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ABSTRACT

Habituation is an adaptation seen in many organisms, defined by a reduction in the response to repeated
stimuli. Evolutionarily, habituation is thought to benefit the organism by allowing conservation of
metabolic resources otherwise spent on sub-lethal provocations including repeated cold exposure.
Hypermetabolic and/or insulative adaptations may occur after prolonged and severe cold exposures,
resulting in enhanced cold defense mechanisms such as increased thermogenesis and peripheral
vasoconstriction, respectively. Habituation occurs prior to these adaptations in response to short dura-
tion mild cold exposures, and, perhaps counterintuitively, elicits a reduction in cold defense mechanisms
demonstrated through higher skin temperatures, attenuated shivering, and reduced cold sensations.
These habituated responses likely serve to preserve peripheral tissue temperature and conserve energy
during non-life threatening cold stress. The purpose of this review is to define habituation in general
terms, present evidence for the response in non-human species, and provide an up-to-date, critical
examination of past studies and the potential physiological mechanisms underlying human cold
habituation. Our aim is to stimulate interest in this area of study and promote further experiments to
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understand this physiological adaptation.

Introduction

Human beings, when exposed to cold environments,
exhibit a range of adaptations that are dependent on
the number, duration, and severity of cold exposures.
The primary adaptations that have been documented
include a) hypermetabolic, b) insulative, and c) habi-
tuated responses [1,2]. A hypermetabolic adaptation
has traditionally been defined as an enhancement in
metabolic heat production, often through increased
shivering thermogenesis, though the data supporting
this type of response are sparse [3]. Recent data suggest
that non-shivering thermogenesis may be a part of this
increased heat production. An insulative adaptation is
characterized by a greater degree of cutaneous vaso-
constriction, resulting in lower skin temperatures and
a reduction in peripheral heat loss. Insulative and
hypermetabolic adaptations to the cold are not fre-
quently observed in modern society as humans today
typically engage in behavioral thermoregulation aided
by the development of modern clothing, heated build-
ings, and vehicles that allow for the maintenance of
thermoneutral microenvironments and comfort in

the winter months. Interested readers are referred to
excellent reviews for additional information on hyper-
metabolic and insulative adaptations to chronic cold
stress [1,2,4,5].

The specific focus of this review is cold habituation,
the most prevalent cold adaptation in modern society
due to a comfort-driven reluctance to expose more
than small body segments to the cold during winter
months. Habituated responses to cold exposure are
typically observed in environments that elicit cuta-
neous cooling, but no decline in core temperature,
provoked either by brief or mild whole-body or loca-
lized cold exposures [1]. Cold habituation is marked
by and defined as an attenuated (i.e., a smaller
increase in) cutaneous vasoconstriction and/or meta-
bolic heat production. Other physiological changes
with habituation include a blunted blood pressure
(BP) response and decreased catecholamine release
[6-8]. Cold habituation also results in a reduced sen-
sation of cold, such as when a mild day (10-15°C)
seems far warmer in Spring versus Autumn.
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The following are definitions of the general terms
used in this review, as defined by the International
Union of Physiological Sciences [9]. The term adapta-
tion is used to describe “changes that reduce the
physiological strain produced by stressful components
of the total environment”. The terms acclimation and
acclimatization are often used interchangeably to refer
to any adaptive change which occurs due to prolonged
or repeated exposure to a stressful environment, and
which reduces the strain or enhances endurance of
strain in that environment. The terms differ slightly in
that acclimation refers to experimentally driven or lab-
based exposures, while acclimatization refers to nat-
ural exposures due to climate, season, or location.
Habituation is defined as a “reduction of responses
to or perception of a repeated stimulation.” In the
context of this review, adaptation will be used as a
general term, acclimation and acclimatization will be
used to differentiate exposure type within the profiled
studies, and habituation will be used to describe a
reduction in the typical responses observed during
acute cold exposures.

The purpose of this review is to generally define
habituation, present evidence for the response in
non-human species, and, most importantly, pro-
vide an up-to-date, critical examination of past
studies and the potential physiological mechan-
isms underlying human cold habituation.
Exploring such adaptations to cold environments
may be important for specific populations includ-
ing the military, outdoor workers, and athletes.
Our aim is to stimulate interest in this area of
study and promote further experimentation to
broaden our physiological understanding of cold
habituation.

General habituation

Traditionally, habituation has referred to a
diminution of nervous system responses to
repeated stimuli. Repetition of a sensed stimulus
often results in a reduced autonomic response and
blunting of efferent output of the central nervous
system. This autonomic blunting results from a
decreased perception of the repeated stimulus,
which is thought to allow the organism to filter
out irrelevant input to focus on more important
stimuli. Habituation has also been described as a
basic “learning” or memory process, one where the
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organism naturally learns what is not harmful in
order to increase survivability [10]. It is likely that
many habituation responses are evolutionarily pre-
served as a protective mechanism to reduce phy-
siological ~burden.  Habituation to  stress,
particularly activators of the hypothalamic-pitui-
tary axis (HPA) and sympathetic nervous system
(SNS) (e.g., restraint, novel environment, water
immersion, noise, and psychosocial stress), are
consistently observed in both animals and humans
[11,12]. Activation of stress systems are metaboli-
cally costly and can be deleterious for health and
survival if overactive; thus, habituation to
repeated, homotypic stressors may conserve
energy and resources by attenuating responses to
non-life threatening stressors while maintaining
responsiveness to unique stimuli [12].

