
Grafström et al. EJNMMI Physics  (2015) 2:19 
DOI 10.1186/s40658-015-0124-1
ORIGINAL RESEARCH Open Access
A method for comparing intra-tumoural
radioactivity uptake heterogeneity in
preclinical positron emission tomography
studies

Jonas Grafström, Hanna-Stina Ahlzén2 and Sharon Stone-Elander1,3*
* Correspondence:
sharon.stone-elander@karolinska.se
1Department of Clinical
Neuroscience, Karolinska Institutet,
SE-17176 Stockholm, Sweden
3PET Radiochemistry,
Neuroradiology Department,
Karolinska University Hospital,
SE-17176 Stockholm, Sweden
Full list of author information is
available at the end of the article
©
L
p
i

Abstract

Background: Non-uniformity influences the interpretation of nuclear medicine
based images and consequently their use in treatment planning and monitoring.
However, no standardised method for evaluating and ranking heterogeneity exists.
Here, we have developed a general algorithm that provides a ranking and a
visualisation of the heterogeneity in small animal positron emission tomography
(PET) images.

Methods: The code of the algorithm was written using the Matrix Laboratory
software (MATLAB). Parameters known to influence the heterogeneity (distances
between deviating peaks, gradients and size compensations) were incorporated
into the algorithm. All data matrices were mathematically constructed in the same
format with the aim of maintaining overview and control. Histograms visualising the
spread and frequency of contributions to the heterogeneity were also generated. The
construction of the algorithm was tested using mathematically generated matrices and
by varying post-processing parameters. It was subsequently applied in comparisons of
radiotracer uptake in preclinical images in human head and neck carcinoma and
endothelial and ovarian carcinoma xenografts.

Results: Using the developed algorithm, entire tissue volumes could be assessed
and gradients could be handled in an indirect manner. Similar-sized volumes could be
compared without modifying the algorithm. Analyses of the distribution of different
tracers gave results that were generally in accordance with single plane preclinical
images, indicating that it could appropriately handle comparisons of targeting vs.
non-targeting tracers and also for different target levels. Altering the reconstruction
algorithm, pixel size, tumour ROI volumes and lower cut-off limits affected the calculated
heterogeneity factors in expected directions but did not reverse conclusions about
which tumour was more or less heterogeneous.

Conclusions: The algorithm constructed is an objective and potentially user-friendly tool
for one-to-one comparisons of heterogeneity in whole similar-sized tumour volumes in
PET imaging.
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Background
In nuclear medicine imaging, non-uniformity or heterogeneity in radiotracer

uptake in tissues is visually perceived as areas of high as well as low uptake.

Random and systematic factors such as the Poisson distribution of the radioactive

decay and noise in addition to the processing parameters used to generate the im-

ages [1–6] can contribute to image heterogeneity as well as variations in uptake

due to the non-homogenous features of the tissues being analysed (e.g. [7–11]).

Heterogeneity in tumour imaging is hypothesised to be a potentially important

indicator of variations in the underlying biology such as differences in structural

features, cellular density, metabolism, growth rate, receptor populations, vascular-

isation, hypoxia, impaired lymphatics or the varying effects on these that therapy

may induce throughout the lesion [12–19]. Recognising and interpreting differ-

ences in uptake patterns can therefore be important for decisions about patient

prognosis and for recommendations about specific therapeutic strategies (e.g. [20–25]).

An increasing number of strategies for analysing image heterogeneity have been

published over the last few years (e.g. [26–32]). These methods are often compared

with the conventional analyses performed visually by imaging experts. As of yet,

there is no standardised method available for analysing heterogeneity.

Methods developed for oncological imaging applications are often performed in

preclinical disease models before implementation in human studies. Experimental

tumour models grow much more rapidly than in humans and morphological and

functional properties may therefore vary on a time scale of days to weeks instead

of months to years. Issues that may be present in studies of human tissues may

become critical very quickly in preclinical studies. It can also be very difficult to

evaluate non-uniformity visually since the dimensions of tumours are only on the

order of a few millimetres in these rodent models of human tumours. Although

the fact that heterogeneity has an impact on quantifications performed has been

recognised in many studies (e.g. [14, 15, 33]), methods for estimating specifically

the intra-tumoural uniformity in preclinical tumours are not yet, to our knowledge,

available.

Currently, there is no general consensus about exactly what constitutes hetero-

geneity in an image, the factors affecting it nor how it should be ranked or esti-

mated (see e.g. [6]). Most methods developed so far for analysing clinical images

have used some sort of texture analysis. In this paper, we develop and examine the

application of a texture-based algorithm to assess radioactivity uptake heterogeneity

in planes and in the sum of planes through preclinical tumour xenografts studied

with small animal positron emission tomography (PET). The algorithm identifies

and subsequently isolates deviations from the mean uptake. The absolute values of

these deviations are then computed (hereafter denoted “peaks”). The mean peak

intensity of every pair of peaks is subsequently divided by the distance between

these peaks, the distributions of these deviations are plotted in histograms and a

heterogeneity factor (HF) is calculated. The method is applied to different types of

comparisons typically performed in preclinical small animal PET investigations of

tumour models: comparing (I) the uptake of size-matched targeting vs. non-

targeting radiotracers in the same tumour, (II) the uptake of the same tracer in tu-

mours with different expression levels of the target and (III) the uptake of different
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tracers targeting a tumour by different mechanisms. This analysis only focuses on

the spatial heterogeneity of the uptake intensities. The implications of differences

