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Gauge ambiguities imply Jaynes-Cummings
physics remains valid in ultrastrong coupling QED
Adam Stokes1 & Ahsan Nazir 1

Ultrastrong-coupling between two-level systems and radiation is important for both funda-

mental and applied quantum electrodynamics (QED). Such regimes are identified by the

breakdown of the rotating-wave approximation, which applied to the quantum Rabi model

(QRM) yields the apparently less fundamental Jaynes-Cummings model (JCM). We show

that when truncating the material system to two levels, each gauge gives a different

description whose predictions vary significantly for ultrastrong-coupling. QRMs are obtained

through specific gauge choices, but so too is a JCM without needing the rotating-wave

approximation. Analysing a circuit QED setup, we find that this JCM provides more accurate

predictions than the QRM for the ground state, and often for the first excited state as well.

Thus, Jaynes-Cummings physics is not restricted to light-matter coupling below the ultra-

strong limit. Among the many implications is that the system’s ground state is not necessarily

highly entangled, which is usually considered a hallmark of ultrastrong-coupling.
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Progress in experimental cavity and circuit quantum elec-
trodynamics has granted unprecedented access to the
strong, ultrastrong and deep–strong light–matter coupling

regimes1–14. Recently, circuit QED experiments involving a single
LC-oscillator mode with frequency ω coupled to a flux qubit with
transition frequency ωm have realised coupling g as large as g/ω
ranging from 0.72 to 1.34, with g=ωm � 111. Such regimes offer a
new testing ground for the foundations of quantum theory, and
offer opportunities for the development of quantum technologies.

Our interest is in material systems that possess anharmonic
spectra, and which are commonly truncated to two levels (qubits).
In this case, conventional forms of light–matter interaction
Hamiltonian yield the so-called quantum Rabi model (QRM) that
consists of a linear interaction between the radiation mode and
the qubit. Performing the rotating-wave approximation (RWA)
then yields the celebrated Jaynes–Cummings model (JCM), which
owing to its simple exact solution, has provided deep physical
understanding in a wide range of contexts15–18. In the
ultrastrong-coupling regime where 0.1 < g/ω < 1, the RWA is no
longer valid3,5,11 and it is therefore widely believed that the JCM
breaks down. For this reason, the QRM is considered indis-
pensible and has found myriad applications in condensed matter,
quantum optics and quantum information theory19–24. A dis-
advantage of the QRM when compared with the JCM is the lack
of any simple solution, which makes its physical interpretation
more difficult25. Despite this difficulty, the QRM is known to
possess some markedly different physical features compared with
the JCM. For example, the JCM predicts that there is no
atom–photon entanglement within the ground state, while the
ground state of the QRM is highly entangled within the
ultrastrong-coupling regime26.

It was noted some time ago in the context of scattering theory
that retaining only a subset of states raises the prospect of gauge
non-invariance27–35. Yet, when the coupling is weak, it is possible
to elicit gauge invariance through systematically accounting for
the effects of the truncation36, and the choice of gauge has no
practical implications for the qualitative physical conclusions. It
has also been shown in the traditional setting of a single atom
weakly coupled to a (multimode) radiation reservior, that
number-conserving (JCM-type) light–matter interaction Hamil-
tonians can be obtained without recourse to the RWA37–39.

Very recently, the validity of two-level truncations performed
in the Coulomb and multipolar gauges has been assessed40,41. The
multipolar gauge was found to offer a more accurate QRM than
the Coulomb gauge for the particular systems and regimes con-
sidered there. This was directly attributed to differences in the
corresponding forms of coupling. Specifically, contributions of
material levels above the first two were found to be suppressed for
dipole-moment matrix elements that feature in the multipolar-
gauge coupling, but not for canonical momentum matrix ele-
ments that feature in the Coulomb-gauge coupling.

While Refs. 40,41 provide valuable comparisons of the Coulomb
and multipolar gauges, we employ a more general approach
whereby gauge freedom is encoded into the value of a single real
parameter. Our methods are applicable to arbitrary systems in
QED, including both cavity and circuit QED implementations.
We show that corresponding to a given unique light–matter
Hamiltonian, there is a continuous infinity of non-equivalent
two-level models, each of which corresponds to a different choice
of gauge. We thereby obtain the most general possible Hermitian
interaction operator that is bilinear in qubit and oscillator raising
and lowering operators, and which is therefore more general than
the JCM or QRM forms. We show that a specific choice of gauge,
which we call the JC gauge, yields a JCM without any need for the
RWA. There are also two gauges that yield distinct QRMs. To
understand the implications of our approach within the

ultrastrong-coupling regime, we consider in detail a fluxonium-
LC-oscillator circuit QED system. We show that the breakdown
of the RWA in strong and ultrastrong-coupling regimes does not
imply a breakdown of the JCM.

Results
Our key findings are as follows:

(i) A finite-level truncation of the matter system ruins the gauge
invariance of the theory. In the ultrastrong-coupling regime,
the predictions relating to the same physical observable are
generally significantly different within any two distinct two-
level models. However, it remains meaningful to ask which
truncation produces the best approximation of the unique
physics. We are able to determine the accuracy of
approximate two-level models by benchmarking against
the unique predictions of the non-truncated (exact and
gauge-invariant) theory.