An early description of habituation came from
Sokolov in 1963 [13], in which he described a
diminished orientation reflex after repeated com-
plex stimuli and an instantaneous response recov-
ery upon altering the stimulus. Thompson and
Spencer [14] expanded upon Sokolov’s work to
further describe this phenomenon, which included
a set of characteristics that were common among
previous studies examining habituated responses.
Thompson and Spencer defined habituation as an
exponential decline in the response to repeated
stimuli which recovers over time if the stimulus
is removed. They postulated that if the stimulus is
repeatedly applied and removed, habituation takes
place at a faster rate during each series, and often
responds faster to weaker and more frequent sti-
muli. Habituation may eventually result in a zero
or asymptotic response but can be instantly recov-
ered if the stimulus changes or a new, stronger
stimulus is applied.

Sokolov [13] and Groves and Thompson [15]
theorized that habituation occurs via a central
process, in which the combined responses of sev-
eral neurons and interneurons dictate the final
response. Sokolov described this system as consist-
ing of afferent, extrapolatory, and comparator
neurons. Within the system, comparator neurons
compare the afferent signal of the incoming sti-
muli with the previous response of the extrapola-
tory signal to determine the organism’s final
response [13]. Groves and Thompson’s “Dual-
Process Theory” similarly theorized that the
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combined effects of habituation (reduced
response) and sensitization (amplified response)
interneurons determine the final efferent outcome
[15]. Another model of habituation is
Ramaswami’s “Negative Image Model”, which pro-
poses that the brain creates an inhibitory image of
repetitive stimuli and uses this to predict incoming
stimuli and suppress the signal to higher regions of
the brain, thus limiting the response [16]. The
convergence of these habituation models is that
single neurons or a neural network possess the
ability to suppress the input of afferent signals to
higher brain centers, thus inhibiting downstream
signals and reducing effector responses [13,15-17].

Cold habituation in non-human organisms

Examples of cold habituation are found across the
evolutionary spectrum and point to a conservation
of the response. Species as varied as fruit flies,
roundwormes, rats, and sheep have been shown to
exhibit cold habituation. These studies of non-
human organisms give insight into the mechan-
isms that may play a role in human cold
habituation.

In Drosophila melanogaster, studies have tested
the fly’s ability to recover following a 0°C air
exposure after growing in temperatures of 12, 14,
17, 21, 25, 28 and 31°C [18]. No differences in the
country of origin (Kenya vs. France) were found in
the fly’s ability to recover after developing in
colder air temperatures, suggesting that phenoty-
pic adaptations to cold exposure in Drosophila
melanogaster are plastic and more important than
genetic variability. Several explanations were given
by the authors, one of which is that the adaptation
may be a by-product of general functional changes
related to growth temperature, such as an increase
in the level of unsaturated fatty acids and thus an
ability to maintain cell membrane fluidity and
normal cell function. However, it is possible that
Drosophila melanogaster innately possessed the
ability to adapt to the cold. Despite evolutionarily
being an African native, fruit flies were exposed to
low temperatures in the African mountains before
migrating to more temperate regions. Thus,
although there is the idea that adaptations to
cold must have occurred once in Europe, the
machinery for this adaptation may have already

existed. In some ways, this is similar to the idea
that human beings did not adapt to the cold until
migrating to colder climates. However, classical
experiments demonstrated cold adaptations in
Kalahari Bushmen [19], suggesting that, as in the
fruit fly, humans who migrated from Africa to
other regions may have already possessed the abil-
ity to physiologically adapt to cold climates.

Much work has also been done with the nema-
tode, Caenorhabditis elegans (C. elegans). This
roundworm lives in temperate environments (e.
g., Scandinavia and the northern United States)
and is subject to relatively low temperatures dur-
ing the year. A number of studies examined the
mechanistic underpinnings of cold habituation
and tolerance in C. elegans. The pathways for
cold habituation in C. elegans are quite varied
and complex with light and pheromone sensing
neurons, known as AS] neurons, implicated in
rapid (2-3 hours) cold habituation and tolerance
[20]. When C. elegans lives at 20 or 25°C and is
acutely placed into a 2°C environment, most
worms do not survive. However, if the nematode
is placed in a 15°C environment for 2-3 hours,
exposure to 2°C air does not kill the worm and
results in close to a 100% survival rate. Multiple
signaling pathways have a role in this reaction,
beginning with cold being sensed by AS] neurons
which in turn leads to a cascade of events regulat-
ing the response. Cold exposure increases DAF-
16/FOXO expression and positively regulates habi-
tuation through gene expression of the delta-9
desaturase gene, which is important for cold toler-
ance in many animals [20]. Other potential regu-
lators of the cold response in C. elegans are
degenerin/epithelial Na+ channel (DEG-1)
mechanoreceptors, endoribonuclease, and potas-
sium channels [21]. Identifying such regulators of
cold tolerance in C. elegans may be useful in
understanding temperature habituation in other
animals.