observed for the underlying pathophysiology will, of course, require many more

complementary investigations. Efforts have been made to design this algorithm so

it is easy to follow, so it performs a complete rather than a partial analysis of the

tumour and so that it is very general, i.e. no code modifications are required for

different situations.
Methods
General

The images retroactively analysed with the algorithm developed here have been

acquired and reported in previously published studies [34, 35] in which the experi-

mental details can be found. In brief, the animals analysed here were severe com-

bined immunodeficiency (SCID) mice carrying subcutaneous tumour xenografts of

head and neck (FaDu) and epidermal (A431) and ovarian (SKOV-3) carcinoma cell

lines. Experiments were performed in accordance with national legislation on

laboratory animals’ protection and were approved by the local ethics committee for

animal research (Stockholm north ethical committee (animal research)). All animal

handling was performed by the same individual. For radioligands, the methyl-11C-

radiolabelled Annexin A5, [methyl-11C]-His6-AnxA5-ST-CH3, hereafter denoted

AnxA5 (~38 kDa), mutated-thioredoxin-green fluorescence protein [methyl-11C]-

His6-mTrx-GFP-ST-CH3, hereafter denoted mTrx-GFP (~40 kDa) and the

Affibody™ ZHER2:342 ([methyl-11C]-ZHER2:342-ST-CH3) hereafter denoted ZHER2:342

(~7 kDa) proteins had been expressed with a C-terminus selenocysteine tag

(ST) and site specifically labelled with a positron-emitting carbon-11 (11C)

(t1/2 ≈ 20 min) methyl group (CH3). The widely employed 2-deoxy-2-[18F]fluoro-D-

glucose [18F]FDG (~0.18 kDa) also used here was obtained in an aliquot from

batches made daily for clinical PET at the Karolinska University Hospital.
Data acquisition and handling

The PET camera used was the microPET Focus 120 (Concorde, Siemens), whose

performance has been previously evaluated [36]. The field-of-view (FOV) is 7.6 ×

10 cm for axial to transaxial dimensions and the resolution of the machine

centrally in the FOV (CFOV) is about 1.2 mm. Data were continuously sampled

for 1 h in list mode, corrected for dead time, randoms and physical decay and

histogrammed for this study as follows: 3 s × 20 frames, 150 s × 8 frames and

293 s × 8 frames. Subsequently, they were reconstructed using ordered subset esti-

mation maximum in 2 dimensions (OSEM2D) in order to increase the spatial reso-

lution. This was performed with a picture size of 512 × 512 pixels, 4 iterations and

16 subsets. Since the dimensions of all tumours studied here were more than four

times the resolution of the CFOV, partial volume effects (PVEs) due to the size of

the lesion were minimised [37]. For all imaging situations, the same hardware and

software were used and hence the same image bit depth was employed. The soft-

ware used to define and calculate the radioactivity within volumes of interest

(VOIs) was the Inveon Research Workplace (IRW) developed by Siemens. The VOI
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was manually drawn in coronal, sagittal and transaxial planes in the summed

images for each separate tumour. Radioactivity concentrations were calculated

automatically by calibration against a phantom with a known concentration of

radioactivity.

The uptake of radiotracers in the tumours was calculated as a standard uptake

value (SUV) [38] in which the regional activity is related to the total injected dose

and normalised to standardise for between-individual comparisons. The SUV is

defined as

SUV ¼ Radiotracerconcentration
Injectedactivity=normalisation factor

ð1Þ

The normalisation factor can be related to body surface area, lean body mass

and body weight. Here, the SUVs were normalised to body weight. SUVs were

computed for every reconstructed time frame. For this study of uptake heterogen-

eity, images summed over the last 30 min were used. In future analyses, heterogen-

eity in the specific binding of the radiotracers might be further analysed by using

other calculated macroparameters such as the binding potential or distribution

volumes.
Algorithm for analysis of heterogeneity

Since the uptake heterogeneity is defined as the deviations from a mean uptake

per unit distance, clustered deviations, i.e. those in close proximity to each other,

should have a larger weight or impact on any ranking of heterogeneity than devia-

tions that are further apart. Therefore, mean uptake deviations are normalised to

the associated distances between them. The steps in the algorithm for assessing

heterogeneity are presented schematically in Fig. 1. Each step is explained in more

detail below.

VOI definition

The method for drawing the VOI is very important in the analysis of heterogeneity.

The method used needs to be pre-established and consistently followed throughout

an analysis. Some type of thresholding to delineate “viable” tumour is often used

to objectively include only areas with uptake above a certain level. However, basing

the VOI on only the high uptake areas would exclude “colder” areas that could

have a considerable impact on the heterogeneity [39]. Therefore, in this analysis,

the so-called primary VOI was instead drawn as a sphere or ellipsoid that com-

pletely covered the tumour when considerable uptake of radioactivity was observed,

in this case in the time frames after 30 min. This primary VOI was only used to

make sure that all the tumour tissues were included but was not itself used in the

calculations. Instead, a second VOI, based on tumour dimensions measured post-

mortem, was then drawn manually within the primary VOI for each separate

tumour and fitted to the tumour dimensions in the sagittal, coronal and transaxial

planes of the images. Thresholding was not performed at this step but rather the

entire “secondary” VOI matrix was used in the calculations of heterogeneity.