(ii) Each two-level model admits a RWA, which yields a
corresponding JCM. The only exception to this occurs in
the case of the two-level model associated with the JC gauge,
wherein the counter-rotating terms are automatically
absent. This JCM is valid far beyond the regime of validity
of the RWA as applied to the QRM. It follows that
Jaynes–Cummings physics is not necessarily restricted to
the weak-coupling regime. In particular, independent of the
coupling strength, the ground state is not entangled in the
JC-gauge two-level model.

(iii) When focusing on predictions that involve the lowest-lying
energy eigenstates of the composite system, the JC-gauge
two-level model nearly always outperforms the available
QRMs within the regimes of interest. Thus, the JCM can
and should be used in various situations previously thought
to require use of the QRM.

Light–matter Hamiltonian. We first present our approach
within the context of cavity QED. We consider a material system
with charge e and mass m described by position and velocity
variables r and _r, respectively, and with potential energy V(r). The
material system interacts with an electromagnetic field described
by the gauge-invariant transverse vector potential A and the
associated transverse electric field � _A ¼ ET. The total vector
potential is given by Atot=A+AL, where the longitudinal part
AL determines the gauge. In the Coulomb gauge, AL= 0 so Atot

=A. The scalar potential A0 that then accompanies A is, upto a
factor of e, the Coulomb potential. As is well-known, the
Maxwell–Lorentz equations are invariant under a gauge trans-
formation taking the form A0 →A0− ∂χ⧸∂t, A →A+∇χ, where
AL=∇χ and χ is an arbitrary function. Here, we employ a for-
mulation in which this gauge freedom is contained within a single
real parameter α, which determines the gauge through the
function χα. This function in turn defines a Lagrangian Lα (see
Methods). The value α= 0 specifies the Coulomb gauge, while the
Poincaré (multipolar) gauge also commonly used in atomic
physics is obtained by choosing α= 1.

Moving to the Hamiltonian description canonical momenta are
defined in the usual way as pα ¼ ∂Lα=∂_r and Πα ¼ δLα=δ _A.
Quantisation of the system is carried out using Dirac’s method42,
full details of which are given in Supplementary Note 1. As in
conventional derivations of the QRM and JCM, we restrict our
attention to a single-cavity mode. Recently, it was shown that the
single-mode approximation can break down in the ultrastrong-
coupling regime, and in particular that it eliminates the requisite
spatio-temporal structure necessary to elicit causal signal
propagation43. However, the single-mode approximation does
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not result in a breakdown of gauge invariance because gauge
transformations remain unitary in the single-mode theory. The
generalisation to the multimode case is straightforward36,39, but is
not necessary for understanding the implications of gauge
freedom within two-level models. Following conventional
derivations, we also make the electric dipole approximation,
which similarly does not affect the gauge invariance of the theory.

With these simplifications, the α-gauge canonical momenta pα,
Πα are related to manifestly gauge-invariant observables by

m_r ¼ pα þ eð1� αÞA; ð1Þ

ET ¼ �Πα �
αεðbd � εÞ

v
; ð2Þ

where bd ¼ �er is the material dipole moment, v denotes the
cavity volume, ω denotes the cavity frequency and ε is a cavity
unit polarisation vector. The Hamiltonian is the sum of material
and cavity energies

H ¼ Ematter þ Ecavity; ð3Þ

where Ematter ¼ m_r2=2þ VðrÞ and Ecavity ¼ vðE2
T þ ω2A2Þ=2.

The Hamiltonian is expressible in terms of the α-gauge canonical
operators using Eqs. (1) and (2), with the well-known Coulomb-
gauge (α= 0) and Poincaré-gauge (α= 1) forms obtained as
specific examples.

The energy is a particular example of a gauge-invariant
observable, which in Eq. (3) has been expressed as a function of
the elementary gauge-invariant observables x ¼ fr; _r;A;ETg.
More generally, when written in terms of x, any observable O
possesses a unique functional form O≡O(x). The theory is
gauge-invariant in that the predictions concerning any gauge-
invariant observable can be calculated using any gauge, and these
predictions are unique. The canonical momenta {pα, Πα} are,
however, manifestly gauge-dependent in that for each different α,
they constitute different functions of the gauge-invariant
observables x. When written in terms of canonical operators
yα = {r, pα, A, Πα}, an observable O generally possesses an α-
dependent functional form O= oα(yα). The canonical operators
belonging to fixed gauges α and α′ are related using the unitary
gauge-fixing transformation Rαα′ ¼ exp½iðα� α′Þbd � A�. This
implies that distinct functional forms oα and oα′ of the observable
O are related according to

O ¼ oαðyαÞ ¼ Rαα′o
αðyα′ÞR�1

αα′ � oα′ðyα′Þ: ð4Þ

This equation expresses the uniqueness of physical observables
independent of the chosen gauge.

