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Abstract: Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantita-

tive trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic 

regions affecting these traits. The identification of the causal genes underlying QTLs is a major challenge for which the 

detection of gene expression differences is of major importance. By combining genetics with large scale expression profil-

ing (i.e. genetical genomics), resulting in expression QTLs (eQTLs), great progress can be made in connecting phenotypic 

variation to genotypic diversity. In this review we discuss examples from human, mouse, Drosophila, yeast and plant re-

search to illustrate the advances in genetical genomics, with a focus on understanding the regulatory mechanisms underly-

ing natural variation. With their tolerance to inbreeding, short generation time and ease to generate large families, plants 

are ideal subjects to test new concepts in genetics. The comprehensive resources which are available for Arabidopsis 

make it a favorite model plant but genetical genomics also found its way to important crop species like rice, barley and 

wheat. We discuss eQTL profiling with respect to cis and trans regulation and show how combined studies with other 

‘omics’ technologies, such as metabolomics and proteomics may further augment current information on transcriptional, 

translational and metabolomic signaling pathways and enable reconstruction of detailed regulatory networks. The fast de-

velopments in the ‘omics’ area will offer great potential for genetical genomics to elucidate the genotype-phenotype rela-

tionships for both fundamental and applied research. 
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1. INTRODUCTION 

 Ever since the current paradigm of gene transcription 
preceding biological function, research on gene function has 
focused on expression studies. With the ever increasing 
availability of genomic sequences and the introduction of 
microarray technology, enabling the high-throughput analy-
sis of gene expression, this has rapidly become a favorite 
tool for many researchers [1]. In a typical microarray ex-
periment specific conditions or developmental stages are 
studied by comparing expression profiles and determining 
differences in gene transcription. The object of profiling can 
be a single genotype showing phenotypic diversity in a spa-
tial and temporal manner, e.g. in different tissues and devel-
opmental stages, or when exposed to different growing con-
ditions (e.g. [2]). In this way, large compendia of expression 
data have been acquired, providing ontological information 
of genes involved in developmental control and environ-
mental responses [3-5]. 

 Although much of the relationship between the temporal 
expression of genes and their function can be learned from 
these analyses, often no information can be obtained about 
the genetic regulation of transcription or whether expression 
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differences are causal for or a consequence of phenotypic 
differences. Therefore, instead of comparing different condi-
tions of a single genotype, equivalent samples of different 
genotypes varying in the trait of interest are often analyzed. 
These can be natural variants within a species, artificial mu-
tants or transgenics like knockout and over expression lines. 
Such analyses have shown to be extremely powerful in de-
termining directionality in biological pathways, especially in 
qualitative traits [6, 7]. However, it becomes extremely diffi-
cult to define a proper experimental setup when the trait of 
interest is complex and has a quantitative character. Geneti-
cists are used to deal with this type of complex traits by us-
ing the power of natural variation within species. 

 In segregating populations, derived from crosses between 
distinct parents and genotyped with molecular markers, link-
age is sought between variation in the trait of interest and 
genotypic diversity [8]. For this purpose a broad range of 
software tools and statistical analyses are available. The 
identified genomic regions explaining the observed pheno-
typic variation are commonly referred to as quantitative trait 
loci (QTLs), which can subsequently be used for marker 
assisted breeding purposes without further knowledge of the 
underlying genes [9]. Whenever the purpose is to identify the 
causal genes or even nucleotide polymorphisms (QTNs) un-
derpinning a given QTL, one needs to invest in follow-up 
analyses for fine mapping and ultimately the cloning of a 
QTL [10]. This approach however, is very labor intensive 
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and time consuming and confines the classical QTL mapping 
to a low throughput technique.  

 Like for many physiological traits, variation in gene ex-
pression often shows a quantitative distribution, hence, all 

the classical statistical tools and concepts for QTL mapping 

can be applied for its genetic dissection. Thus, subjecting 
expression variation to linkage analysis identifies genetic 

regulatory loci, and ideally genes, explaining the observed 

variation. Knowing the position of genes and their corre-
sponding expression QTLs (eQTLs) renders great opportuni-

ties for dissecting quantitative traits. This was first recog-

nized by Jansen and Nap [11] who outlined a concept, 
coined ‘genetical genomics’, in which the combination of a 

genotyped segregating population (i.e. genetics) and ge-

nome-wide expression profiling (i.e. genomics) is used to 
formulate hypothetic regulatory pathways and unravel com-

plex traits in a more high-throughput manner. Analogously, 

similar approaches can be followed for data derived from 
other ‘omic’ technologies such as proteomics (pQTLs) and 

metabolomics (mQTLs) [12].  