Fig. 1 The outline of the algorithm
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First VOI data post-processing

Discrete volume elements (voxels) make up the image VOI. Every voxel is associ-

ated with four values: the three spatial coordinates; the X-, Y- and Z-positions, and

the voxel intensity (measured here as SUVs) and these are arranged as a matrix

with four columns. This VOI data is subsequently exported from IRW to MATLAB

(version R2011a) in which the heterogeneity algorithm had been constructed and

all subsequent steps are performed.

Subdivision of one four-column matrix into n three-column matrices

The original, VOI defining matrix is first subdivided into n matrices, one for each

plane, in order to evaluate each plane separately. To locate the uptake values that com-

pose the deviations from the local matrix-mean or the heterogeneity, thresholding was

applied to isolate intensities above and below a pre-set threshold value—here ±1.65

standard deviations (for normally distributed measurements, about 68 % fall within

1 SD of the mean, about 98 % fall within 2 SD of the mean and about 90 % fall within

1.65 SD of the mean), along with their positional coordinates.
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To determine the type of distribution, a quantile-quantile (QQ) plot, (MATLAB),

which plots a theoretical normal distribution together with the current data, was per-

formed on the pixel values. The data were considered to be consistent with a normal

distribution.

Recreation of a cell array with individual intensities related to the mean of the

associated plane

The deviating uptakes found in the previous step are now used to create a new three-

column matrix, with the X- and Y-positions and the absolute values of the intensity

deviations subtracted from the mean intensity of the associated plane (where the mean

I is the I-bar in Eq. 2). Each individual |Ip − Īk| is normalised to the maximum deviation

locally in order to compensate for individual uptake deviations.

Each individual heterogeneity, the mean intensity deviation per distance (in millimetre),

here is defined as:

Ip−�I k
�� ��þ Iq−�I k

�� ��
2

� �
=max

Ip−�I k
�� ��þ Iq−�I k

�� ��
2

� �
⋅
1
dpq

ð2Þ

Each plane is, as mentioned above, evaluated separately. This means that we look at

the distance X1,Y1 to X2,Y2 only for a specific Z. The reasons for this are twofold. First,

heterogeneity can vary considerably from one plane to another. To be generally useful

for analysing tumours of different sizes, evaluating each plane separately allows a cer-

tain control of which factors are influencing changes in the HF when more planes are

added. The second reason is so that the impact of the gradient or slope (i.e. the steep-

ness of the incline or decline) can be addressed. If we have a deviation with a steep

slope, the contribution must be different than when the deviation has a gradual, lower

slope, even if the peak value is the same.

Thus, the heterogeneity H for each plane k (k:1,…,n for a total of n planes) and each

peak p (p:1,..,m for a total of m peaks) is (where p > q)

H kð Þ ¼
Xm
1

Ip−�I k
�� ��þ Iq−�I k

�� ��
2

=max
Ip−�I k
�� ��þ Iq−�I k

�� ��
2

� �
⋅
1
dpq

� �
ð3Þ

When the slope is very gradual, the contribution to the mean will have a more pro-
nounced effect than that of a steep slope. This is why the method by which a deviating

peak is accepted or rejected will have an impact on how the gradient is treated or, con-

sequently, how the gradient impacts the algorithm. In calculating the deviations from

the mean, a peak is either accepted or rejected by the use of thresholding. When each

plane is evaluated separately, the mean from each plane is used instead of a global

mean for the entire tumour volume. When a global mean is used, only two possible

alternatives, i.e. “yes it should be included” and “no, it should not be included”, are

possible. When the thresholding is instead performed for a local mean, i.e. for each

separate plane, there will still be only two possible alternatives, but the acceptance or

rejection of peaks occurs many more times. Thus, more alternatives are introduced for

managing the influence of a gradient or the spatial surrounding of a deviating peak.
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Creation of a simplified cell array based on pair-wise means and their respective distances

Each pair of intensity deviations is now recalculated as a mean (Eq. 2) and the 2-D

Euclidean distance between every intensity deviation in the matrix created in the

previous step is calculated (Fig. 2). When the distances (dpq) are less than the reso-

lution of the camera at CFOV (1.2 mm) or larger than the minimum tumour

dimension (here 4 mm), those paired intensity deviations are omitted. Omitting

distances that are too small also avoids including voxels that might be of the same

peak. Thus, a two-column matrix is formed in which the first column contains the

distances and the second column contains the means of the two actual intensity

deviations from the associated mean.

Calculation of the heterogeneity factor for the whole VOI

When all planes have been evaluated separately, the separate HF for each plane is

summed. To compensate for VOI size, the resulting sum of intensities is divided by the

original matrix length, e.g. the number of voxels in the VOI. This then gives the hetero-

geneity factor.

The distributions of the varying contributions to the HF for the entire tumour

volume were calculated and displayed as histograms with 1000 bins for each analysis.

Since the distances are limited to 1.2–4 mm, the values of the HF are distributed from

0 to 1/1.2 ≈ 0.83 (we have allowed the X-axis to continue to 1 for aesthetic reasons).

The histogram is formed in such a way that the values from Eq. 2 are distributed along

the X-axis in 1000 bins that are all equally spaced and they all have the same width.