Small mammals also demonstrate physiological
adaptations to prolonged cold exposure [22].
When rats are housed in a 5°C environment for
6 weeks, the sensitivity of central and peripheral
thermoreceptors that are responsive to low tem-
peratures decreases while the sensitivity of those
receptors responsive to warm temperatures
increases [22]. These findings are consistent with



observations that organisms allow for a greater
reduction in core temperature before activating
cold defense responses. In cold-adapted cats (5 vs
30°C ambient air), the average dynamic peak fre-
quency of nasal cold fibers during a 5°C cooling
perturbation is significantly reduced compared to
non-adapted cats [23]; however, this change in
thermoreceptor activity has only been observed
following long term (~4.5 yrs) cold exposure and
not short-term (2 mos.) cold exposure [24,25].
Nonetheless, these studies raise the question as to
whether reduced sensory input or thermoreceptor
sensitivity contribute to the blunted thermoetfec-
tor responses in humans.

Slee et al. studied cold habituation in sheep
during three 2-week treatment regimens: continu-
ous exposure to 30°C air, continuous exposure to
8°C, and finally intermittent cold shock, which
consisted of 30°C air exposure disrupted by brief
—-10°C air exposures. During and at the end of
these conditioning treatments, the sheep also
received two acute cold air exposures at —20°C.
They found that the sheep continuously exposed
to 8°C exhibited vasoconstriction at a lower skin
temperature, perhaps indicative of a peripheral
habituation. In contrast, the sheep exposed inter-
mittently to more severe temperatures, had a
reduced shivering response, suggestive of a cen-
trally-mediated metabolic habituation [26].

This brief presentation of animal studies gives
insight into the various mechanisms that may be
involved in cold habituation across different spe-
cies. The exact mechanisms that mediate these
responses, and whether habituation of responses
to the cold are an evolutionary mechanism innate
in all species, remains to be determined.

Human physiological responses to acute cold
exposure

To provide a foundation from which to character-
ize cold habituation, this section gives a brief over-
view of the typical human physiological responses
to acute cold exposure. The primary responses for
regulating body temperature during acute cold
exposure include cutaneous vasoconstriction and
increased thermogenesis (Figure 1). The initial
physiological response to a cold environment is
skin vasoconstriction, which decreases skin blood
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flow and lowers skin temperature. By reducing
convective heat transfer between the body’s core
and shell (skin, subcutaneous fat, and skeletal
muscle), peripheral vasoconstriction increases
thermal insulation and protects against a fall in
deep body core temperature. Vasoconstriction
occurs when skin temperature decreases below
35°C and is maximal when skin temperature is
31°C or less [27].

Another vasomotor response, cold-induced
vasodilation (CIVD), exists in acral skin regions
(e.g., palmar aspects of the hands and sole of the
foot) and modulates the effects of vasoconstriction
[28,29]. Periodic fluctuations of skin temperature
follow the initial decline during cold exposure,
resulting from transient increases in blood flow
to cooled digits. Evidence suggests that CIVD is
protective against local cold injuries [30-32],
although evidence linking CIVD response to pre-
diction of injury is equivocal [33,34]. The response
is modulated by changes in deep body temperature
[35-37], but data remain inconclusive on the exact
mechanisms that mediate CIVD, as there appears
to be evidence for both central [38] and peripheral
[39] mediation.

Acute cold exposure also elicits an increase in
metabolic heat production. In humans, most cold-
induced thermogenesis is attributable to skeletal
muscle contractile activity. Humans initiate this
thermogenesis either by voluntarily modifying
behavior, that is, increasing physical activity (e.g.,
exercise, increased fidgeting), or by shivering.
Shivering, which consists of involuntary repeated
rhythmic muscle contractions during which most
of the metabolic energy expended is liberated as
heat and little external work is performed, may
start immediately or after several minutes of cold
exposure, and is initiated by a decrease in skin
temperature, with a fall in core temperature pro-
viding the greatest stimulus. Shivering usually
begins in the torso muscles, then spreads to the
limbs [40]. The intensity and extent of shivering
vary according to the severity of cold stress (e.g.,
air or water exposure, change in core tempera-
ture). Heat production during shivering is about
200 to 250 W during resting exposure in cold air
but often exceeds 350 W during resting immersion
in cold water [41]. Humans can additionally
increase metabolic heat production by non-
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Figure 1. Regulation of physiological thermoeffector responses
to cold exposure. Decreases in mean skin temperature and core
temperature are sensed by peripheral (skin) and central ther-
moreceptors. Cutaneous and central afferent signals are inte-
grated in the preoptic area of the hypothalamus, which elicits
insulative (heat-conserving) and metabolic (heat-generating)
thermoeffector responses. Sympathetic signals descending
from the pre-optic area mediate cutaneous vasoconstriction
and non-shivering thermogenesis, while descending somato-
motor signals activate shivering thermogenesis. POA, preoptic
area; T, core temperature; Ty, skin temperature.

