes (STEAP3,
HSPB1, MAP1LC3A, SOCS1, LOX, CAPG, CP, GDF15,
CDKN1A, and CD44) were screened and the heat map of
expression was plotted in GBM versus normal brain tissue
groups. MAP1LC3A was the only gene that high-expressed
significantly in the normal brain tissue group (Figure 4B).

According to genecards, the expression of MAP1LC3A was
indeed suppressed in many tumor cell lines, suggesting that it
may be involved in carcinogenesis (Stelzer et al., 2016).
Subsequently, all ten key genes were divided into two
groups based on the expression levels, and survival and
prognosis were assessed by the Kaplan-Meier (KM) survival
curves. All ten key genes (including MAP1LC3A) were
identified to be at significant risk (p < 0.05), and higher

FIGURE 5 | Validation of protein expression by immunohistochemistry of the key genes from the Human Protein Atlas (HPA) database.

FIGURE 6 | Ferroptosis enhances glioblastoma cell migration (A–B) Light microscopic images and analysis of their data showed enhanced migratory ability of
U251MG and U87MG cells treated with erastin (10 μm) compared to control (C) qPCR analysis showed that the expression of key genes is altered in the erastin (10 μm)-
treated group compared to the control cells.
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expression was associated with poorer prognosis (Figure 4C to
4L). The results of multi-gene ROC curve analysis showed that
the area under the curve (AUC) is greater than 0.6 for all genes.
The AUCs of STEAP3, CP, LOX, HSPB1, and CAPG were
greater than 0.7. These results indicated that these ten key
FRGs had good predictive performances (Figure 4M).

3.2 Protein Expression of Key Genes
To verify different protein expression encoded by the key genes in
normal brain tissues and high-grade gliomas,
immunohistochemistry analysis was obtained from the Human
Protein Atlas (HPA) database (Uhlén et al., 2005). Nine of these
key genes were included in the HPA database. STEAP3, HSPB1,
SOCS1, CAPG, CP, GDF15, CDKN1A, and CD44 were highly
expressed in high-grade gliomas compared with the normal brain
tissue, and MAP1LC3A was highly expressed in the normal brain
tissue (Figure 5). It was verified that the results of HPA are
consistent with the results of our above transcriptome analysis.

3.3 Association of Ferroptosis With Cell
Migration and Expression of Key Genes
To identify the relationship between ferroptosis and
glioblastoma cell migration, we measured the migratory
ability of glioblastoma cell lines (U251MG and U87MG)
treated with the ferroptosis activator erastin using the
transwell migration assay. The migratory ability of erastin-
treated U251MG and U87MG cells was increased compared
to control treatment (Figures 6A,B). The expression of
several key genes was also examined by qPCR, which
revealed significant changes in the expression of CD44,
CDKN1A, CP, CAPG, and MAP1LC3A in erastin-treated
U251MG and U87MG cells, with the upregulation
expression of CD44, CAPG, and MAP1LC3A and the
down-regulation of CDKN1A and CP (Figure 6C). These
results suggest that ferroptosis enhances the migratory ability
of glioblastoma cells and alters the expression of these key
genes with poor prognosis.

FIGURE 7 | Growth of GSVA score of GBM patients is associated with increased mortality and decreased survival time (A–D) OS (E–H) RFS (A,E) Heat maps of
key genes expression profiles (B–C,F–G) Distribution of risk scores, patient survival times and status (D,H) ROC curves.
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3.4 Construction of Prognostic Model
3.4.1 Prognostic Modeling by GSVA
Following the confirmation of the prognosis-related single FRG,
we constructed a prognostic model by integrating these ten genes,
and the GSVA algorithm was used to calculate an enrichment
score for each sample based on the key gene set, i.e., the GSVA
score. Patients were divided into high- and low-risk groups based
on the median GSVA score in overall survival (Figures 7A–D)
and relapse-free survival (Figures 7E–H). Key gene heat maps
were plotted separately (Figures 7A,E). Risk score, survival time
and status of TCGA cohorts in OS were shown in Figures 7B,C,
and those in RFS were illustrated in Figures 7F,G. The analysis
showed that the mortality rose significantly with the increase of
the GSVA score, and the ROC curve showed that the AUCs were
all around 0.7, indicating good survival prediction of the model at
one-, two- and three-year (Figures 7D,H).