The unitarity of the gauge transformation Rαα′ also ensures that
in all gauges, the canonical operators satisfy the canonical
commutation relations [ri, pα,j]= iδij, ½Ai;Πα;j� ¼ iεiεj=v with all
the remaining commutators between canonical operators being
zero. These relations allow us to decompose the state space H of
the light–matter system into α-dependent matter and cavity state
spaces Hα

m and Hα
c such that H ¼ Hα

m �Hα
c . The eigenstates of

the canonical operators r, pα provide a basis for the material space
Hα

m while the eigenstates of the canonical operators A, Πα provide
a basis for the cavity space Hα

c . It is not possible to define gauge-
invariant (α-independent) light and matter quantum subsystem
state spaces directly in terms of the gauge-invariant observables x,
because Eqs. (1) and (2) along with the canonical commutation
relations imply that ½m_ri; ET;j� = −ie εiεj/v ≠ 0.

The present theory yields unique physical predictions despite
the α-dependence of the quantum subsystems. This is because the
representation of an observable by operators is unique, as

expressed by Eq. (4), which implies that the average of an
observable O in the state ψj i is unambiguously ψh jO ψj i. The α-
dependence of the quantum subsystems is, however, an important
feature of the theory, which is made transparent within our
formulation. An approximation performed on one of the
quantum subsystems will constitute a different approximation
in each gauge, and may ruin the gauge invariance of the theory.

Non-equivalent two-level models. In conventional approaches, a
gauge is chosen at the outset and the Hamiltonian is partitioned
into matter and cavity bare energies plus an interaction part.
Here, we follow this same procedure, but with the important
exception that the gauge is left open rather than fixed. This is
achieved through substitution of Eqs. (1) and (2) into Eq. (3),
which casts the total Hamiltonian in the form
H ¼ Hα

mðr; pαÞ � Iαc þ Iαm �Hα
c ðA;ΠαÞ þ VαðyαÞ. Here, Iαm and

Iαc are the identity operators in Hα
m and Hα

c , respectively, H
α
m and

Hα
c are material and cavity bare energies in Hα

m and Hα
c ,

respectively, and Vα denotes the interaction Hamiltonian. The
explicit forms of Hα

m;H
α
c and Vα are given in Eqs. (9)–(11) in

Methods.
One of the most useful and widespread approximations in

light–matter theory is a two-level truncation of the material
system, whereby only the first two eigenstates ϵα0

�� �
; ϵα1
�� �

of the
material bare energy Hα

m are retained. Our approach reveals
that this procedure ruins the uniqueness of physical
predictions that results from Eq. (4). Using the projection
Pα ¼ ϵα0

�� �
ϵα0
� ��þ ϵα1

�� �
ϵα1
� ��, we obtain the α-gauge two-level model

Hamiltonian

Hα
2 ¼ ωmσ

þ
α σ

�
α þ ωα cyαcα þ 1

2

� �þ Δα

þ iu�α ðσþα cα � σ�α c
y
αÞ þ iuþα ðσþα cyα � σ�α cαÞ

ð5Þ

where u±
α ¼ ± ðd � εÞ½ωαα� ωmð1� αÞ�= ffiffiffiffiffiffiffiffiffiffi

2ωαv
p

and Δα= ϵ0 +
α2(d ⋅ ε)2/2v is an α-dependent zero-point shift. The transition
dipole moment d ¼ ϵα1

� ��� er ϵα0
�� �

, which is assumed to be real, is
α-independent, because r commutes with Rαα′. The material
Hamiltonian’s eigenvalues ϵ0 and ϵ1 = ωm+ ϵ0 corresponding to
material states ϵα0

�� �
and ϵα1

�� �
, respectively, are also α-independent

because Hα
m ¼ Rαα′H

α′
mR

�1
αα′. The complete derivation of Eq. (5) is

given in Methods.
An important topic relating to two-level models and the choice

of gauge in light–matter physics concerns the occurrence or
otherwise of a superradiant phase transition in the Dicke model at
strong coupling40,44–48. A precursor already occurs in the QRM,
whereby beyond a critical coupling point, an exponential closure
of the first transition energy occurs49–51. We note that in Eq. (5),
counter-rotating and number-conserving interactions generally
have different coupling strengths, and a strict bound cannot be
given for either coupling independent of the material potential,
except if α= 0. It follows that the standard “no-go theorem”
concerning the ground-state instability of a single dipole, holds in
general only in the Coulomb gauge41,44–47. An arbitrary-gauge
analysis of this topic is important, but lies beyond the scope of
this article and will be discussed elsewhere.