These histograms more readily visualise the frequency of deviations, the groups of devi-

ations and the breadth of the spectrum of deviations. Also, it can be seen for which

mean intensity deviation the contributions to the HF occur.
Fig. 2 Visualising the results of the application of the algorithm. The heterogeneity contribution for one

plane (k) would be calculated as H kð Þ ¼
Xm
1

Ip−�I k
�� ��þ Iq−�I k

�� ��
2

=max
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Thus, the heterogeneity factor HF is

HF ¼

Xn
1

H kð Þ

length ROIð Þ ð4Þ

Test validations of the heterogeneity algorithm

During the development of the heterogeneity algorithm, its ability to correctly

handle different uniformity patterns was validated using simulated four-column

matrices similar in set-up to those generated by a VOI but controlled. A typical

length of a VOI-matrix was about 3000 rows while these “test”-matrices were only

18 rows long. Furthermore, the “test”-matrices were only composed of integers

while a VOI-matrix is composed of fractional numbers and all numbers are there-

fore unique. The “test-matrices” were engineered so that one particular property

(e.g. low, intermediate and large intensity fluctuations and varying types of inten-

sity gradients) was amplified so the influence of this feature could be tested.

Once the algorithm was found to handle the test matrices appropriately, it was

applied in the analyses of three types of comparisons typically made in preclinical

imaging. Finally, in the last comparison, the effects of using a different reconstruction

algorithm, pixel sizes, tumour VOI volumes and the lower cut-off limit, which is related

to the resolution (here the CFOV) on the calculated heterogeneity factor for the uptakes

of [18F]FDG and AnxA5 were examined in four FaDu tumour-bearing animals. Further-

more, the validity of the HF calculated for the whole VOI was tested by permuting the

planes in the VOI to be along the X- or Y-axis instead of the Z-axis.

Results
In the course of developing the heterogeneity algorithm, the test matrices were math-

ematically designed so they could be used to confirm the structure and performance of

the algorithm. In all validations prior to its application on test situations, the algorithm

was successively modified until the hypothesised outcome of the effect of the particular

property being tested was achieved. The algorithm can in principle be applied to ana-

lyse heterogeneity in any tissue. Preclinical tumour models, once they have established

and begun to grow, may change rapidly in both size as well as in heterogeneity. Large

changes over time in the tumour size and the underlying biochemistry will therefore

definitely affect heterogeneity. Here, we have instead used the algorithm to analyse

potentially more modest differences in comparisons commonly made when imaging

preclinical tumours of similar size and/or similar stages of development.

Heterogeneity differences when using same-size but targeting vs. non-targeting tracers

(AnxA5 and mTrx-GFP) in a FaDu xenograft

Comparing different radiotracer investigations may often be desirable in order to probe

different features of the tissue being targeted. In this example, we examined how the

heterogeneity algorithm would describe the uptake of two labelled medium-sized pro-

teins in the same tumour xenograft, i.e. same day, same animal, same tumour, same size

but different tracers. The first tracer was based on the 36-kDa protein AnxA5 that

binds with phosphatidylserine that is exposed during cell death. The second tracer was
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a size-matched, non-targeting control protein, mTrx-GFP. This tracer was used previ-

ously [34] to estimate the degree of passive uptake and retention effects [40] on the

total AnxA5 uptake, though differences in local patterns of uptake of the two tracers

were not specifically examined.

Both the maximum uptake (SUVmax) and the mean uptake (SUVmean) for AnxA5

were higher than for mTrx-GFP (2.67 and 1.76 vs. 1.95 and 1.13, respectively). In

the two images through one plane (Fig. 3a, b or, alternatively, Fig. 3e, f ) the uptake

of mTrx-GFP appeared varied and patchy while that of AnxA5 was more uniformly

distributed throughout the tumour. The uptake of mTrx-GFP showed more devia-

tions from the mean (i.e. more frequent and larger peak-to-valley variations).

Applying the algorithm, the HF for mTrx-GFP was calculated to be about 85 %

higher than that for AnxA5. The plots of the histograms of the heterogeneity con-

tributions in the whole tumour volume (Fig. 3c, d) illustrate that there are more

deviations from the mean or a larger frequency in the deviations for mTrx-GFP

compared to AnxA5.

Heterogeneity differences when using the same tracer (ZHER2:342) in different tumour

models with differing target expression levels

One commonly used method for testing the specificity of a radiotracer’s targeting

ability is to determine the radiotracer uptake in different tumour models with dif-

ferent levels of target expression. In this case, we examined how the heterogeneity

analysis handled markedly different radiotracer uptake levels. As an example, we

examined the previously reported [35] substantially different uptakes of the 7-kDa

HER2-targeting protein ZHER2:342 in SKOV-3 and A431 xenografts, i.e. different

animal, different tumours and target expressions, but the same tracer. The differences in

uptake are consistent with the high and intermediate expressions of HER2.

The uptake in A431 was low throughout the xenograft, as indicated by the surface

plot in Fig. 4e. The uptake was also quite heterogeneous, as was suggested by the

transaxial image (Fig. 4a) and supported by the very large number and the broader

spectrum of mean intensity deviations in the histogram (Fig. 4c). The HF for up-

take in A431 was approximately 2.5 times larger than for SKOV-3. The normalisa-

tion applied here compensated adequately for the influence of the much higher

uptake in SKOV-3 (Fig. 4f vs. 4e). Higher uptakes will give a larger |Ip − Īk|, which,

without normalisation, will otherwise automatically lead to a higher HF.
Heterogeneity differences when using different size radiotracers, [18F]FDG and AnxA5,

accumulating by different mechanisms in the same tumour

In this analysis, we compared the heterogeneity of the uptake of two tracers,

[18F]FDG and AnxA5, in the same tumour, i.e. same day, same animal, same

tumour, but different tracers of different size and retention mechanisms. These

tracers differ in many aspects. For instance, [18F]FDG is about 0.5 % the size of