 The first study reporting a proof of principle of genetical 
genomics was performed in Saccharomyces cerevisiae [13]. 

In a relatively small population of 40 haploid segregants 

from a cross between a laboratory and a wild type strain, it 
was shown that parental differences in gene expression were 

highly heritable and amenable to genetic mapping. This first 

report was quickly followed by more comprehensive eQTL 
studies in higher eukaryotes [14] and has now been applied 

in a broad range of taxonomic kingdoms including yeast [13, 

15-17], nematodes [18], insects [19, 20], plants [21-24], ro-
dents [25-27] and humans [28-33]. All studies demonstrated 

the power of combining gene expression and genetic analy-

ses to refine molecular pathways involved in complex phe-
notypes and to identify key driver genes thereof. Moreover, 

they have shown general and conserved mechanisms of ex-

pression regulation which improved our understanding of 
adaptive strategies and evolutionary concepts [19, 34]. 

 In this review we will discuss the genetic architecture of 
gene expression regulation, embarking on recent findings in 

the reference plant Arabidopsis thaliana, the implications of 

genetical genomics approaches for crop species and the im-
pact of genetic analyses of ‘omics’ data on the construction 

of regulatory networks. We will discuss future prospects and 

speculate on the utilization of advancing technological de-
velopments for genetic studies. 

2. GENETIC ARCHITECTURE OF GENE EXPRES-

SION VARIATION 

 The detection of eQTLs depends on a number of factors, 

which together determine the proportion of genetically regu-
lated genes that can be observed. First, biological factors 

such as the assayed tissue, developmental stage or environ-

mental conditions and the genotypic diversity present in the 
mapping population determine which genes are expressed 

and exhibit allelic variants, respectively. Second, statistical 

issues like population type and size, genetic map quality, 
measurement accuracy and the number of genes analyzed 

determine mapping power and detection thresholds. Because 

all these aspects vary between different experiments, re-

ported fractions of regulated genes range from only a hand-

ful to over 50% of the total gene content. 

2.1. Regulation in cis 

 Given the prerequisite of allelic variation, there can be 
many reasons why genes are differentially expressed in 
genotypically diverse individuals of a species. Well-known 
phenomena are allelic variants of transcription factors and 
other regulators, cis-elemental variation in promoter se-
quences, differences in mRNA stability, copy number varia-
tion and genomic rearrangements such as translocations, 
insertions and deletions. The latter include gene loss and 
duplication, resulting in neo- and sub-functionalization. Most 
of these variations in DNA structure will result in eQTLs but 
depending on the position of the causal polymorphism, an 
important dissection is made in local and distant eQTLs Fig. 
(1) [35]. Local eQTLs can be the result of closely linked 
trans-acting factors but in the majority of cases result from 
cis-regulatory variation in the genes under study. By defini-
tion eQTLs acting in cis affect transcription initiation, rate 
and/or transcript stability in an allele-specific manner. In 
addition, cis-regulated genes might encode regulators affect-
ing the expression of downstream target genes in trans. Al-
though the exact proportion varies between studies the oc-
currence of cis-acting eQTLs is substantial ranging from 
one-third to half of the total number of eQTLs [36]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Classification of eQTLs (solid line) based on the expres-

sion of the gene under study (light grey box) and location of the 

causal polymorphism (black bar). A) local cis-eQTL, result from 

allelic variation of the gene under study. B) local trans-eQTL, 

causal polymorphism within the eQTL confidence interval but not 

inside the gene under study (no allele specific expression). C) dis-

tant trans-eQTL, gene under study is located outside the confidence 

interval of its eQTL. 

 

 However, because of limitations in mapping resolution, 
eQTL support intervals may still contain multiple genes and 
as a result the classification of cis-eQTLs should be used 
with care. To discriminate true cis-regulatory polymor-
phisms from local trans-regulation, allele specific expression 
(ASE) assays can be performed [37]. In such assays a tran-
scribed polymorphism is used to enable discrimination be-
tween the parental transcripts and test for allele specific ex-
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pression in an F1 hybrid. Because both parental alleles share 
the same genetic background in F1 hybrids, and therefore are 
equally exposed to trans-acting factors, any difference in 
expression can only be explained by true cis-acting variation. 
Usually, ASE-assays are performed by single gene qRT-PCR 
approaches but the recent development of whole genome 
SNP-tile microarrays (e.g. in Arabidopsis) enables the simul-
taneous testing of genome-wide ASE [38]. 