shivering thermogenesis (NST). A series of papers
[42-44] revealed that humans have brown adipose
tissue (BAT) that becomes active upon cold expo-
sure. NST also occurs in skeletal muscle. While
this review will describe the broader adaptive
changes in NST following repeated cold exposure,
readers are directed to excellent in-depth reviews
by van Marken Lichtenbelt and Schrauwen,
Blondin et al., and Carpetier et al. [45-47] for
additional information on the metabolic and mole-
cular pathways of NST in cold-exposed humans.
Reflex thermoregulatory responses to cold expo-
sure are produced by a series of integrated neural
mechanisms. Afferent signals from the skin are
sensed in the preoptic area of the anterior
hypothalamus, from which efferent signals arise
causing cutaneous vasoconstriction and shivering
thermogenesis [48]. Cutaneous vasoconstriction
and NST are mediated by the sympathetic nervous

system and downstream adrenergic and noradre-
nergic mechanisms, whereas shivering thermogen-
esis is driven by the somatic motor system (Figure
1). The control of these efferent responses during a
reduction in mean body temperature (integration
of core and skin temperature) is depicted in Figure
2. The threshold is defined as the temperature
point where the effector response is initially acti-
vated, whereas the sensitivity of the response is
denoted by the slope of the mean body tempera-
ture to effector response. A shift in the response
threshold is often considered to be the result of a
central modulation, whereas a change in the
response sensitivity reflects modulation at the per-
ipheral level (i.e., the cutaneous microvasculature)
[49-52]. Changes in either the threshold or slope
of the vasoconstrictor or shivering responses are a
hallmark of adaptive responses to cold. In the
context of habituation, higher skin temperatures
and reduced shivering thermogenesis are likely

Sensitivity

Threshold

Cutaneous Vasoconstriction
Shivering Metabolism

Change in mean body temperature (°C)

Figure 2. Representation of the thermal effector response (vaso-
constriction, shivering) to a change in mean body temperature
(AMBT) relationship. As mean body temperature decreases a
thermal effector response (e.g., shivering) is elicited and
increases (line A). The inflection point where this increase occurs
is the threshold. The slope of the effector-AMBT relationship
represents the sensitivity of the response. Line B denotes a
response where the threshold is shifted, such that a thermal
effector response does not occur until a larger AMBT occurs. In
Line C, there is no threshold shift, but a change in the sensitivity
of the response. For this example, line C denotes a greater
sensitivity to a AMBT, that is, there is a greater effector for a
given AMBT. Line D denotes both a threshold and sensitivity
change. Reproduced from Castellani and Young, 2016 [2].



due to an increased threshold (i.e., delayed onset
due to a greater change needed to elicit the
response) and/or a reduced slope (i.e., lower sensi-
tivity) of the cutaneous vasoconstrictor and shiver-
ing effector responses.

Acute cold exposure also causes changes in
other physiological systems, including the cardio-
vascular system. The common response that
occurs over different types of cold exposure
(whole-body air and water, hand immersion) is
an increase in mean arterial pressure (MAP),
which is primarily mediated by an increase in
total peripheral resistance [53,54]. Furthermore,
prior and concurrent to vasoconstrictor and meta-
bolic thermoeffector responses, an immediate car-
diorespiratory response occurs during accidental
cold water immersion and is known as the cold
shock response (CSR). The CSR is characterized by
a large gasp for air followed by an acute increase in
cardiovascular (HR, MAP) and respiratory (tidal
volume, breathing frequency) responses [55,56].
As cold water exposure continues, vasoconstrictor
and shivering responses are increasingly engaged
to defend body core temperature.

Habituation in cold air

Habituation of peripheral and metabolic responses
to cold occurs most often during repeated moder-
ate cold air exposures. Due to its lower conductiv-
ity, cold air cools the body much slower than cold
water at the same temperature, therefore creating a
milder cooling environment. It is this less severe
environment that likely allows for habituation of
physiological effector responses, rather than sys-
temic insulative or hypermetabolic adaptations.

Natural cold air exposure

Cold habituation has been a hallmark response in
individuals who live in cold regions of the world.
Studies in Inuits and Lapps have demonstrated a
blunting of both the metabolic and peripheral
responses to cold air exposure, compared to con-
trol subjects. Specifically, studies have observed
higher hand blood flow [57], finger temperatures
[58], and forearm blood flow [59] in Inuits during
cold water and cold air exposure, all suggestive of
an attenuated vasoconstrictor response to cold in
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individuals living in cold regions year round, but
with access to warm clothing and shelter protect-
ing them against large decreases in core tempera-
ture. The Lapps have also been shown to have
higher skin temperatures as well as a shift in shi-
vering threshold [60] in lower ambient tempera-
tures, while native Peruvians who experience low
temperatures in coastal and highland regions show
higher finger temperatures linked to earlier CIVD
cycle onset, higher initial cycle onset temperatures,
and a greater number of rewarming cycles [61].
Multiple studies have also been completed on
indigenous people who live in relatively temperate
environments but experience low temperatures at
night due to insufficient clothing or shelter to
protect them. Experiments conducted on indigen-
ous Australians, for example, showed a shivering
habituation [62-64], compared to control subjects.
Likewise, indigenous South Africans showed a
similar habituation of the metabolic response
[1,65]. Table 1 contains a summary of studies on
cold habituation in indigenous populations.
Short-term studies of repeated or continuous
cold air exposure within subjects have similarly
resulted in habituation of heat-conserving thermo-
effector responses. Bruck et al. exposed a group of
minimally-clothed students to air temperatures
that varied between —5 and 5°C, based on indivi-
dual resilience, for 1 hour on 4-7 occasions over
14 days [66]. In the same study, the investigators
observed soldiers who trained and slept in the cold
for 10 days in temperatures varying between —2
and 12°C. Of the student volunteers, 54% experi-
enced a hypothermic habituation, i.e., a lower core
temperature, reduced cold sensation, and blunted
metabolic response with a delay in shivering, 23%
showed only a metabolic habituation, and 23%
showed no changes [66]. Of the soldiers, 44%
showed habituated metabolic and cold sensation
responses. The habituated metabolic response was
more frequently observed in the student group
than in the soldiers. The authors hypothesized
that the soldiers showing no changes may have
already been cold acclimatized prior to the experi-
ment, as their baseline shivering thresholds were
similar to the post-training shivering thresholds of
the adapted soldiers. Other group differences may
be attributed to differences in training load during
the experiment. Clothing may have also played a
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role as the soldiers were dressed in a field uniform
during the 10-day training exercise, whereas the
students wore a bathing suit during the resting
repeated exposures, potentially resulting in a
more severe cold stress.