We are concerned with the α-dependence of predictions
obtained when using the Hamiltonian in Eq. (5). This Hamilto-
nian has neither JC nor Rabi form, because juþα j≠ ju�α j and uþα ≠ 0
except when particular values of α are chosen. Specifically, two
distinct QRMs are obtained for the choices α= 0 and α= 1, which
are nothing but the Coulomb and Poincaré-gauge QRMs
frequently encountered in quantum optics. On the other hand,
by choosing α= αJC, which solves the coupled equations αJC(ωm

+ ωJC)= ωm and ω2
JC ¼ ω2 þ e2ð1� αJCÞ2=mv, we obtain uþJC � 0

and u�JC ¼ �2ðd � εÞωm
ffiffiffiffiffiffiffi
ωJC

p
=½ ffiffiffiffiffi

2v
p ðωJC þ ωmÞ�. This choice
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therefore yields a JC Hamiltonian without any need for the RWA.
The JCM derived in this way possesses the same advantage of
exact solvability as conventional JCMs obtained as RWAs of the
Coulomb and Poincaré-gauge QRMs. However, the states ϵJC

�� �
,

operators σ ±
JC and parameters u�JC, ωJC are different from their

counterparts within conventional JCMs. In particular, the
renormalised cavity frequency ωJC together with the zero-point
shift ΔJC yields a ground-state energy that is a non-constant
function of the Coulomb-gauge and multipolar-gauge QRM
coupling parameters.

Having derived an expression for the energy, most properties
of practical interest can now be calculated using the two-level
model associated with any gauge. This includes atomic popula-
tions and coherences, as well as various cavity properties, such as
photon number. It is, however, possible to go further by defining
the two-level representation of any additional observable of
interest O as Oα

2 ¼ PαOPα. Restricting the state space Hα
m to the

two-dimensional subspace spanned by the eigenstates ϵα0
�� �

; ϵα1
�� �

then completes the construction of the two-level model.
Two-level models corresponding to distinct gauges α and α′

must be distinguished, because when α ≠ α′, the projection Pα

involves all eigenstates of Hα′
m, and similarly Pα′ involves all

eigenstates of Hα
m. This is because the gauge transformation does

not have product form; Rαα′ ≠ Rm⊗ Rc. A pictorial representation
of the relationship between different gauges and their associated
two-level models is given in Fig. 1. After a two-level truncation,
the uniqueness of the representation of observables expressed by
Eq. (4) no longer holds, that is, Oα

2 ≠O
α′
2 when α ≠ α′. Distinct

two-level models will therefore give different predictions for the
same physical quantity. An observable of particular importance is
the energy represented by the Hamiltonian, which we focus on
hereafter. There is generally no simple relation between distinct
two-level model Hamiltonians Hα

2 and Hα′
2 , when α ≠ α′. In fact, it

was noted some time ago that two-level models associated with
different gauges can give different results even in the weak-
coupling regime52. However, provided that the two-level
modification of the operator algebra is accounted for, it can be

shown that certain two-level model predictions are gauge-
invariant upto order d2 36. This is discussed in more detail in
Supplementary Note 2. Regardless, one expects predictions of
two-level models corresponding to different gauges to be
significantly different when the coupling is sufficiently strong.
We show how a comparison of the predictions of different two-
level models can be achieved for an arbitrary observable in
Methods. We show further that if the material system is a
harmonic oscillator, then it is possible to derive a JCM that is
necessarily more accurate than any derivable QRM for finding
ground-state averages.

Application to ultrastrong coupling in circuit QED. When
considering less artificial systems than a material oscillator, the
relative accuracies of two-level models is more difficult to
determine. We now consider an experimentally relevant circuit
QED setup consisting of a fluxonium atom coupled to an LC
oscillator. The fluxonium is described by the flux variables ϕ, _ϕ
and the external flux ϕext, along with three energy parameters Ec,
EJ and El that are the capacitive energy, tunnelling Josephson
energy and inductive energy, respectively. The external flux ϕext
= π⧸2e specifies maximum frustration of the atom. The LC
oscillator is described by analogous flux variables θ; _θ, with
inductance L and capacitance C defining the oscillator frequency
ω ¼ 1=

ffiffiffiffiffiffi
LC

p
.

In terms of x ¼ fϕ; θ; _ϕ; _θg, the functional form of an
observable O is unique O � OðxÞ. On the other hand, different
canonical operators yα ¼ fϕ; ξα; θα; ζg are related by θα ¼
R�1
0α θ0R0α and ξα ¼ R�1

0α ξ0R0α, where R0α ¼ eiαζϕ is a unitary
gauge transformation with α real and dimensionless. Here, ξα and
ζ are canonical momenta conjugate to ϕ and θα, respectively. The
gauge choices α= 0 and α= 1 are called the charge gauge and flux
gauge, respectively53. The Hamiltonian H describing the system is
derived in Supplementary Note 3 and is given in Methods.

In exactly the same way as for the cavity QED Hamiltonian, the
projection Pα onto the first two eigenstates ϵα0

�� �
; ϵα1
�� �

of the
material bare energy Hα

m can be used to obtain an α-dependent

� = 0
y0

�JC
yJC

� = 1
y1

0
m

R0JC RJC1

H2
0 H2

1H2
JC

P0
PJC P1

0
c

JC
c

JC
m

1
m

1
c

Fig. 1 Three important gauges and their non-equivalent two-level models. Shown are the α= 0, α= αJC and α= 1 gauges, and their associated two-level
truncations. The different gauges are associated with different unitarily related canonical operators y0, yJC and y1, respectively, which induce different
subsystem decompositions of the light–matter Hilbert space. The composite Hilbert space and the Hamiltonian are unique, but a projection onto the first
two levels of the material system results in distinct two-level models with Hamiltonians H0