 Although expression differences are treated as quantita-
tive traits in mapping approaches, qualitative differences, 
characterized by a total lack of expression for one of the alle-
lic variants, can also be observed. The variation in a measur-
able detection signal can be due to differences in hybridiza-
tion efficiency, which can be confirmed with genomic DNA 
hybridization, or genuine loss of transcription. Hybridization 
efficiency differences are often caused by polymorphisms in 
the complementary sequences of the microarray probes or 
mRNA splice variation and are not necessarily accompanied 
by transcription differences. True transcription variation 
however, can be caused by strong polymorphisms in pro-
moter regions, premature stop mutations and even the com-
plete absence of genes in one of the parental lines [39]. Both 
hybridization and true transcription variation will lead to 
strong cis-eQTLs which can subsequently be used as mo-
lecular markers, allowing the construction of high-resolution 
maps [40, 41]. 

2.2. Regulation in trans 

 The majority of differentially expressed genes will show 
a quantitative expression profile with complex inheritance 
patterns. This is because in general genes are regulated by 
many independent factors which can show up as trans-
eQTLs. Because of the multiplicity of regulators and the 
often-observed epistasis between them, each trans-eQTL can 
have a relatively small effect. In addition, compared to the 
direct regulation of cis-eQTLs, the accumulation of stochas-
tic variation in the expression of trans-regulated genes is 
indirectly also determined by the expression variation of one 
or more regulators. As a result the detected number of trans-
eQTLs relative to the number of cis-eQTLs drops when the 
stringency for detection is increased [42].  

 Whereas cis-eQTLs are inherently associated with the 
gene in which they reside, a single gene can be responsible 
for the appearance of multiple trans-eQTLs throughout the 
genome. As a consequence the genome-wide distribution of 
cis-eQTLs is dependent on local gene density, although 
variation in chromatin structure can have an impact on the 
exposure of eQTLs. The distribution of trans-eQTLs how-
ever, can deviate substantially from what can be expected 
based on gene density. The identification of so-called hot 
spots, genomic regions with a high density of trans-eQTLs, 
can be explained by major regulators, e.g. transcription fac-
tors, which influence the expression of many downstream 
genes. In Arabidopsis this was illustrated by the large num-
ber of genes mapping to the ERECTA locus, a gene well-
known for its pleiotropic effects on many morphological and 
developmental traits [22]. These findings suggest that the 
effects of key-regulators in gene expression are progressed to 
the phenotypic level. This was recently confirmed in a QTL 
study comparing transcript, protein and metabolite data with 

phenotypic traits [43]. Here, only a limited number of QTL 
hot spots with major, system-wide effects were detected, 
indicating that most of the genotypic variation is phenotypi-
cally buffered. These findings support the theory of biologi-
cal robustness where hotspots indicate fragilities in this ge-
netic buffering system [44]. Until now only a few reported 
hotspots have been verified and the number of detected hot-
spots is far from consistent between different genetical ge-
nomics studies. The latter reflects differences in the analyzed 
populations, species and conditions used and additionally 
might be the consequence of different statistical procedures 
used to identify eQTLs [45]. Because of the difficulties in 
cloning QTLs and the large biological relevance of hotspots, 
additional sources of information are often used to reduce 
the number of candidate genes or even predict the causal 
regulator. Such methods use information on gene ontology, 
(co-)expression, transcription factor binding sites and targets, 
ChIP-Seq and protein-protein interaction [46]. Together with 
computational methods such as regulatory modeling this can 
severely reduce the number of candidate genes and prioritize 
remaining candidates for further experimentation Fig. (2). 

3. GENETICAL GENOMICS IN PLANTS 

 As discussed above many principles of genetic regulation 
are shared among different phylogenetic taxa. Not all species 
however are equally suited for large-scale experimentation. 
Sometimes evolutionary distances withhold translation of 
biological relevant findings in less conserved mechanisms, 
e.g. in yeast and Drosophila, or long generation times, in-
breeding depression and moral and ethical issues hinder ex-
perimentation, e.g. in humans and other mammals. Plants, 
representing one of the largest kingdoms, are therefore often 
used to test concepts in genetic studies. The ease to generate 
large families from experimental crosses and the ability to 
store genotypes in the form of seeds or clonal propagation 
make plants ideal subjects to study the mechanistic basis of 
genetic regulation of traits. 