A study by Muller et al. compared the responses
of cold weather athletes with those of less-acclima-
tized individuals during a standardized cold air
exposure. Through sport, the athletes
exposed to ambient temperatures between —8 and
7°C for about 2h/day in the winter months of
January-March, during which they trained for
about 30 min out of each 2 hour exposure. The
non-athlete student population trained a similar
amount of time per week, but were only exposed
to low temperatures during necessary outdoor
activities such as walking to class. Consistent
with a habituation-type adaptation, the athletes
had reduced cold pain, a blunted reduction in
hand temperature, and an attenuated metabolic
response during a controlled exposure to 5°C air
for 90 min, showing that the 2h exposures to
winter temperatures resulted in a habituated
response compared to the group of students who
were less exposed [67]. These observational studies
give evidence that habituation is a naturally occur-
ring adaptation to those who spend time outdoors
in low temperatures. A summary of longitudinal
natural cold air exposures can be found in Table 2.

were

Laboratory cold air exposure

Multiple studies have exposed individuals to low
temperatures in a controlled environmental cham-
ber to more closely examine the ability of humans to
adapt to cold environments over days, weeks, or
months (Table 3). Individuals exposed to cold air
(~12-13°C) for 8 h/day for 31 days, for example,
demonstrated significant reductions in shivering
and lower core temperatures in the cold [68].
Interestingly, seasonally acclimatized individuals
who were tested in March did not show a reduction
in total metabolic heat production, suggesting a
compensatory increase in NST. The minimally accli-
matized individuals who were tested in September or
October, on the other hand, had a higher baseline
heat production in the cold and demonstrated a
progressive reduction in total heat production to a
level that, after the 31 days, matched the seasonally

TEMPERATURE (&) 129

acclimatized individuals. Kreider et al. continuously
exposed a group of soldiers to 15°C for 14 days
wearing only shorts and observed higher toe tem-
peratures and lower core temperature at night when
soldiers were covered with a sheet and blanket. These
results are indicative of a peripheral adaptation in the
extremities, though the authors also recognized that
the higher toe temperature may have reflected a
greater post-ischemic reactive hyperemia [69].

In two studies investigating adaptations to
short, intermittent cold air exposures, one by
Leppaluoto et al. and the other by Makinen et al,,
participants were exposed to 10°C air for 2 h/day
for 10-11 days. Both studies reported attenuated
vasoconstrictor and BP responses, as well as a
decrease in cold thermal sensation [6,7]. Makinen
[70] also demonstrated a decreased metabolic
response, which agrees with findings by Silami-
Garcia and Haymes [71] who demonstrated an
increase in the time to onset of shivering and a
decrease in heat production in women exposed to
10°C air for 1 h/day for 10 days. A longer inter-
vention by Hesslink et al. exposed participants to
4.4°C air for 30 minutes, twice a day for 8 weeks
and, although a more severe air temperature, the
short exposure time resulted in a similar cold
habituation, including reduced BP and metabolic
responses with a delay in shivering thermogen-
esis [8].

Collectively, these studies show that the habi-
tuation of metabolic, vasoconstrictor, and sensa-
tion responses to cold air exposure can occur
following not only prolonged exposure, but also
repeated exposures that are short in duration (8h
or less) and under moderate cold conditions (0-
12°C).

Habituation in cold water

Adaptations to cold water exposure vary across dif-
ferent occupational and laboratory settings and often
demonstrate more variable types of adaptation based
on surface area exposed and duration of exposure.