2 , H
JC
2 and H1

2 respectively. The α= 0 and α= 1 gauge two-level
model interaction Hamiltonians both have Rabi form and therefore describe real processes represented by the solid green and orange arrows, as well as
counter-rotating processes represented by the dashed arrows. The αJC-gauge two-level model interaction has Jaynes–Cummings form and therefore all
processes it describes are real
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two-level model Hamiltonian, which at maximal frustration reads

Hα
2 ¼ ωmσ

þ
α σ

�
α þ ωα cyαcα þ 1

2

� �þ Δα

þ u�α ðσþα cα þ σ�α c
y
αÞ þ uþα ðσþα cyα þ σ�α cαÞ;

ð6Þ

where u±
α ¼ φ½αωα � ð1� αÞωm�=

ffiffiffiffiffiffiffiffiffiffi
2ωαL

p
and Δα= ϵ0 + α2φ2/

2L, in which φ ¼ ϵα1
� ��ϕ ϵα0

�� � ¼ φ	 and ϵ0 denotes the ground
energy of Hα

m. The two-level system parameters ωm, φ and ϵ0
depend implicitly on Ec, EJ, El and ϕext. The renormalised cavity

frequency is ωα ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ecð1� αÞ2C=e2

q
. Away from the

maximal frustration point, the flux ϕ possesses diagonal matrix
elements in the basis ϵα0

�� �
; ϵα1
�� �� 	

, such that σþα σ
�
α and σ�α σ

þ
α are

also linearly coupled to the mode operators cα; c
y
α. In analogy to

the cavity QED case, the charge and flux gauges yield distinct Rabi
Hamiltonians, but there also exists a value α= αJC= ωm/(ωm+
ωJC) such that uþα � 0, which casts the Hamiltonian in JC form.

The ratio δ= ω/ωm in which ωm is taken as the qubit transition
at maximal frustration ϕext= π⧸2e, specifies the relative
qubit–oscillator detuning. To quantify the relative coupling
strength, we use the ratio η= g/ω where g ¼ φ

ffiffiffiffiffiffiffiffiffiffiffi
ω=2L

p
. The

parameters g and ω are the coupling strength and cavity
frequency of the flux-gauge QRM, but we note that the
corresponding parameters associated with any other two-level
model could also be used. For different α, the α-dependent two-
level truncation yields different predicted behaviour of physical
observables as functions of the model parameters δ, η and ϕext. In
contrast, the exact predictions resulting from the non-truncated
model are α-independent (gauge-invariant).

We begin by determining how the ground energy G and first
excited energy E vary with the detuning δ at maximal frustration ϕext
= π⧸2e and fixed coupling η= 1 (Fig. 2). Regimes with large δ are
presently more experimentally relevant11,13,14, yet, unless δ is relatively
small (δ < 1), we find that all two-level models become inaccurate in

predicting eigenvalues En > E of the non-truncated Hamiltonian. This
can be traced to the occurence of resonances in energy shifts, which
occur for large δ (see Supplementary Note 4). Indeed, deviations from
the predictions of the QRM have been observed experimentally for
such En within the ultrastrong-coupling regime14.

We focus primarily on the experimentally relevant large δ
regime by choosing δ= 5. Other detunings may also be
considered and various results for the cases δ= 1 (resonance)
and δ= 1/5 are presented in Supplementary Note 5. In Fig. 3a, b,
we compare the ground and first excited energies found using
various two-level models with the corresponding gauge-invariant
energies of the exact theory. The ground and excited-level shifts
are obtained by subtracting the corresponding (bare) eigenener-
gies of the non-interacting system. At maximal frustration, the
shift of the ground state can be identified as the Bloch–Siegert
shift4. The first transition shift is the difference between the
ground and excited shifts, and is commonly termed the Lamb
shift by analogy with atomic hydrogen14. In the RWA, the
coupling-dependent zero-point contribution ωα/2+ Δα in Eq. (6)
gives the ground energy. For α ≠ αJC, this results in an incorrect
expression for the Lamb shift even for weak coupling36,54 (see
also Supplementary Note 2). It is therefore unsurprising that the
flux and charge-gauge JCMs are inaccurate in predicting the
associated dressed energies within the ultrastrong-coupling
regime, as illustrated in Fig. 3a, b. In contrast, for the two-level
model of the JC gauge (α= αJC), the RWA is no longer an
approximation. The ground energy ωJC/2+ ΔJC, is different from
the results of the RWA applied in the α= 0 and α= 1 gauges, and
it does lead to the expected expression for the Lamb shift within
the weak-coupling regime36 (see Supplementary Note 2). Thus,
even though the Hamiltonian has Jaynes–Cummings form, it is
not evident that like the charge and flux-gauge JCMs, the JC-
gauge two-level model will necessarily be inaccurate in predicting
dressed energies within the ultrastrong-coupling regime. Indeed,

1

7

1

9

0 5 0 5

G
 (

µe
V

)

a

Flux

Charge

JC

Exact

b

E
 (

µe
V

)

c

�

d

�

f-JCM

c-JCM

Fig. 2 Lowest energy levels as functions of detuning. a El= 0.33 μeV, EJ= 10El= Ec, ϕext= π/2e and η= 1. The ground energy is plotted with δ for the flux-
gauge and charge-gauge QRMs, for the JC-gauge two-level model and for the exact model. b Same as (a) for the charge and flux-gauge JCMs obtained as
RWAs of the corresponding QRMs. c Same as (a) for the first excited energy. d Same as (c) for the charge and flux-gauge JCMs
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Fig. 3a, b shows that the JC-gauge two-level model is not only
more accurate than the flux and charge-gauge JCMs, it is also
more accurate than the flux and charge-gauge QRMs.