3.1. Arabidopsis as a Reference Plant 

 The comprehensive resources which are available for 
Arabidopsis thaliana, such as a whole genome sequence, a 
large collection of natural variants and an ever-increasing 
number of molecular tools, made it the favorable model for 
genetical genomics research. As a non-obligate selfing spe-
cies Arabidopsis combines the ability to cross-pollinate with 
high tolerance to inbreeding. Together with its short genera-
tion time and high reproductive success rate this enables the 
fast generation of large experimental populations such as 
Recombinant Inbred (RI) and Introgression Line (IL) popu-
lations. The availability and immortal character of such 
populations enable the accurate estimation of phenotypic 
values through replicated measurements and allows the test-
ing of traits in different environments [47]. 

 Traditionally QTL studies of ‘classical’ physiological 
traits in RIL populations are followed by mendelizing de-
tected QTLs in near isogenic lines (NILs) for detailed analy-
ses. By isolating QTLs from their genetic background it be-
comes much simpler to study their genetic effect and relate 
resulting phenotypes to other processes. Because it is ex-
pected that much of the phenotypic variation is the resultant 
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of differences in gene expression and phenotypic perturba-
tion in turn leads to transcriptional reprogramming, data 
mining for relationships between trait values and expression 
levels has become a common tool [48]. Very often mutants, 
knockouts or over-expression lines are used for these pur-
poses, in which the effect of a single gene perturbation is 
tested on both the phenotypic and the expression level. For 
complex traits however, the causal genes leading to altered 
phenotypes are often not known and QTL analyses only 
identify genomic regions containing such genes. Neverthe-
less, using RIL populations to identify QTLs for a pheno-
typic trait and subsequently analyzing NILs for expression 
differences can be a powerful alternative to explore the func-
tional relationship between genotype and phenotype (e.g. 
[49, 50]). Although the regions spanned by NILs can still 
contain hundreds of genes, of which many may display alle-
lic variation between accessions, the cis-regulated genes are 
strong candidates explaining phenotypic diversity. High de-
tection stringency can limit the number of differentially ex-
pressed genes to a reasonable number of candidate genes 
with strong local eQTLs [49]. 

  The availability of a whole genome sequence in Arabi-
dopsis provides unique opportunities, especially when multi-
ple (epistatic) phenotypic QTLs are detected. Knowing the 
position of genes allows the identification of strong cis-
regulated genes collocating with phenotypic QTLs. An early 
eQTL study in Arabidopsis analyzed genome-wide gene 
expression in a limited population of only 30 individuals, 
mimicking shoot regeneration conditions [21]. Two of the 
eQTL hotspots found coincided with shoot regeneration 

QTLs. The most significant eQTLs within these hotspot re-
gions showed local chromosal linkage with their correspond-
ing genes but the majority acted distantly. These results sug-
gest that heritable cis-regulated expression changes of key-
regulators determine in trans the expression of many genes 
related to differences in shoot regeneration efficiency be-
tween accessions. It also indicates that a long signaling cas-
cade may exist between the causal genotypic polymorphism 
and the eventual phenotype. 

 In contrast to the former study it is not always necessary 
to combine phenotypic measurements with expression analy-
sis. Often, many genes are known to play a role in the expo-
sure of certain traits without knowledge about the genetic 
regulation of these genes. Specific analysis of such genes can 
help to identify common regulators. In the first genome-wide 
eQTL study in Arabidopsis, using a complete RIL popula-
tion (162 lines), this concept was used to predict possible 
key-regulators of flowering time and circadian rhythms [22]. 
The benefits of using large populations for eQTL studies 
became also apparent in another study where expression 
analyses were performed in a RIL population of 211 indi-
viduals [24]. Whereas in the majority of cases only a single 
QTL could be detected per differentially expressed gene in 
the aforementioned studies, here the expression of many 
genes was controlled by multiple eQTLs. Moreover, a much 
larger fraction of genetically regulated genes was identified 
with a higher proportion of trans-regulated genes of which 
the vast majority exhibited small effects. 