Local cold water exposure

Habituation can be produced even if cold water
exposure is limited to relatively small regions of the
body. For example, fishermen and fish filleters work
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long hours every day with one or both hands
immersed in cold water, and have been shown to
maintain higher finger and hand temperatures and
lower systemic BP during hand immersion in cold
water compared to control subjects [72-74].
Slaughterhouse workers who handle cold meat tend
to show similar adaptations [75], although the adap-
tions are not as pronounced as the Gaspé fisherman,
likely due to a weaker stimulus. This suggests that
repeated cold exposure of the extremities can pro-
duce localized habituation of vasoconstrictor
responses. Another interpretation of these warmer
skin temperatures, suggested by Nelms and Soper
[74], is an adaptive enhancement of the CIVD
response, though more recent studies examining
the short-term adaptability of the CIVD response
are equivocal [29,76]. It is important to consider
that selection may play a role in occupationally
based studies such that those with enhanced physio-
logical mechanisms for coping with the cold may
have chosen this type of occupation due to their
increased ability to handle cold with less decrement
in comfort and function, rather than the repeated
cold exposures leading to habituated responses [29].
A summary of the responses to occupational cold
water exposure of the hands is presented in Table 4.

Habituated responses to repeated local cold
exposures have also been shown in the laboratory
(Table 5). Leftheriotis et al. immersed the hand
and forearm in 5°C water for 20 min on 30 con-
secutive days. The cold-adapted group showed
reduced cold sensation and higher skin tempera-
tures following 5 min of 5°C immersion [77].
Eagen explored local vascular adaptations to cold
in a controlled laboratory environment using 125
consecutive days of ice water immersion (0°C) of
the middle finger for 10 minutes, six times per day
[78]. Using the contralateral middle finger as a
control, no difference in finger temperatures were
present during immersion between the habituated
and control fingers following 125 days of repeated
exposure, although cold pain was markedly
reduced in the habituated finger. Interestingly,
comparison of the immersion response of this
contralateral control finger to the finger of com-
pletely non-habituated controls indicated an ele-
vated finger temperature, suggesting the 125 day
cold immersion protocol was sufficient to reduce
vasoconstrictor outflow to both the finger
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immersed in ice water as well as the contralateral
finger.

In the lower limbs, Savourey et al. examined
adaptations to 1 month of twice-daily partial leg
immersions (i.e., up to the thigh) in ice water (0-
5°C) that lasted until the participants reached their
pain threshold [79,80]. After the month of
repeated exposures, participants completed a stan-
dardized 5°C foot immersion, during which habi-
tuated responses were observed, including higher
skin temperatures and a smaller rise in BP.
Collectively, these studies point to the existence
of vascular adaptations in the extremities following
repeated local cold water immersion, though the
enhanced vasodilatory and/or reduced vasocon-
strictor pathways that contribute to this response
remain unclear.

Another subset of cold studies have been uti-
lized to study the ability to habituate to pain.
These studies typically involve a severe cold expo-
sure of 1-5°C of a peripheral body part (finger,
hand, foot) [81-84] and show that exposing indi-
viduals to multiple severe, short-duration cold-
water exposures can result in reduced pain sensa-
tion and an increased pain threshold. Similar
results were observed by Smith et al. when using
a thermode to stimulate cold pain [85,86].
Participants allowed the thermode to become on
average 1.7°C colder before reporting pain after
only 5 bouts. Though we have highlighted just a
subset of studies examining perceptual adaptations
to cold, this improvement in pain sensation
appears to be a consistent adaptation following
repeated cold exposure of the extremities.

Occupational whole-body cold water exposure

The physiological responses of the pearl divers of
Korea (Haenyeo) and Japan (Ama) are the best exam-
ple of adaptations to the chronic declines in core and
skin temperature experienced during occupational
cold water exposure. These women dive year-round,
with average water exposures ranging from 40 min in
28°C in the summer, to 15 min in 10°C in the winter,
repeated 2-3 times over the course of a day. Classical
divers had very little protection from the cold water,
wearing only a cotton bathing suit and therefore had
no external insulation from the environment. Due to
this lack of external protection, the Ama have been
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reported to have several adaptations to help protect
them from the cold. In the winter, the divers show a
30% higher basal metabolic rate when tested in ther-
moneutral conditions, and show a suppressed shiver-
ing response when immersed in cold water [87-89].
The divers have been reported to have increased tissue
insulation, yet are able to maintain a higher blood
flow in the lower arms and hands with less heat loss
while fully immersed. The authors suggest this is due
to “a more efficient countercurrent heat exchange
system in the limbs” through which blood may be
precooled before reaching the periphery. When only
the hand is immersed, the Ama demonstrate a lower
hand skin blood flow, yet show a slower reduction in
muscle temperature in the lower arm compared to
non-divers, thus giving more evidence to a redirection
of skin and muscle blood flow [88].

From these reports, we can see that long-term
systemic metabolic adaptations occur alongside
more complex peripheral vasomotor adaptions.
These divers are an especially unique population,
as full-body, severe, repeated cold exposure is a
rare occurrence in modern society. This popula-
tion was first studied in the early 1960’s and, five
decades later, data from Ama and Haenyeo volun-
teers are still being published. Recent work has
examined the de-acclimatization of older
Haenyeo divers following adoption of the wet
suit in the 1980’s. Perhaps not surprisingly, data
in these older female divers suggest they no longer
have the same general systemic thermoregulatory
adaptations that were observed in the cotton suit
wearing divers [90]. However, the wet suit wearing
Korean divers may have developed a habituated,
local vascular response, as they show greater mini-
mum and recovery finger temperatures during a
standardized cold water finger immersion [91].
Further examples of occupational cold water
immersion can be found in Table 6.