AnxA5 and it accumulates primarily in proportion to the metabolic demand of the

tissue. The uptake and retention of AnxA5, on the other hand, is affected by its

larger size, by the vascular leakiness and lymphatic drainage of the tissue being

examined and by the expression of its target phosphatidylserine during on-going



Fig. 3 PET transaxial images (a, b, the colour scales are the same), histograms (c, d) of the heterogeneity
contributions (the mean intensity deviation per distance calculated according to Eq. 2) and surface plots (e, f)
of the uptake of AnxA5 and mTrx-GFP in a FaDu xenograft. The imaging was performed in the same
animal >2 h apart on the same day. In e and f, the X- and Y-axes represent spatial dimensions and
the Z-axis is the mean tracer uptake (SUVmean)
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cell death in that tissue. The higher positron energy of 11C leading to poorer imaging

resolution may also influence comparisons of the tracer uptakes.

The tumour images in Fig. 5a, b indicate that the uptakes of the two tracers have

similar patterns but with some textural differences. The HF for [18F]FDG is about 25 %

less than the HF for AnxA5. The histograms show more and a broader spectrum of



Fig. 4 PET transaxial images (a, b, please note that the scales in these two images are not the same, which
is additionally emphasised by using different colour schemes), histograms of the heterogeneity contributions
(the mean intensity deviation per distance calculated according to Eq. 2) (c, d) and surface plots (e, f) in the
A431 and SKOV-3 xenografts (with high and intermediate expressions of HER2 targets, respectively) imaged
with the tracer 11C-labelled ZHER2:342. These data are from two animals bearing xenografts of similar dimensions.
In e and f, the X- and Y-axes represent spatial dimensions and the Z-axis is the uptake in SUVmean

Grafström et al. EJNMMI Physics  (2015) 2:19 Page 11 of 20
deviations for AnxA5 (Fig. 5d) than for [18F]FDG (Fig. 5c). Differences in the uptakes

of the two tracers are probably more pronounced in Fig. 5c, d since the data from the

entire tumour volume is used instead of the two dimensions only in Fig. 5a, b, e, f.

This last comparison of the uptakes of the widely differing tracers [18F]FDG and

AnxA5 in the same tumour was also performed in more tumour-bearing mice and the



Fig. 5 PET transaxial images (a, b, the colour scales are the same), histograms of the heterogeneity contributions
(the mean intensity deviation per distance calculated according to Eq. 2) (c, d) and surface plots (e, f) of the
uptake of [18F]FDG and 11C-labelled AnxA5 in a FaDu xenograft. The imaging was performed in the same
animal >2 h apart on the same day. In e and f, the X- and Y-axes represent spatial dimensions and the Z-axis is
the tracer uptake in SUVmean
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effects of changing several post-processing parameters on the calculated HFs and their

ratios were examined:

(a). Permuting the planes from Z- to X- or Y-axes and subsequently recalculating the

whole VOI HFs changed the HF values in the same direction for both tracers and
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essentially to the same degree. Thus, the permutation had very small effects on the

ratio of the HF of AnxA5 to that of [18F]FDG, indicating the algorithm handles

calculation similarly for planes independent of the direction.

(b). When filtered back projection (FBP) was used instead of the default OSEM

reconstruction, the calculated HFs decreased for all images, which is consistent

with the less detail obtained with FBP than with iterative reconstructions such

as OSEM. However, the HF for AnxA5 was still consistently higher than that

of [18F]FDG.

(c). Increasing or decreasing the VOI volume by ≈20 % affects the number of pixels of

the tumour included in the calculations. In some cases, the calculated HFs for the

two tracers increased and in others they decreased, which might be indicative of

some differences in distribution and/or edge phenomena between the two tracers.

However, in all four comparisons, the HF for AnxA5 was always greater than for

[18F]FDG.

(d). Using half the pixel size in the reconstruction but keeping other parameters

constant can be seen as a form of smoothing which reduces the amount of

detail in the image. Similar to using FBP, all the calculated HFs for all images

decreased, but the HFs for AnxA5 were still consistently higher than for

[18F]FDG.

(e). Using a larger lower limit (from a resolution of 1.2 (CFOV) to 2) as a cut-off when

thresholding for the peaks accepted had the largest effect: The calculated HFs are, as

expected, much smaller since they will be based on far fewer events. All HFs de-

creased and those for [18F]FDG decreased more than those for AnxA5, so the

one-on-one comparison still gave the same result: that the AnxA5 images were more

heterogeneous even when based on far fewer peaks.

Discussion
Patterns of uptake in a region can be generally described by using maximum-, mini-

mum- and mean uptakes and the ranges between these. These general parameters can

be viewed as a type of ranking of the characteristics of the radioactivity uptake. There-

fore, any region of interest that is delineated by the camera software can generate a

four-column matrix, which gives something of a ranking of the heterogeneity in the

image. Although these parameters are widely used, they are not descriptive of all the

characteristics in a volume of interest. The algorithm developed here, on the other

hand, calculates a HF that takes into account parameters such as the distributions of

the uptake variations throughout the entire VOI, how frequent these variations are and

how quickly or slowly these changes occur in an area of interest. To generate a more

universally applicable algorithm, numerous loops were included so that modifications

would not be required depending on the structure of the data.

Different ways of calculating the distances between uptake variations were examined.