3.4.2 Model Validation and Nomogram
After obtaining the above prognostic model, we need to verify its
predictive power. We performed univariate (Figure 8A) and

multivariate Cox analysis (Figure 8B), and the results showed
that the GSVA score was an independent prognostic factor for
GBM. To assist the clinicial decision-making process, we
combined the GSVA score with clinical indicators (age,
gender, and radiation) to construct a nomogram (Figure 8C),
and the nomogram can predict the survival rate of GBM patients
at one-, two- and three-year. The calibration curves (Figures
Figure8D,E) indicate that this nomogram has strong predictive
function.

3.5 Immune Microenvironment Analysis
3.5.1 Immune Cell Infiltration
We analysed the molecular mechanisms of these ten key genes
from an immunological perspective. Tumor tissue contains not
only tumor cells, but also immune cells. The immune cells that
infiltrate tumors can profoundly affect the tumor development
and anti-cancer therapy. Therefore, the quantification of immune
cells is of extraordinary significance. We assessed the correlation
between the prognostic model and the level of immune cell
infiltration. The infiltration levels of 22 tumor immune cells in

FIGURE 8 | Validation of the prognostic model with clinical factors (A) Univariate Cox regression analysis (B) Multivariate Cox regression analysis (C) Nomogram
(D,E) Calibration curves.
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the TCGA-GBM datasets were calculated using the CIBERSORT
website, and the differences of immune cell infiltration in the
high- and low-risk groups in both datasets were demonstrated
(Figures 9A,B). Correlation analysis showed that the infiltration
levels of six immune cells were significantly correlated (|r| > 0.3,
p < 0.05) with some key genes (Figures 9C–K). In particular,
STEAP3 (R = −0.32, p = 0.000052) and CP (R = −0.3, p = 0.00014)
were significantly negatively correlated with macrophages M2.
LOX (R = −0.31, p = 0.000057) was significantly negatively
correlated with NK cells activated. Therefore, these key genes
were related to the development and prognosis of GBM.

3.5.2 Immunomodulation
In addition, the correlation between key gene expression and
immunomodulators was also investigated. As shown in
Figure 10, 23 types of immunoinhibitor have been analyzed
(Figure 10A). Except for MAP1LC3Awith a poor correlation, the
remaining genes showed a strong correlation with
immunoinhibitor, especially CAPG expression was

significantly positively correlated with most of the
immunoinhibitor. The correlation analysis of 42
immunostimulator (Figure 10B) showed that MAP1LC3A
expression showed weak correlation with immunostimulator,
while CAPG and CP showed significantly positive correlation.
As shown in Figure 10C, 21 types of major histocompatibility
complex (MHC) were analyzed. Human leukocyte antigen (HLA)
is the expression product of the human MHC, which is the most
complicated polymorphic system known in the human body
(Norman et al., 2017). Notably, MHC is closely related to the
immune response, immune regulation and the generation of
certain pathological states in the body. CAPG unsurprisingly
showed an extremely strong positive correlation. ESTIMATE is a
tool for predicting tumor purity and the presence of infiltrating
stromal and immune cells in the tumor (Yoshihara et al., 2013).
The ESTIMATE algorithm generates four final scores: the stromal
score (indicating the presence of stromal cells in the tumor
tissue), the immune score (indicating the infiltration of
immune cells in the tumor tissue), the ESTIMATE score, and

FIGURE 9 | Immune cell infiltration analysis (A,B) Infiltration differences of 22 immune cells in high- and low-risk groups in TCGA-GBM (C–K) Correlation curves
show that infiltration levels of six immune cells are significantly correlated with key genes expression levels.
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FIGURE 10 | The expression of key genes is correlated with GBM immunity (A) Heat map represents the correlation between immunoinhibitor and key gene
expression in GBM. For each pair of genes, the triangles at the top left are colored to indicate the p values; the triangles at the bottom right are colored to indicate the
Spearman correlation coefficients. *p < 0.05; **p < 0.01; ***p < 0.001 (B) Heat map represents the correlation between immunostimulator and key gene expression in
GBM (C) Heat map represents the correlation between MHC molecules and key gene expression in GBM (D) The correlation between key genes and ESTIMATE
scores in GBM.
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the tumor purity. The results of ESTIMATE are summarized in
Figure 10D. Remarkably, eight key genes (STEAP3, HSPB1,
SOCS1, LOX, CAPG, CP, CDKN1A, and CD44) showed
significant positive correlations with stromal score and
immune score.