To determine which two-level model yields the most accurate
lowest energy eigenstates, we compute the ground- and first
excited-state fidelities Fα

G ¼ Gα
2

��G� ��� ��2 and Fα
E ¼ Eα

2

��E� ��� ��2, where
jGi and jEi are the exact ground and first excited eigenstates of
the non-truncated Hamiltonian H, while Gα

2

�� �
and Eα

2

�� �
are

the corresponding eigenstates of Hα
2 . Figure 3c, d shows that the

JC-gauge model is more accurate than both QRMs, and much
more accurate than conventional JCMs, especially in the case of
the ground state. Since the JC-gauge two-level model tends to
produce a more accurate representation of the lowest two energy
states of the system, it is natural to suppose that it will generally be
more accurate than the QRM in predicting observable averages in
these states. This is verified for the cases of ground-state photon
number averages in Supplementary Note 6.

To link with recent experiments in which circuit properties are
measured for varying external flux ϕext, Fig. 4 shows the behaviour
with ϕext of the lowest dressed energies when η= 1/2. The JC-
gauge again yields the most accurate two-level model (Fig. 4a, b)
despite the clear breakdown of the RWA (Fig. 4c, d). It follows
that Jaynes–Cummings physics is not synonymous with the RWA,
and that a departure from Jaynes–Cummings physics is not
implied within the ultrastrong-coupling regime. For larger η, two-
level models become increasingly inaccurate, though the JC gauge
continues to give the best agreement with exact energies even
within the deep–strong coupling regime (see Supplementary
Note 5).

Discussion
The behaviour shown in Figs. 2–4 can be understood by deriving
an effective Hamiltonian valid sufficiently far from resonance

(dispersive regime)55, details of which are given in Supplementary
Note 4. In this context, let us first consider the flux gauge,
wherein the light and matter systems are coupled through the
material position operator ϕ. The matrix elements of this operator
between material states ϵ1n

�� �
are largest between adjacent levels n,

n ± 141 (see Supplementary Note 4). Thus, provided higher
material levels are sufficiently separated from the lowest two, the
coupling to them can be neglected, unless the light–matter cou-
pling η is very large, or δ is large enough that several material
energies lie within the first oscillator band ω. For such large δ,
contributions of energy denominators in the effective Hamilto-
nian become large due to the occurence of resonances ϵni 
 ω,
ϵni ¼ ϵn − ϵi, i= 0, 1, n > 1 (see Supplementary Note 4). The flux-
gauge QRM is therefore qualitatively accurate if δ and η are
sufficiently small. This includes accurately predicting higher
system energy levels En > E as well as the first two levels G and E41

(see Supplementary Note 5).
In the charge gauge, the light–matter coupling occurs via the

material canonical momentum ξ0, for which matrix elements
involving higher levels are not suppressed (see Supplementary
Note 4). Independent of δ, when the coupling is sufficiently large,
they cannot generally be neglected even for highly anharmonic
material spectra, so the charge-gauge QRM generally breaks
down41. However, the ratio of the flux-gauge QRM-coupling
strength g and the coupling strength ~g0 of the charge-gauge QRM,
increases as δ increases (see Supplementary Note 4). For large
enough δ, the charge-gauge coupling is significantly weaker than
that of the flux gauge to the extent that for sufficiently large δ and
provided η does not become too large, the charge-gauge QRM is
qualitatively accurate for the ground level G, and occasionally for
the first level E (Figs. 2–4).

In the general α-gauge, all flux-gauge coupling terms are
weighted by α and all charge-gauge coupling terms by 1− α. By
tuning α, the α-gauge two-level model smoothly interpolates
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between the two available QRMs. In particular, the αJC-gauge JCM
is defined such that the counter-rotating terms that give the
dominant contribution to deviations between the exact and two-
level model ground states are eliminated (see Supplementary
Note 4). This allows us to understand why the αJC-gauge JCM
accurately represents the ground state across all parameter regimes.
As δ and η increase, the αJC gauge becomes predominantly charge-
like (see Supplementary Note 4) and like the charge-gauge QRM
becomes inaccurate for predicting levels En > E.