Originally, peaks were related to the centre of the VOI, which was defined to be the

centre of the largest plane. However, this assumed that the tumour or, more generally,

the tissue of interest was in essence a sphere, which in reality is seldom the case. It was

therefore difficult to reliably find the centre in the analysed tissues. Thus, rather than

defining and relating peaks to the centre, both A and B were instead defined to be

peaks. The distances between A and B then had to be limited to predefined values in
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order to minimise size effects. Here, the distances were limited to be no less than the

resolution of the camera so that unresolved peaks would not be included in the calcula-

tions and not more than the diameter of the smallest tumour dimension. Using differ-

ent cut-off limits will, of course, directly change the number of peaks used in the HF

calculations. In this study, the xenografts were placed close to the CFOV and this was

therefore deemed to be a reasonable lower cut-off limit. When the xenografts are

placed further from the CFOV (where the resolution can be much larger), a larger cut-

off limit would be more appropriate. Changing to a larger cut-off (Table 1) did change

the HFs but not the overall results of the one-on-one comparisons. In clinical imaging,

tumours can be and are located throughout the body and the choice of the cut-off

limits should be made with consideration for the resolution at that particular location

in the FOV. It is also important when making comparisons between different imaging

sessions to maintain similar placements in the camera to reduce the impact of differing

resolutions on the results. In cases in which a deviation from the mean uptake has sev-

eral peak values in close proximity to each other, it should only be counted as a single

peak. By imposing a minimum distance restriction, deviations with this kind of topog-

raphy will not be split into different contributions. Thus, the distances and the limits

imposed restrict which peaks are included in calculations by the algorithm.

Simply calculating a number for the heterogeneity does not indicate which variations

in the tissue contributed to the size of that number, which may be important when

making inter- and intra-individual analyses. Histograms were therefore also created for

each of the experimental situations (C and D in Figs. 3, 4 and 5) in order to visualise

how the contributions to the HF were distributed in the tumour, how frequent they are

and how quickly or slowly the changes are occurring. This type of information has been
Table 1 Heterogeneity factor (HF) for the uptake of AnxA5 and [18F]FDG in FaDu xenografts in
four mice, the ratios between their calculated HFs and the effects of altering post-scan processing
parameters on these HFs and their ratios

Tracer HFa Alternate permutationb Reconstructionc Image sized VOI volume changee Cut-off limitf

Coronal Sagittal FBP 256 × 256 ≈ +20 % ≈ −20 % →2 mm

AnxA5 0.1342 0.0545 0.0930 0.1004 0.0827 0.1620 0.1363 0.0287

[18F]FDG 0.1006 0.0377 0.0677 0.0869 0.0376 0.1334 0.0723 0.0157

Ratiog 1.334 1.446 1.374 1.155 2.199 1.214 1.885 1.828

AnxA5 0.3570 0.0892 0.1328 0.2881 0.1036 0.3354 0.1976 0.2351

[18F]FDG 0.3101 0.0751 0.1061 0.1911 0.0805 0.2710 0.1115 0.1480

Ratiog 1.151 1.188 1.252 1.508 1.287 1.238 1.772 1.589

AnxA5 0.2558 0.0724 0.0919 0.1694 0.0825 0.2856 0.2708 0.0944

[18F]FDG 0.1147 0.0310 0.0442 0.0982 0.0389 0.1879 0.0783 0.0209

Ratiog 2.230 2.335 2.079 1.725 2.121 1.520 3.458 4.518

AnxA5 0.3036 0.0701 0.0940 0.2870 0.0825 0.3701 0.2169 0.0966

[18F]FDG 0.1199 0.0255 0.0330 0.0955 0.0321 0.0991 0.0818 0.0292

Ratiog 2.532 2.749 2.848 3.005 2.578 3.735 2.652 3.308
aHF for VOIs drawn as in “Methods” (“VOI definition” section), axial (Z-axis) planes, OSEM2D reconstruction, 512 × 512
pixels and the lower cut-off for resolution at centre of field-of-view (FOV) at 1.2 mm
bPermutation for the planes in the VOI to be along the X- (coronal) or Y- (sagittal) axis instead of the Z-axis
cFiltered back projection reconstruction was used instead of OSEM2D
dThe pixel size was dubbled
eThe size of the VOI used in the HF calculations was increased or decreased by 20 %
fLower cut-off limit changed from resolution at CFOV (1.2 mm) to that toward the outer edge of FOV (2.0 mm)
gRatio = HFAnxA5/HFFDG
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of interest when attempting to understand local variations in the underlying tumour

biology (see e.g. [41]).

It has been shown previously (e.g. [31, 42, 43]) that heterogeneity determinations are

affected by tumour volume. For example, partial volume effects (PVEs) can mask sub-

stantial uptake variations in small lesions. Influences of PVEs were minimised here

since we only analysed tissues from tumours with dimensions that were at least four-

fold that of the resolution of the camera [37]. When the volumes of the VOIs used were

increased or decreased by ≈20 % here, the calculated HFs for AnxA5 and [18F]FDG did

not change in a strictly parallel fashion. This could possibly be due to differences in re-

gional tracer deposition patterns that were included or excluded by the changing VOI

size. However, increasing the size of the VOI may include more edge pixels that will

have a larger background contribution whereas decreasing the volumes may lead to

under-sampling [42]. Therefore, the overall effects of changing VOI sizes can be diffi-

cult to predict. Another type of size effect was also observed when applying this algo-

rithm. When peaks from multiple planes were included in the calculations, the HFs

increased very rapidly in a non-linear fashion for each extra plane included. To curb

the uncertainties introduced by these effects, the heterogeneity was instead analysed

plane-wise and then added.