3.6 Functional Enrichment Analysis
We explored the molecular mechanisms of ten key genes in
GBM from the perspective of biological function, and we
performed GO, KEGG, and the wikipathway enrichment
analysis (Figure 11). The GO enrichment analysis consisted
of three parts (biological process, cellular components,
molecular function), and the bubble plots for each gene
showed the top 10 significantly enriched functional items
(Figure 11A). The first four significant biological process
(BP) items are 1) negative regulation of protein kinase
activity, 2) negative regulation of kinase activity, 3) intrinsic
apoptotic signaling pathway, and 4) negative regulation of
transferase activity. We also found that the first three
significant cellular components (CC) items are 1)
lamellipodium, 2) transferase complex, transferring
phosphorus-containing groups, and 3) late endosome. The
enrichment analysis showed that the first three significant
molecular function (MF) items are 1) protein kinase inhibitor
activity, 2) kinase inhibitor activity, and 3) protein kinase
regulator activity. The most significant pathway in the KEEG
enrichment analysis is the p53 signaling pathway (Figure 11B),
and the top two significant pathway items in the wikipathway
enrichment analysis are 1) ferroptosis, and 2) senescence and
autophagy in cancer (Figure 11C).

3.7 Single-Nucleotide Variant Analysis
We explored the molecular mechanisms of key genes from the
perspective of gene mutations. The exploration of somatic
mutations contributes to the understanding of tumor onset
and development, and we can identify which mutations play
an important role in the development of such kind of tumors,
thus providing guidance on the pathogenesis and subsequent
targeted treatment and prognosis of such tumors. We analyzed
the SNV mutation data of ten key genes, among which six genes
had different degrees of mutation (Figure 12A). Transition
plots classified single-nucleotide variant (SNV) into six
categories, and C > T mutations accounted for more than
50% of the total mutations among the six SNV mutations
(Figure 12B). In a rainfall plot of the mutation distribution
spectrum of the GBM samples, each dot indicated a mutation,
and different colors of dots represented distinct SNV mutation
types (Figure 12C). The mutation distribution and protein
domain of key genes with higher mutation frequency were
shown in Figure 12D. CP, CD44 and STEAP3 had the
highest mutation frequency, and the most frequent mutation
type was the missense mutation. The results showed that site
mutations in these genes might play an important role in the
prognosis of GBM. Mutations in these key genes are likely to
make the gene replicate actively, which caused gene
amplification.It is also possible that the gene will become
more capable of synthesizing proteins, which will lead to
high expression, resulting in a poor prognosis for the patient.
Most importantly, gene amplification plays an important role in
the activation of proto-oncogenes that cause cancer (George
et al., 2008).

FIGURE 11 | Functional enrichment analysis of key genes (A) GO enrichment analysis (B) KEGG enrichment analysis (C) Wikipathway enrichment analysis.
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3.8 Correlation With Clinical Characteristics
We analysed the correlation between the expression of key genes
and the risk levels of different patients from a clinical
perspective, and we assessed the correlation of these key
genes with clinical characteristics (IDH1, gender, and risk
level). We divided the expression of key genes into high- and
low-level groups according to their median values. The
correlation between the gene expression and the clinical

characteristics was analyzed, and a mosaic for each gene was
plotted. Among these ten genes, GDF15 and LOX were
significantly positively correlated with IDH1 and the risk
level, and HSPB1 was negatively correlated with the gender
(p < 0.05). CDKN1A, CAPG, and SOCS1 were weakly correlated
with IDH1 and the risk level (p > 0.05, |residuals| > 2)
(Figure 13), while the remaining genes had no correlation
with any clinical characteristics (Supplementary Figure S1).

FIGURE 12 | Single-nucleotide variant (SNV) analysis (A) The key genes are sorted according to their mutation frequency, and different colors represent different
mutation types (B) The transition plot shows the distribution of mutations in each sample in TCGA-GBM. The stacked bar plot (bottom) shows the mutation spectrum
distribution (C)Rainfall plot of the mutation distribution spectrum of TCGA−06−5416−01A−01D−1486–08 (D)Distribution of mutations and protein domain of key genes
with high mutation frequency. The main body of the image shows the protein structure with the structure name marked in the box and the lollipop indicates the
mutation.
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3.9 Identification of Potential Therapeutic
Drugs
To explore potential therapeutic drugs for GBM, three genes
(CAPG, CP and CD44) with more significant results were
selected from the key genes based on the above analysis, and
performed Virtual Screening andMolecular Docking. The top ten
small molecule compounds with the best docking scores to the
three key genes were shown in Table 1, and the complete table of
docking scores was shown in Supplementary Table S3–S5. The
docking conformation and interaction force analysis of CAPG,
CP, and CD44 with the better docking compounds were shown in
Figure 14. According to the Drugbank (Berman et al., 2000), The
drug DB09280, which has a good docking scores to both CAPG,
CP, and CD44, is the FDA (Food and Drug Administration)-
approved and commercialized drug Lumacaftor (brand name:
Orkambi). In addition, DB14773 has a good binding affinity to
both CAPG and CP (generic name: Lifirafenib).