Quite generally, two-level models remain most accurate in
predicting the first two system levels G and E. For the lowest such
levels of certain circuit QED systems, spectroscopic experimental
data have been matched to the predictions of the QRM defined by
the Hamiltonian h ¼ �ðΔσz þ ϵσxÞ=2þ ωayaþ g′σxðaþ ayÞ,
where Δ and ϵ are tunnelling and bias parameters, respectively,
and g′ denotes the coupling strength11,13,14. In Ref. 13 for exam-
ple, the parameters Δ, g′ and ω are treated as constant fitting
parameters, while ϵ is externally variable. It is important to note,
however, that fitting transitions between eigenenergies of h to
experimental data does not preclude the possibility of fitting other
models to experimental data.

It is possible to rotate the flux-gauge QRM H1
2 into the form of

h, but upon doing so, each of Δ, ϵ and g′ are found to be non-
trivial functions of ϕext. In particular, for the fluxonium-LC sys-
tem we consider, g′ and Δ do not remain constant while varying ϵ
by varying ϕext. Moreover, the α-gauge two-level model cannot be
uniquely specified in terms of the parameters of h. Whenever

ϕext ≠ π/2e, these properties obstruct meaningful comparison
between our results and experimental results of the kind found
for example in Ref. 13.

More relevant experimental results for the system we consider
are given in Ref. 2, where spectroscopic data were found to agree
well with the non-truncated fluxonium-LC Hamiltonian H of Eq.
(13). There, the fluxonium energies Ec, El and EJ were treated as
fitting parameters. Our results show that using such a fitting
procedure, the JC-gauge two-level model would offer better
agreement with experimental data than the QRM, at least for the
lowest two levels G and E. This occurs over the full range of δ
shown in Fig. 2 with only a few exceptions in the case of the
excited state E when δ is small (see Supplementary Note 5).

The results presented here open up multiple avenues for fur-
ther investigation. For example, our more general form of two-
level model in which the gauge is left open is capable (albeit
fortuitously) of exactly predicting a given energy value, but it
remains to be understood in more detail. A comprehensive
comparison of different methods for deriving two-level model
descriptions is also yet to be performed.

An investigation of the implications of the arbitrary-gauge
formalism for the occurence of phase transitions in multi-dipole
systems constitutes further important work. The dependence on
arbitrary-gauge parameters of weaker truncations such as three-
level atomic models remains to be investigated as does the gen-
eralisation to multimode situations for structured photonic
environments. We note that issues with the single-mode
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approximation have been recognised and discussed elsewhere5,43,
but that this approximation does not result in a breakdown of
gauge invariance and does not therefore affect the results reported
here. Within exact (non-truncated) models determining the
dependence on the gauge parameter of light–matter entangle-
ment, as well as averages of local light and matter observables
such as photon number, is of experimental relevance and is
important for applications. This too will be investigated in further
work.

Methods
Lagrangians in different gauges. The Coulomb-gauge Lagrangian is denoted L0
and is given in Supplementary Note 1. More generally, the α-gauge Lagrangian
yielding the same correct equations of motion as L0 is Lα= L0− dχα/dt, where the
function χα is defined as

χαðtÞ ¼ α

Z
d3xA � Pmult; ð7Þ

Pmult;iðxÞ ¼ �e
Z 1

0
dλrjδ

T
ij ðx � λrÞ: ð8Þ

Here, Pmult denotes the usual multipolar transverse polarisation field. Latin indices
denote spatial components and repeated indices are summed. This χα is the gen-
erator of the unitary Power–Zienau–Woolley transformation, multiplied by α. The
α-dependence of the Lagrangian can be understood as the underlying cause of the
α-dependence of the canonical momenta pα ¼ ∂Lα=∂_r and Πα ¼ δLα=δ _A.

Derivation of cavity QED two-level model Hamiltonian. Substituting Eqs. (1)
and (2) into Eq. (3) yields the Hamiltonian written in terms of canonical operators
yα as H ¼ Hα

m þ Hα
c þ Vα where

Hα
m ¼ p2α

2m
þ VðrÞ; ð9Þ

Hα
c ¼ v

2
Π2

α þ ω2A2
� �

; ð10Þ

Vα ¼ e
m ð1� αÞpα � Aþ αbd �Πα

þ e2
2m ð1� αÞ2A2 þ α2

2v ðε � bdÞ2: ð11Þ

The Hamiltonian has a hybrid form between the Coulomb and multipolar gauges.
Coulomb-gauge coupling terms are weighted by 1− α while multipolar-gauge
coupling terms are weighted by α. The interaction includes the quadratic “A2” and
“bd2” self-energy terms in addition to the linear coupling terms “pα⋅A” and “bd �Πα”.
This approach is easily adapted to describe multimode fields and more than one
dipole36.