 The studies performed in Arabidopsis show that the sta-
tistical power to detect eQTLs depends largely on population 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Schematic representation of candidate gene selection with a genetical genomics approach. A) Five chromosomes of Arabidopsis 

thaliana (I-V) with a QTL support interval for a phenotypic trait indicated on chromosome III. B) eQTL plot showing the position of genes 

and their corresponding eQTLs. Genes within the support interval can be causal for the observed QTL, of which cis-regulated genes, indi-

cated in light grey, represent the strongest candidates. Genes outside the QTL support interval but regulated in trans by the same locus, indi-

cated in dark grey, might be involved in the biological process under study and represent downstream effects of the QTL. C) Available prior 

information of the selected genes such as gene onthology and biological interaction data can assist in limiting the number of genes to those 

most likely involved in the trait under study. D) Connectivity between the remaining genes is than used to construct maximum likelihood 

hypothetical regulatory networks which will suggest the strongest candidate regulator gene causal for the observed phenotypic QTL.  
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size. Nonetheless, it can not be excluded that differences in 
the analyzed tissues, developmental stages and populations 
used, such as parental variation, linkage distortion and re-
combination frequency, are responsible for part of the ob-
served differences. All studies however, clearly demon-
strated that variation in gene expression is for a large part 
genetically controlled, with much stronger effects of cis-
eQTLs compared to trans-eQTLs. In general, cis-eQTLs also 
exhibit much higher heritability values and are obvious can-
didates to act as causal regulators of genes showing trans-
eQTLs in the hotspots that could be detected in each of the 
discussed studies. The detection of regulatory loci for gene 
expression and the elucidation of their interaction networks 
might therefore provide the research community with a pow-
erful tool to unravel the complex nature of natural variation 
in quantitative traits.  

3.2. Applications in Crop Species 

 Genetical genomics studies in Arabidopsis and other 
model species have shown the enormous benefits of the 
availability of an annotated genome sequence. However, 
until now full annotated genome sequence information for 
agronomical important species is only available for a limited 
number of species, including Oryza sativa [51, 52], Populus 
trichocarpa [53],Vitis vinifera [54] and papaya [55]. This 
relatively low number of sequenced crop species can be ex-
plained by their often immense (polyploid) genome sizes and 
the highly repetitive nature of many crop genomes [56]. 
Nevertheless, sequence efforts for many more species, are 
ongoing and the increasing power of next-generation se-
quencing will soon lead to an almost unrestricted availability 
of genomic sequence information. Although an annotated 
genome is a valuable resource for the comparison of the ge-
nomic position of genes and their respective eQTLs, for most 
crop species this is not feasible yet. Nonetheless, several 
studies in crops for which genetic maps are available have 
shown that comprehensive genetical genomics approaches 
are possible without the need for annotated genome se-
quences [57-62].  

 Illustratively, one of the first large genetical genomics 
experiments was performed in an economically important 
species, viz. Eucalyptus [61]. QTL analysis of transcript lev-
els of lignin-related genes showed that their mRNA abun-
dance is regulated by two genetic loci coinciding with QTLs 
for stem diameter growth. Genetic mapping of some of the 
candidate genes showed that most of the lignin genes are 
under control of a trans eQTL hotspot which suggests that 
transcription of many of the genes in this pathway are under 
a higher level of coordinated control. A strong cis-regulated 
gene encoding S-adenosylmethionine synthase, collocating 
with the growth and transcription QTLs, was presented as 
the possible rate limiting step in lignin biosynthesis and as 
such a strong candidate for the observed QTLs [61].  

 In some crops the required availability of genomic se-
quence data for large-scale classification of cis/trans eQTLs 
can be circumvented by making use of synteny with other 
species. In wheat, synteny with rice was used to assist the 
physical mapping of wheat genes [63]. A genetical genomics 
approach was conducted in a segregating population of 41 
doubled haploid (DH) lines to study agronomic important 

seed quality parameters. Assuming that the most signifi-
cantly different expressed genes were cis-regulated, a selec-
tion of genes was subjected to synteny analyses. This en-
abled the positioning of genes with biological relevant link-
age to phenotypic traits in a species for which full genome 
sequence is not available yet.  

 In the absence of genome-wide micro-arrays, expressed 
sequence tag (EST) libraries allow the construction of spe-
cies specific sub genome-scale microarrays. In maize, cell-
wall digestibility, which is the major target for improving the 
feeding value of forage maize, was analyzed in a RIL popu-
lation [62]. In addition forty extreme RIL lines were hybrid-
ized on a small microarray with 439 preselected candidate 
ESTs for cell-wall digestibility genes for which 89 eQTLs 
could be mapped. One eQTL hotspot collocated with a cell-
wall digestibility related QTL [62]. The application of ge-
netical genomics approaches can be of special interest here 
when the detection of eQTLs is combined with ASE assays. 
The thus identified cis-regulated genes can then be posi-
tioned on the genetic map where they may serve as candidate 
genes underpinning phenotypic QTLs.  