Laboratory whole-body cold water immersion

Several controlled laboratory studies have used
repeated water immersion over the course of at
least 4 weeks to elicit adaptations (Table 7). A
study by Lapp and Gee explored adaptations to
immersion by reducing the water temperature from
30 to 21.1°C over the course of 8 weeks [92]. Subjects
were fully immersed (including the head, with scuba

gear) twice per week for 1 h, with a reduction in
water temperature each week. Results indicated that
by the later immersions, subjects experienced less
frequent shivering even though the water tempera-
ture was lower than the beginning weeks, suggesting
habituation of the shivering response.

Radomski and Boutelier used an intermittent
adaptation protocol of 9 immersions over 14 days
in 15°C water for 25-40 min to pre-adapt partici-
pants before an Arctic excursion [93]. The pre-
adapted group showed a blunted decrease in skin
temperature during a 10°C cold air test prior to the
excursion, while also demonstrating reduced nore-
pinephrine (NE) excretion and cold sensations dur-
ing 16 days in the Arctic. The authors reported fewer
hormonal markers of stress in the pre-adapted group
even though the groups experienced the same envir-
onment (-27°C) and performed the same tasks
throughout the Arctic excursion, indicating that the
pre-treatment had indeed caused a habituation of the
cold stress response.

Golden and Tipton immersed participants for
40 min in 15°C water 10 times over 2 weeks and,
when tested in the same condition, observed
reductions in thermal sensation, HR, respiratory,
and metabolic responses with a delay in shivering
[94]. Stocks et al. immersed participants in 18°C
water for 90 min for 15 straight days and similarly
observed reductions in HR and metabolic
responses [95]. Taken together, these short-term,
laboratory-based, whole-body immersion studies
indicate that thermoregulatory responses, particu-
larly metabolic responses, exhibit habituation after
repeated cold water exposures.

In a longer protocol, Young et al. had participants
undergo 24 exposures to 18°C water for 90 min over
5 weeks and, when subsequently exposed to a 90 min
5°C cold air exposure, the investigators observed a
larger drop in core and skin temperature and a slight
delay in shivering, indicating an insulative-hypother-
mic adaptation [96]. In a similarly designed study,
Bittel exposed participants to 10-15°C water for 1-
3 h/day totaling 40 exposures over 8 weeks, observing
unchanged or blunted core temperature responses,
lower skin temperatures, and an increased overall
metabolic response with a delay in shivering, indicat-
ing an insulative-hypermetabolic adaptation [97].
These findings suggest that habituated peripheral
responses following short-term, repeated cold



TEMPERATURE 139

¥ Aep 01 | Aep SIQWIWIMS
woJy ulw L~ Aq pausyibua| awiy BulwwIMS paulwialap-49s Kep/xg ‘ainsodxa piepuels skep 9oueysip-buo [zsL]
‘kep ;1 01 pasedwod i UO ainssaid poojq dijolselp ul s + uoneAISSAO dAIssed |eulpniibuo JoL-01L ‘aunsodxa 92noeid snoiaaid umouun ueissny 4 L ‘W 9 usuniny
p|o> 01 uoneidepe-ssod
opinoid Aew Buiures) uoyiesew {(ewy UeI0Y O) [9AS] Jejiwis J.57-€T
e 1e) UOIIR|NSUI 1BJUOU PIIBAS|D 0) 3|C[RINCLINE SISWWIMS Jo saunjessdwial
93Ul UBY) | 9%0L~ J9M SI9UUNJ Y] Ul SIN|RA UONR|NSUl J91em uado
pale|ndjed ‘asuodsal dijogelsw Ul < 9)dsap SISWWIMS J.0€ SIBWWIMS (PunoJ-1E3A  SISWWIMS 3dUBISIP
3Y3 Ul UeY] J91SBY U/D,E0 |94 SIduUNI 3yl Ul > 1$91 [J AUl Ul INS WIMS B Bulieam uolsiswiwl D,6-17 ooMm Jad wy 0L Wems siswwims ‘buiuiesy -buoj 9 ‘sisuuni
JO ulWw G/ 1s414 9y} buunp ‘wisiueydsw Jejndsea e 0} pajeal 191em (ulw/w $°9) bunendin  Jo saunjessdwsl punoJ-1eak ul y9am Jad bBujuuni peos uelsip-buo) [Ls1]
9q Aew 1ey) sisuuni ul uondepe sAne|NsUl JIWUBYI0dAH  INO-pesy Jy g 1531 SdueIS|0] P|o) Jle :s;ouuny o wy QL L~ pabeiane siouuny) sieak G|~ 0 ‘sd13|yle I ZL J9pOpuassalq
Quo} uns
10J0WOSeA | ‘||esaAQ ‘suonenidny @A) obispun o) seadde buiyleq uonod
10U PIP BWY ‘SUISA [eIRdNS BIA UIN1DJ SNOUSA JO UOndel) | ul quapuadap
1 moJ} poo|q pue ainjesadws) umys 13bul{ NOD 03 pasedwod uoseas punoy Jeaf ainsodxa Apog-||ny jo NOD
ainjesadwa) SPSNW | PaulelUleW BWY ‘SUOSEIS SSODY  UIW 09—0€ J0) UOISISWWI puey )9 ,LT-0L SIY % T 01 ulw G| :2insodxa [euonednddQ 4 g ‘ewy uealoy 4 g [0S1] Mted
uondnpoid 1eay dljogelsw
Joulw yym pauleluiew 2] « :paziewlpde (€ ‘wsijogeiaw Aq $100q ‘sano0[b “1ns
10} pajesuadwod A|ny 10U S| SSO| 1B3Y SB 2| Ul 1 :d)eIpaWId)ul auaidoau buneam ‘sainjesadwal ,5°€-6T
(T 'ss0| 1eay d1esuadwod 01 91kl dIjogeldw | ue yum 1aw eas 91edi|das 01 Yieq pejood  Jo ainjesedwal umouuN JAIP [BNPIAIPUI JO SI9AIP eqgnds
10U S$S2J1S P|OD :pazijewWIddeUN (| :UOIBZIIBWIIOR JO UIS)IEd Ul SSAIP PJEPURIS + SIAID BIS [PWION  B3S wnwiully Yyibus| ‘skep Gi 10j uoisiswiwl Ja1em Ajleq [euoissajoiduou N € [611] 19]Sa1S
sbuipuld/syinsey ainpadoid bunsa plod aunessdwa] Y16ua uonenugey 9)dwes Apnis UIY
uonenlqgeH