The first two eigenstates of the material bare energy Hα
m are denoted ϵα0

�� �
and

ϵα1
�� �

, and the projection onto this subspace is Pα ¼ ϵα0
�� �

ϵα0
� ��þ ϵα1

�� �
ϵα1
� ��. The

operator Hα
m admits the two-level truncation Hα

m;2 ¼ PαHα
mP

α ¼ ϵ0 þ ωα
mσ

þ
α σ

�
α ,

where ωm= ϵ1 − ϵ0, σ
þ
α ¼ ϵα1

�� �
ϵα0
� �� and σ�α ¼ ϵα0

�� �
ϵα1
� ��. The eigenvalues ϵ0 and ϵ1

= ωm+ ϵ0 corresponding to ϵα0
�� �

and ϵα1
�� �

, respectively, are α-independent because
Hα

m ¼ Rαα′H
α′
mR

�1
αα′. In practice, two-level model Hamiltonians are found by first

defining the interaction Hamiltonian as Vα
2 ¼ VαðPαyαP

αÞ and then combining
this interaction with the bare energies to obtain the total Hamiltonian

Hα
2 ¼ PαHα

mP
α þ Hα

c þ VαðPαyαP
αÞ: ð12Þ

If the interaction Hamiltonian Vα is linear in r and pα then the two-level model
Hamiltonian can also be written Hα

2 ¼ PαHPα . This is not the case for H in Eq. (11)

due to the “bd2” term, which demonstrates the availability of different methods for
deriving truncated models. Here, we adopt the approach most frequently
encountered in the literature, and outline other methods in Supplementary Note 2.

We can now define an arbitrary-gauge two-level model associated with the
Hamiltonian H in Eq. (11) by using the definition (12). The projection Pα does not
alter the “A2” and Hα

c terms of Eq. (11), because these terms depend on the cavity
canonical operators only. Combining them gives the renormalised cavity energy
Hα

c þ e2=2mð1� αÞ2A2 ¼ ωαðcyαcα þ 1=2Þ with renormalised cavity frequency

ωα ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2ð1� αÞ2=mvω2

q
. The cα; c

y
α are cavity ladder operators of the

renormalised energy satisfying ½cα; cyα� ¼ 1. In terms of these operators, the
Hamiltonian Hα

2 defined by Eq. (12) is given by Eq. (5).

Method for comparing two-level model predictions. A comparison of the pre-
dictions that different two-level models yield for an arbitrary observable requires

that we determine how a given physical state is represented within each two-level
model. To this end, consider an observable A with the property that both the exact
representation A and the two-level model representation Aα

2 possess non-
degenerate discrete spectra. The eigenvalues an of A and aα2;n of Aα

2 are in one-to-
one correspondence such that the eigenstates Anj i and Aα

2;n

��� E
can be assumed to

represent the same physical state. An arbitrary physical state can then be con-
structed via linear combination; the physical state ψj i ¼ P

n ψn Anj i;Pn ψn

�� ��2¼ 1
within the exact theory, is represented within the α-gauge two-level model by
ψα
2

�� � ¼ P
n ψn Aα

2;n

��� E
. A natural choice of observable A for the purpose of repre-

senting states is the energy A=H, which we consider in Results.
The most accurate two-level model for the purpose of predicting the average

ψh jO ψj i of an arbitrary observable O, which may or may not equal A, is found by
selecting the gauge α for which the difference between the exact and two-level
model prediction, zαðO;ψÞ ¼ ψh jO ψj i � ψα

2

� ��Oα
2 ψα

2

�� ��� ��, is minimised. Since two-
level models are indispensable practical tools within cavity and circuit QED, it is
important to ascertain which two-level models yield the best approximations of
physical averages that are of interest in applications. In Results, the energy is
considered, both to represent states (A=H) and as the observable of interest (O=
H). The averages Anh jO Anj i are then nothing but the eigenvalues En of H.

As an example illustrating how the relative accuracies of two-level models can
be determined, let us consider the quantities zα(O, G) where G denotes the ground
state of a composite cavity-charge system. The charge is assumed to be confined in
all directions except the direction ε of the cavity mode polarisation. In this
direction, it oscillates harmonically with bare frequency ωm. In the gauge specified
by choosing α= ωm/(ωm+ ω), the matter oscillator can be described by ladder
operators for which the interaction Hamiltonian takes number-conserving form37.
The exact ground state G is then the vacuum state of these modes, and the
projection PJC onto the first two material levels in this gauge defines a two-level
JCM with ground state GJC

2

�� � ¼ PJC Gj i ¼ Gj i. It follows that zα(O, G)= 0 for all O
with Oα

2 ¼ PαOPα . Thus, if the material system is a harmonic oscillator, it is
possible to derive a JCM that is necessarily more accurate than any derivable QRM
for finding ground-state averages.

Fluxonium-LC two-level model Hamiltonian. The derivation in Supplementary
Note 3 yields the α-gauge fluxonium-LC Hamiltonian

H ¼ Ec
e2 ½ξα þ ð1� αÞζ�2 þ 2e2Elϕ

2

� EJcos 2e½ϕ� ϕext�
� �þ ζ2

2C þ 1
2L ½θα þ αϕ�2:

ð13Þ

The fluxonium bare energy is defined as

Hα
m ¼ Ec

e2
ξ2α þ 2e2Elϕ

2 � EJcos 2e½ϕ� ϕext�
� �

: ð14Þ

The projection onto the first two eigenstates of this operator is used along with H in
Eq. (13) to define a two-level model Hamiltonian in precisely the same way as in
the cavity QED case. The final result is given in Eq. (6).

Data availability
The data that support the findings of this study are available from the corre-
sponding authors upon reasonable request.
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