 An interesting alternative for species for which no (EST) 
sequence information is available at all, and hence no mi-
croarrays can be produced, is a gel-based cDNA-AFLP ap-
proach [64]. Here AFLP band intensities, reflecting expres-
sion differences, are profiled for a large proportion of the 
transcribed gene pool enabling standard eQTL analyses pro-
cedures. AFLP bands showing significant eQTLs can subse-
quently be sequenced to obtain the identity of the gene from 
which the fragment derived. Additionally, the cDNA-AFLPs 
can be used to construct a genetic map.  

 The examples given above show that genetical genomics 
is not necessarily restricted to model species but can be ap-
plied to any species in which experimental crosses are possi-
ble even in the absence of genomic sequence or genetic map 
information. The potential of combining phenotypic QTL 
analysis with gene expression traits is shown in a number of 
economically important species, e.g. Populus [57], cotton 
[58], rice [59] and sunflower [60]. The application of geneti-
cal genomics is particulary promising in breeding programs 
of crops that take advantage of hybrid vigour. The eQTLs 
involved in heterosis will segregate consistently in a F1 back-
cross population thereby identifying valuable targets for 
marker assisted breeding for the best combination of alleles 
in the parents of the hybrid [65]. 

4. NETWORK RECONSTRUCTION 

 Genetical genomics harbors the potential to dissect the 
genetic regulation of a specific biological process. Therefore, 
methods to reconstruct regulatory networks from eQTL data 
have obtained much attention. Prioritizing on cis-eQTLs that 
collocate with a phenotypic QTL is a valuable approach for 
causal gene discovery, but in many cases little is known 
about the global regulation, interaction and function of genes 
that control a biological process. Identification of a set of 
genes with a trans-eQTL at an identical position can help to 
dissect genetic variation that is influencing an entire pathway 
and can lead to the identification of initiating polymorphisms 
upstream in a network [66]. Questions about the regulatory 
level at which trans polymorphisms act in the global gene 
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expression network and what their effect is on phenotypic 
variation and heritability can only be addressed when eQTLs 
are further dissected.  

 With a genetical genomics approach one can use the 
natural genetic variation as a source of perturbations to elu-
cidate the structure of networks. In a summation approach 
eQTLs for all genes in the analysis are simply superimposed 
to identify common regions which control many genes [14]. 
Such an approach does not require any a priori network in-
formation but applies subsequent Gene Set Enrichment 
Analysis (GSEA) using gene onthology (GO) annotation or 
other descriptors to test whether selected genes share a 
common biological function [67]. If the network under study 
is largely known or at least predicted, an a priori analysis 
can be performed. Here, the expression levels of individual 
genes in the network are converted into a common measure 
for the expression level of the entire network which is then 
used as the trait for QTL analysis. This strategy was tested in 
an Arabidopsis RIL population for 20 gene expression net-
works and resulted in statistically significant network varia-
tion for eighteen of the 20 predefined networks [68]. Com-
bining summation, GSEA and a priori network analyses 
allows the generation of a more specific hypothesis about 
phenotypic effects of network eQTLs. In a study using 175 
genes, selected to be involved in regulation of flowering and 
circadian rhythms, 83 genes showed an eQTL [22]. By com-
bining co-expression analysis, which becomes feasible for 
microarray compendia of large populations, and positional 
information of genes and their eQTLs, it was possible to 
construct regulatory networks of key-regulators and their 
target genes, predicting unknown relationships and confirm-
ing common knowledge. 

 Pre-selection of known pathways can obviously hinder 
the elucidation of novel networks in a species, for which 
much effort is made to develop methods to translate eQTL 
data into network information using an a posteriori ap-
proach. As the precise balance of active components within a 
tightly controlled biological pathway is in part maintained by 
coordinately regulated gene expression, this creates possi-
bilities to model networks by exploring co-expression of 
untargeted genes. To validate this hypothesis, gene expres-
sion in liver from a population of 60 mice with variation in 
diabetes susceptibility was analyzed [69]. The combination 
of correlation analysis across a genetic dimension and link-
age mapping enabled the identification of regulatory net-
works, functional predictions for uncharacterized genes and 
characterization of novel members of known pathways. A 
similar approach in Drosophila, complemented with infor-
mation about gene ontology, tissue specific expression and 
transcription factor binding sites, led to the construction of 
multiple interconnected networks with biological relevance 
for phenotypic traits [70].  