4 DISCUSSION

In our study, 10 FRGs associated with IDH1 status and prognosis
in GBM were identified using TCGA dataset, and their protein

expression levels were validated. Transwell and qPCR results
showed that ferroptosis promoted the migration of glioblastoma
cells and affected the expression of key genes. Their biological
functions were investigated by the GO, KEGG, and Wikipathway
enrichment analysis. The results suggested that the key gene sets
may be involved in the onset and development of GBM. These
key genes with prognostic value were used to construct a
prognostic model. The GSVA score was calculated for each
sample using the GSVA algorithm, and the score was
validated as an independent prognostic factor for GBM, and
the nomogram constructed from this prognostic model had high
predictive value. In addition, the analysis of immune infiltration,
immunomodulators and ESTIMATE showed that the prognostic
model and key genes were closely associated with immune-
related factors and affected the development and prognosis of
GBM. SNV analysis suggested that the mutations in the key genes
might play an important role in the prognosis of GBM. Virtual
Screening and Molecular Docking for potential therapeutic drugs
were performed, which may provide assistance in the
development of novel therapeutic chemicals for GBM.

GBM is one of the deadliest cancers worldwide. Although a great
deal of research has been done in the last decade and current
treatment modalities can extend the survival time and improve the
quality of life to some extent, GBM remains an incurable and deadly

FIGURE 13 | Correlation analysis between the key genes and the GBM clinical characteristics. Note: The darker the color is, the stronger the correlation is. Blue
indicates positive correlation, red expresses negative correlation, and grey has a weaker correlation.
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disease, and patient survival rates are difficult to be improved (Daisy
Precilla et al., 2021). Therefore, it is important to find new prognostic
biomarkers and therapeutic targets for GBM.

The term ferroptosis was first coined in 2012 (Dixon et al.,
2012), which means an iron-dependent regulatory cell death
caused by excessive lipid peroxidation and subsequent cell
membrane injury (Stockwell et al., 2017). Ferroptosis can be
caused by exogenous or endogenous pathways (Tang and
Kroemer, 2020). The exogenous pathway is initiated by
inhibition of cell membrane transporters, such as cystine/
glutamate transporters, or by activation of iron transporters,
serum transferrin, and lactotransferrin. The endogenous
pathway is activated by blocking intracellular antioxidant
enzymes, such as glutathione peroxidase GPX4. All these
mechanisms point to a common pathway, namely the
formation of more reactive oxygen species (ROS). The
ferroptosis pathway is a potential new target in oncology. In
particular, cancer cells that are resistant to traditional therapies or
have a high propensity to metastasize may be particularly
susceptible to ferroptosis (Viswanathan et al., 2017; Tsoi et al.,
2018), and this has opened up a new field of targeted therapeutic
research.

In our study, 10 FRGs (STEAP3, HSPB1, MAP1LC3A, SOCS1,
LOX, CAPG, CP, GDF15, CDKN1A, and CD44) associated with
IDH1 status in GBM were identified, and survival analysis
suggested that all these genes were of significant risk. Previous
studies have suggested that MAP1LC3A is an autophagy-related
gene and is a high-risk gene for GBM in risk modeling (Wang
et al., 2019). Moreover, MAP1LC3C, which belongs to the same
gene family, has significant prognostic and immunotherapeutic
value in pan-cancer, especially low-grade gliomas (Zhang et al.,
2022). CAPG is expressed at higher levels in glioma tissues than
in normal tissues and is significantly associated with prognosis
(Fu et al., 2019). SOCS1 is overexpressed in GBM and associated
with chemotherapy sensitivity (Ventero et al., 2019), and the
abnormal regulation of SOCS1 also enhances the resistance of
GBM to ionizing radiation (Zhou et al., 2007). STEAP3 is
associated with poor prognosis in GBM (Chen et al., 2021).