During the development of the algorithm, it was observed that relatively small varia-

tions in VOI delineations using the IRW thresholding tools could lead to substantial

changes (up to approximately 30 %) in the calculated heterogeneity, even though the

histograms were similar in appearance. When the VOI delineations were instead first

performed using thresholding and then adjusted to conform to the dimensions deter-

mined postmortem, as described in the “Methods” section, the reproducibility in re-

analyses of the HFs was better than 98 %. This method was therefore used in all the

subsequent analyses. The camera used here was a stand-alone PET instrument. Using

the morphological information from a combined PET-MRI or PET-CT would be ex-

pected to also reduce uncertainties due to VOI delineations.

Three examples of comparisons were analysed here and, for the first two, only one

animal/tumour was used for each tracer. This is naturally not a large enough sample

size for drawing statistically sound conclusions about differences between individuals

(e.g. [44]) nor was that the goal here. These cases were chosen as illustrations to dem-

onstrate whether this heterogeneity algorithm could handle these types of comparisons,

which typically occur in preclinical studies. During the development of the algorithm,

multiple additional matrices that were shorter but had the same mathematical appear-

ance as the biologically generated matrices were also manually constructed. This

allowed us to confirm in a controlled manner how small alterations of the algorithm

handled a particular problem. Then, in the final wider application, the HFs of [18F]FDG

and AnxA5 in four tumour-bearing animals were calculated for different post-scan pro-

cessing parameters. This demonstrated that, while the values of the calculated HFs

changed sometimes quite a lot, the relative heterogeneity difference between the two

tracers (i.e. AnxA5 more heterogeneous than [18F]FDG) held for all animals and all

processing parameters tested. Future applications should apply the algorithm in larger

sample sizes of even more varied populations.

Addressing the influence of the gradient proved to be somewhat problematic. Ini-

tially, this was attempted by including a fifth column containing the gradient. However,
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this column would need to have a different structure than the original matrix, since the

gradient would be composed of two figures describing the rise and the fall of the peak.

This would inevitably be rejected, since a prerequisite for the calculations is that columns

are the same size and form. Since our aim was to generate a code that would not require

modification depending on the data, an alternative method that allowed the original

matrix characteristics to be maintained had to be developed. We decided instead to use

the indirect approach, in which the shape of the gradient was used as a criterion for when

a peak was accepted or rejected, as described in “Recreation of a cell array with individual

intensities related to the mean of the associated plane” section. The impacts of indirect

approaches are usually less straightforward to control or maintain, but the treatment of

the gradient effects was considerably simplified by this approach. Thus, when exercising

control over the behaviour of the HF, each plane was calculated separately in order to de-

crease the impact of the non-linear effect of size and also to incorporate the effect of the

rise and fall of the slope. As a consequence, the column that contains the different Z loca-

tions was omitted. Information from a single peak can now give different contributions in

different planes, the impact of which needs to be addressed in future developments.

The methods most often employed to examine heterogeneity in PET or SPECT

imaging data usually assess only pre-determined cross-sections [16]. Restricting the

calculations to only certain planes assumes that the biology and image features (noise,

etc.) have the same characteristics in each plane, which is not necessarily the case. Nor

does it take intra-tumour variability into account. El Naqa et al. performed a one-

dimensional assessment of uptake variation by forming what they called an intensity-

volume histogram [21]. This approach, similar to the dose-volume histograms employed

in radiation therapy, was however a simplified one, since several parameters that influence

heterogeneity had to be omitted in the one-dimensional assessment. In the algorithm pre-

sented here, the entire tumour volume was analysed. This unfortunately introduced a

considerable non-linear size dependency in inter-tumour comparisons. When a linear cor-

rection normalising the HFs by dividing by the original matrix size was included, the size

dependency decreased considerably but not completely. Further developments should at-

tempt to improve the treatment of the non-linearity of the size dependency or investigate

the possibility of stratifying into similarly sized tumours [43].

The general uptake level estimated with e.g. SUV is one of the parameters most often

used for ranking and describing the radioactivity uptake in a tissue. Tissues with large

general uptakes would have higher HFs than tissues with low general uptakes since the

|Ip − Īk| would automatically be larger. To attempt to compensate for the impact of up-

take sizes on the factors calculated, the uptake deviations were normalised to the max-

imum uptake deviation in each plane. Thus, they were all kept between 0 and 0.83 (the

X-axis of the histograms). It should be noted that the smaller the deviation, the lower

the probability that they will lead to deviations subtracted from the mean (the X-axis).

In this example, there are fewer contributions near zero (and also near 0.83) in the

histograms. Therefore, calculations of the HF and the associated histograms can

potentially provide additional information about the textural features contributing

to a general uptake level estimation.

Biological explanations of the differences behind the different HFs calculated for the

examples presented here may be difficult to make [6] and are beyond the scope of this

article. However, some general comments may be made.
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In example I, the heterogeneity of the uptake of the control mTrx-GFP tracer was

larger than that of the AnxA5-based tracer. The uptakes analysed here were SUVs and

not macroparameters (such as binding potentials) separating the specifically from non-

specifically bound tracer. It has been previously discussed [23] that the control protein

may visualise enhanced permeability and retention (EPR) [40] effects while the AnxA5

tracer uptake may be due to both specifically bound tracer as well as EPR contribu-

tions. The AnxA5 tracer appears to be more homogenously distributed into the tissue

while there is an increased frequency and a broader spectrum of uptake deviations in

the mTrx-GFP (Fig. 3c, d). It could be of interest to investigate in a broader study

whether such observations can be further correlated to e.g. immunohistochemical ana-

lyses of morphology and target expression levels that affect their uptakes to bridge the

resolution gap between histochemical and in vivo analyses.