 Understanding the mechanisms underlying trait regula-
tion requires the identification of specific causal polymor-
phisms. For this purpose sophisticated self-learning algo-
rithms have been developed which make use of conserva-
tion, type and position of a particular SNP to prioritize 
causal regulators by estimating the likeliness that it plays a 
causal role in gene expression variation [71]. Extending such 
approaches might also provide the means to distinguish 

whether variation in gene expression or a regulatory network 
is the cause or a consequence of an altered phenotype, result-
ing in the construction of probabilistic directional networks 
[72]. Defining such causal networks is also known as reverse 
engineering, because it aims at understanding how the sys-
tem works as an integrated whole instead of only defining 
the functionally related components. 

5. NEXT LEVEL NETWORKS: INTEGRATION OF 

OTHER ‘OMICS’ DATA 

 Although phenotypic variation can be partly explained by 
genetic variation in gene expression, this alone does not fully 
cover the possible differences in the regulatory mechanisms 
of an organism. Similar transcript levels of allelic gene vari-
ants can still result in varying protein levels because of vari-
ance in translational activity, protein degradation and post-
translational modifications [73]. Furthermore, variation in 
coding sequences can alter protein function resulting in a 
flexible metabolome in terms of chemical structure and func-
tion [74]. Integrating ‘omics’ data such as gene expression, 
SNPs, metabolomics and proteomics in genetic studies can 
therefore reduce the number of candidate genes for a given 
QTL from hundreds to a manageable list without excluding 
regulatory mechanisms a priori. Because of the analytical 
complexity in analyzing large numbers of protein samples, 
genetical proteomics studies are limited (e.g. [75]) but ad-
vances made in biochemical detection have already enabled 
the large-scale untargeted genetic analysis of metabolic con-
tent [76-78]. 

 The complex relationship between different levels of 
regulation was illustrated in a study integrating parallel QTL 
analyses of the expression of genes, activity of encoded en-
zymes and metabolites involved in primary carbohydrate 
metabolism [79]. It could be shown that regulation acted on 
each of the intermediary levels of the path from genotype to 
phenotype. Although seemingly specific independent regula-
tion could be observed for each analyzed trait, a strong inter-
connectivity existed between them resulting in coherent sys-
tematic differences between population individuals. 

 The importance of the tight regulation of such an essen-
tial component in plant development as primary metabolism 
was also demonstrated in an Arabidopsis RIL population 
where plant biomass was related to the metabolic profile 
[80]. Again, no relationship could be observed between indi-
vidual metabolites and plant growth but a strong canonical 
correlation was observed between biomass and a specific 
combination of metabolites in central metabolism. The 
power of large-scale metabolomic profiling combined with 
detailed morphological analysis was also shown in tomato 
[77]. Significant QTLs could be detected for the accumula-
tion of a large number of primary metabolites together with 
loci that modify yield-associated traits. With this information 
a correlation network revealing associations between pheno-
type, metabolic content and nutritional value could be gener-
ated. These studies show that analyzing phenotypic traits and 
metabolic profiles in a genetic mapping population has great 
potential for the generation of biomarkers in breeding pro-
grams. 

 Whereas primary metabolites are essential in central me-
tabolism governing growth and development, plants also 
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accumulate large amounts of secondary metabolites. These 
are believed to be less essential but may play an important 
role in the adaptation of plants to local environments. Since 
Arabidopsis can be found in a wide variety of habitats, varia-
tion in secondary metabolism might explain much of the 
evolutionary success of the species. A large untargeted 
screen of variation in secondary metabolic composition in-
deed revealed a high proportion of genetically controlled 
compounds [76]. The highly flexible nature of the me-
tabolome was clearly shown by the fact that more than one-
third of the compounds present in the RILs were not detected 
in either parent but were the result of recombination in bio-
synthesis pathways. The genetic information obtained from 
such studies is of great value for the construction of molecu-
lar biosynthesis networks, especially if they can be combined 
with expression data. 

 This strategy was applied in the genetic analysis of glu-
cosinolate biosynthetic networks which were studied at both 
the transcriptional and metabolic level [81]. In all cases, 
variation in gene expression also affected the accumulation 
of metabolites but epistasis was detected more frequently for 
metabolic traits as compared to transcript traits. Within such 
an a priori defined framework it was possible to identify and 
unravel complex regulatory mechanisms like metabolic feed-
back loops in which metabolic content regulated gene ex-
pression and vice versa.  