Ten key genes were constructed into a complex by GSVA and
the GSVA score was calculated in all samples. This method is
clearly different from gene signatures in other previous studies
(Zhu et al., 2021), in which coefficients of genes were usually
obtained from Cox regression analysis. Due to the limited sample
size and tumor heterogeneity, we may never know the true

TABLE 1 | Top 10 compounds with the best docking score to CAPG, CP and CD44.

Gene
Name

DrugBank_ID Hydrogen
acceptors

Hydrogen
donors

Rotatable
bonds

LogP Molecular
weight

TPSA Affinity
(kcal/
mol)

CAPG DB09280 8 2 5 4.4 .4 97.8 −8.3
DB14773 8 2 3 3.7 478.4 89.1 −8.2
DB01395 3 0 0 3.5 366.5 43.4 −8.2
DB15345 8 1 5 1.1 451.5 79.8 −8.1
DB08683 3 1 0 3.8 393.4 65.3 −8.1
DB06925 7 2 3 4.9 422.4 80.9 −8
DB04760 6 2 6 3.3 410.4 84 −7.9
DB12012 8 1 4 3.3 455.4 80.2 −7.9
DB03571 5 3 4 2.8 430.2 127 −7.8
DB12886 5 2 5 4.9 402.4 53.6 −7.8

CP DB06666 3 1 3 4.8 473.9 54.3 −10.1
DB01940 7 4 7 4.1 474.5 125 −10.1
DB09280 8 2 5 4.4 452.4 97.8 −10
DB14773 8 2 3 3.7 478.4 89.1 −10
DB06075 5 2 3 4.2 421.5 89.3 −9.7
DB07514 5 2 2 3.7 397.5 84.1 −9.7
DB12121 6 2 4 3.6 411.5 83.4 −9.6
DB15308 4 2 3 3.9 388.4 83.1 −9.6
DB07794 5 2 2 1.9 327.3 97.8 −9.5
DB00820 4 1 1 2.3 389.4 74.9 −9.5

CD44 DB03583 7 4 3 1.8 441.5 135 −8.9
DB02354 4 3 6 3.4 423.5 97.5 −8.8
DB09280 8 2 5 4.4 452.4 97.8 −8.4
DB00685 10 2 3 0.3 416.4 99.8 −8.3
DB06850 4 4 7 1.5 385.5 111 −8.2
DB07142 5 2 4 4.9 386.5 87 −8.2
DB05470 7 2 4 2.5 404.3 102 −8.1
DB05608 4 1 2 2.6 400.4 102 −8.1
DB06858 4 4 7 2.5 413.6 111 −8.1
DB08674 5 1 0 2.8 435.5 83.2 −8.1
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coefficients of genes (Liu et al., 2020). Therefore, our study had
advantages. The GSVA algorithm, a non-parametric,
unsupervised method was used to score individual samples
based on the key gene set (Hänzelmann et al., 2013), and
numerous analysis showed that the GSVA score of the key
gene set was an independent prognostic factor for OS and RFS
in GBM patients. Based on this prognostic model we have also

constructed a nomogram to guide clinicians in predicting the
prognosis of patients and the calibration curve shows that this
nomogram has a high predictive value.

Our results also revealed that the GSVAmodel was significantly
associated with the level of immune cell infiltration, and the
expression of SOCS1, STEAP3, HSPB1, CP, and LOX among
the key genes was significantly associated with the level of