In example II, the uptakes of a targeting Affibody™ tracer in two different xeno-

grafts in two animals were compared. It is very apparent from the transaxial im-

ages (and the surface plots) that the total uptake in A431 is very much smaller but

also has a more irregular distribution throughout the tissue than in SKOV-3. Even

though the two tumours may differ in their microenvironmental characteristics, the

large differences in uptake patterns have been primarily attributed to the tracer tar-

geting capability since SKOV-3 has substantially larger HER2 expression levels than

A431. The differences between the two uptakes have therefore been interpreted to

reflect specific uptake [35], where specific uptake in SKOV-3 is to a large degree

equal or more evenly distributed throughout the VOI. The increased HF for A431

is also (from looking at Fig. 4c, d) much more frequent and more evenly distrib-

uted over the entire X-axis of the histograms.

In example III, the uptakes of two quite different tracers in the same xenograft and

animal were examined on the same day and with the same imaging parameters. The

HF for [18F]FDG in this model was considerably smaller than that for AnxA5. This

could be due to the fact that [18F]FDG, due to its much smaller size, should be able to

more readily diffuse into the tumour and therefore be more evenly distributed. How-

ever, these textural features might also indicate regional differences in tracer retention

due to increased metabolic demand from that due to cell death, which would be inter-

esting to examine further in future studies.

Comparisons of heterogeneity, as evaluated in this current version of the algorithm,

should be made on a one-to-one basis and not group-wise, since individual parameters

still have a substantial impact on how the HFs are calculated. For example, in example

I and III, the spherical VOIs used were constructed differently, in order to include as

many parameters as possible between the tissues being compared. Therefore, for a

comparison of AnxA5 in the two different animals in I and III, a new analysis should

currently be performed after adjustments of the VOI delineations for that particular

comparison. Otherwise, the algorithm will have to be adjusted so that nonlinear correc-

tions for size effects can be made.

As discussed elsewhere [45], heterogeneity must be handled nonlinearly, i.e. the

parameters will not be modified in the same manner continuously. Each character-

istic that was handled by the algorithm (distances between deviating peaks, the

gradients and the size compensations) also had differing, nonlinear impacts on the

calculated heterogeneity. These nonlinear impacts are difficult to handle in a rigorous
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fashion. In order to make this heterogeneity algorithm more generally applicable, we have

here built in methods that attempt to handle, albeit in a linear fashion, these three

contributions.

While developing and validating this algorithm, we have attempted to initially control

as many pre- and post-processing parameters as possible while varying only one at a

time. In some ways, this is more easily achieved in preclinical than in clinical imaging,

although each has its own advantages and disadvantages. The variability of many im-

aging aspects that affect quantification (e.g. [6, 38]) must also be considered and stan-

dardised in wider applications of this method to estimate heterogeneity. For example,

uptake intensity variations can be a reflection of the inherently noisy image accusation

of PET, or PVEs [46]. Thus, these influences on uptake variations need to be addressed,

even though stronger signals usually observed in tumours will increase the signal-to-

noise ratio. Systematic errors that influence heterogeneity can be present in each com-

parison and may not influence the conclusions drawn at one site when the comparisons

are made as ratios of one image to the other. Therefore, inter-site comparisons will

probably contain non-comparable systematic error influences, such as differences in

minimum performance standards. Future work toward a wider utilisation of this algo-

rithm should therefore also examine the system-specific influences on the comparisons

made. Increasing the number of iterations in iterative OSEM or MAP reconstructions

will affect the heterogeneities [47]. Changing the reconstruction algorithm from OSEM

to FBP here affected the amount of detail but did not change the overall result of which

tracer uptake was more heterogeneous. The pixel size used in the reconstruction is im-

portant for the final size of the HF, since dividing the image into a different number of

picture elements would directly affect the number of peaks. Since this method attempts

to determine heterogeneity of the whole volumes instead of single planes, permuting

the direction of planes when calculating the HF may reveal direction-related biases and

is therefore recommended as a complimentary analysis. Standardising the post-

processing might not always be possible and, as shown in the comparisons in

Table 1, perceived differences in comparisons could in fact be due to the different

processing parameters used. Future inter- as well as intra-site applications of this

algorithm should either standardise these parameters when performing comparisons

between individuals or analyse the effects of these parameters on the HFs

calculated.

Conclusions
An algorithm was developed here that could analyse the heterogeneity of radioactivity

uptake in small animal PET images. It was constructed to assess the entire tissue vol-

umes instead of solely a single cross-section. It has built-in strategies for dealing with

different image features that might skew the calculated heterogeneity inappropriately.

Each contributing parameter had different effects on the heterogeneity and therefore

strategies for handling these parameters had to be separately developed and optimised.

The histograms may be a valuable complement for visualising how the contributions to

the heterogeneity are distributed within an entire tissue volume. Wider future applica-

tions may require some modifications to specifically address larger inter-group varia-

tions. At this stage, the algorithm is rather robust for one-on-one comparisons of

similar volume preclinical tumours.
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