 The examples discussed here highlight the technological 
advances made in high-throughput characterization of the 
transcriptome, the proteome and metabolome which enables 
an integrated multidisciplinary approach to unravel the regu-
latory mechanisms involved in natural variation of complex 
traits.  

6. FUTURE CHALLENGES 

 Although much progress is being made in understanding 
the influence of genetic factors on a biological system we 
still have limited understanding of the interplay between 
environment and genetic factors. The discovery of molecular 
networks with genetical genomics approaches is often lim-
ited to a single experimental condition. An interesting con-
cept, called generalized genetical genomics, studies con-
trolled environmental perturbations combined with genetical 
genomics [82]. This generalization of genetical genomics 
will detect how the response to environmental changes is 
influenced by the genotype (i.e. genotype x environment 
interactions). Here, spatial and temporal variation can also be 
regarded as different environments since specific tissues and 
developmental stages often determine the biological context 
in which regulatory networks function. 

 The advances in next generation sequence technology 
will continue to produce huge amounts of sequence data. 
Good examples are the human 1000 [83] and the 1001 
Arabidopsis [84] genome projects which aim at resequencing 
over 1000 different humans and accessions respectively. 
However, de novo sequencing of economically important or 
phylogenetic strategically chosen species is of equal impor-
tance. The accumulation of genomic information, in combi-
nation with genetical genomics approaches, will enable the 
precise definition of functional important polymorphisms 
and their role in adaptation to changing environments and 

species formation. Having access to complete genome se-
quences also enables the generation of full genome tiling 
arrays for different (crop) species, which have been proven 
to be very useful for expression profiling [85, 86]. When 
used within a genetical genomics approach this offers unique 
features to elucidate the genetics behind the mechanistic ba-
sis of transcriptional differences. For Arabidopsis for in-
stance, a SNPtile microarray was developed harboring tiling 
probes covering both strands of the genome and in addition 
probes for genome-wide detection of SNPs and CpG methy-
lation [38]. A properly designed genetical genomics study 
using such arrays might reveal genetic variation for gene 
expression, alternative splicing, regulation of cis-natural an-
tisense transcripts, allele specific expression and epigenetic 
regulation.  

 As a result of developments in SNP-discovery and plat-
forms for genotyping large collections of individuals, the 
application of Linkage disequilibrium (LD) mapping for 
complex traits has become within reach. LD or association 
mapping detects the non-random inheritance of alleles at 
separate loci located on the same chromosome. In an ex-
perimental F2 or RIL population the genetic variation is lim-
ited to the extent of natural variation present in the parental 
lines and resolution depends on the recombination frequency 
within and size of the population. In contrast LD mapping 
makes use of large collections of natural (wild) accessions or 
elite breeding lines, sampling a much larger fraction of the 
natural variation present within a species. Moreover, it bene-
fits from the much higher frequency of recombination events 
accumulated during the evolutionary history of a species 
allowing higher resolution mapping [87]. The extent of LD 
varies between species and traits analyzed but the gain in 
resolution relative to experimental populations lies in the 
order of magnitudes, equally increasing the need for dense 
marker spacing to enable genome wide scans [88]. This high 
number of necessary markers has always been a big limita-
tion for LD mapping but next generation sequencing will 
tremendously increase the available number of markers. 
Therefore, we see great potential for phenotyping and ex-
pression profiling of LD populations to detect causal genes 
for natural variation and enable marker-assisted selection in 
breeding programs. 

7. CONCLUDING REMARKS 

 Since its introduction the concept of genetical genomics 
has proven to be a powerful approach to dissect genetic 
variation. Studies in crop species revealed major cis-eQTLs 
which collocated with important phenotypic traits and there-
fore will facilitate faster crop improvement. The genetical 
genomics studies in model species help to understand the 
extent of genetic variation and much effort is spent to de-
velop statistical tools for building and elucidating causal 
networks. Recent developments of inexpensive high-
throughput sequencing techniques and next generation tiling 
microarrays will soon create opportunities to extend geneti-
cal genomics to unravel the genetic variation of gene expres-
sion, alternative splicing, allele specific expression and epi-
genetic polymorphisms. Similarly, continuing technological 
developments have increased the power of both proteomic 
and metabolomic approaches. Integration of phenotypic, 
genetic, transcriptomic, proteomic and metabolomic data 
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will enable accurate and detailed network reconstruction. 
This will ultimately result in the elucidation of the molecular 
pathways involved in complex phenotypic traits. 
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