FIGURE 14 | The docking conformation and interaction force analysis of CAPG, CP and CD44with their docked compounds. Analysis of the docking conformation
and interaction forces of CAPGwith DB09280 and DB14773 (A,B), of CP with DB09280 and DB14773 (C,D) and of CD44 with DB03583 and DB09280 (E,F). Top half:
PyMol shows docking conformation and hydrogen bonding with the color symbols of cyan for small molecule, yellow dashed line for hydrogen bonding, and blue for
amino acid residues forming hydrogen bond with small molecule. Bottom half: Ligplus force analysis, small molecule in the middle, surrounded by related protein
amino acid residues, green dashed line representing for hydrogen bonding formed, green amino acid names representing for amino acid residues forming
hydrogen bond.
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infiltration of some immune cells. Neutrophil-triggered ferroptosis
has been shown to involve in necrosis in glioblastoma and to
predict poor survival (Yee et al., 2020). Our study found that the
level of LOX expression was significantly and positively correlated
with the level of neutrophil infiltration. In addition, we found that
all key genes except for MAP1LC3A showed correlation with
immunoinhibitor, immunostimulator and MHC, especially
CAPG showed positive and strong correlation with all three
factors. Eight key genes were known to be significantly
positively correlated with stromal score and immune score by
the ESTIMATE algorithm. Thus, these key genes constitute a
complex that may be involved in tumor immunity and guide
future therapeutic strategies for immunotherapy. Moreover, key
genes with higher levels of mutation may be highly expressed as a
result of gene amplification as well as affecting patient prognosis
and the development and progression of GBM. A nomogram was
constructed using the GSVA score to predict the prognosis of
patients for clinicians, and the calibration curve showed that this
nomogram had a high predictive value. The correlation of each
gene expression level with the GBM clinical characteristics (IDH1,
gender, and risk level) was analyzed, andGDF15, LOX, andHSPB1
were found to be significantly correlated with the clinical
characteristics.

Temozolomide has a high rate of resistance as a
chemotherapeutic drug for glioma, and previous studies
have shown that the sensitivity of temozolomide to tumor-
killing can be increased by exogenous ROS (Yin et al., 2014). It
has also been shown that erastin, one of the inducers of
ferroptosis, can increase the sensitivity of temozolomide
chemotherapy by inhibiting the Xc-amino acid para-
transport system to achieve increased ROS and induce
ferroptosis (Chen et al., 2015). The results of our Transwell
and qPCR experiments combined with an analysis of the
available literature led us to conjecture that the drug
combination might be more effective than the ferroptosis
activitor erastin alone. Moreover, all key genes that we
identified in our study suggested a poor prognosis for GBM
patients, therefore, we selected three key genes with significant
results (CAPG, CP, and CD44) for Virtual Screening and
Molecular Docking, and identified three groups of small
molecule compounds as potential therapeutic drugs.
According to the Drugbank (Wishart et al., 2018), the drug
DB09280 we identified, is the FDA-approved and
commercialized drug Lumacaftor (Brand names: Orkambi),
which is used for the treatment of Cystic Fibrosis (CF) in
patients aged 6 years and older. The drug involved CTFR
(Cystic fibrosis transmembrane conductance regulator), and
it has also been shown that the activation of the CFTR involved
in this drug inhibits the proliferation, migration and invasion
of GBM cells by suppressing JAK2/STAT3 signaling (Zhong
et al., 2019). However, according to our results, the drug may
be able to treat GBM through the pathway of CAPG, CP and
CD44, and further studies in vivo will be needed.

In addition, the functional enrichment analysis showed that
the key gene set was significantly involved in the p53 signaling
pathway, senescence and autophagy in cancer, and in the negative
regulation of protein kinase activity. Previous studies have

suggested that the p53 protein and its cellular pathways
mediate tumor suppression through an informed, regulated,
and integrated response to the environmental perturbations
that lead to cell death or maintain cellular homeostasis
(Levine, 2020). Inactivation of TP53 (Tumor Protein p53) is
the most common mutation in sporadic human cancers because
the TP53 gene encodes a transcription factor that is an important
barrier to carcinogenesis, which also suggests a strong correlation
with p53 function during tumorigenesis and may be associated
with the occurrence of the glioma (Kandoth et al., 2013).
Autophagy is a lysosomal degradation process that is critical
for cellular homeostasis and adaptation to stress. There is growing
evidence that autophagy declines with age. The individuals with
impaired autophagy are susceptible to age-related diseases, and
the stimulation interventions of autophagy tend to promote
longevity (Leidal et al., 2018). It is suggested that the key
genes may be involved in the onset and development of GBM
through these pathways. However, further studies are needed to
investigate and validate the functions of these genes.

5 CONCLUSION

In conclusion, our study established a ferroptosis-related
prognostic model for GBM patients based on the screened ten
key genes by a different modeling method from previous study,
the GSVA algorithm. The nomogram was also established to
assist clinicians in decision-making. The molecular mechanisms
were investigated by several methods including cell biology
experiments, functional enrichment analysis, immune cell
infiltration analysis, immune-related factors analysis,
ESTIMATE and SNV analysis. With the support of these
evidences, the key gene set might be involved in the
development and onset of GBM. Three groups of potential
therapeutic drugs were identified through Virtual Screening
and Molecular Docking. These results bring light to the
diagnosis and therapy of GBM.
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