"uolsiawwi Jd1em pjod Apog-sjoym [euofiednddoyjeinieN ‘9 djqel



140 B. R. YURKEVICIUS ET AL.

(panunuod)

I5)75%] « 13SIDI9XD JO ulw O 1Al

3y} oaul Ajuo buipuaixe ‘| ays 03 pasedwod
uiw oz puoAaq 1SMD ,,€ Y1 Jo aseyd

3534 9y} buunp asuodsas djusbowayy ul 1

9] 10 2] « :sdnosb yloq u|

uolsIawwWl ploysaiyl buuaiys

158 Bunnp QA 1 ‘s1algns swos ul pjod 01
asuodsal dijogedw uj | :dnoib diweukp sy uj
uolsidawwy pabuojoid 01 asuodsal

BuIPA> uiw g + Paleas ulw 09 8L~ Gl
‘g ‘| skep U0 (1SMD) SIS} SS41S J31eM-P|O)

pajeas adeds [EISODIBIUI i BYL 0} PISIBWIL|
SWN)sod buiwwims ‘(suolsiawwl 7| |e101) ¥1-6 pue /- skep [s6]
Ajuo Buueam Hp'gL U0 Ajlep suolsiaww] Jd3em-p|od dAIssed ulw 06 W Z SY201S

syuUNI} Bulwwims
Ajuo Bupeam 55|
suolsiaww| bunsay

Jljogelw 1 {(pjod 03 sasuodsal ‘[Inuiw ulw g AIans
1511 ‘|elul Ul 1) JOJWOod [ewWIdYY [eniul | J.1 Aq p3j00> Ja3EeM pasiawwi
‘BupBAIYS [erul Ul 1 ‘(| UBY) UOISIBWIWI 1se| Ul uoISISWWI [BNPIAIPUL  UBY) ‘Ulw Q| JOj Jdlem suoISIWWI J91em pjod bunisas ulw g dIym buisidIxd
1 SGL 1511} BY} J9AO UOIIR|IIUSA puUB UOISISWW] yoea 1noybnouy} udje} suBWRINSeIW  )G'GE—GE UOoISIDWW] 8 ‘suoISIaWWI] Pjoysalyl BULIBAIYS 7 SY9am ¢ | 8 ‘uoisiswiw] [¥6]
JO S G 1511} J9AO paplodas YH :dnoib dneys ayy uj :uol1eAIsqo anissed [euipnyibuo ploysaiyl buusalys J9AO suoIsIBWWI J91em plod Ino-peay | dAIssed N 8N 9L uap|on
(G = u) SSO| 1e3Y 1 B YUM paledosse
uonpnpoid 1eay dljogedw | (€) pue ‘(€ = u)
uondnpoid 1eay dijogesw Ul ssbueyd noyum
sso| 183y 1 () ‘(L = u) SSO| 1e3Y JO uoleLeA
Aue Jnoyum wsijogeiaw ur | (L) :swsiueydsaw HY
931y) Aq 193p 1e3Y Jo 1 ‘ANjesInauowiayl %0 ‘s/w g0 Paads puim “Jie D01 Ul SHUNJ}
ur 91 1t ‘BupsAlys jo 13suo e 9] 1 ‘BundAlyS Buiwwims buneam paq ysaw aJim uo uns Buiaip suaidosu SYUOW g JSAO (92URJ3[0} 01) UOISIDWIW]
JO 19su0 Joj Aeap ay1 ul | :uopewlpde 1504 auldns y z :3sod pue aid 1533 p|od piepuels Buleam a1em ),GL-0L  J91em pjod Y £—| Ajlep }m/sKep dAIINIASUOD § W oL [/6] 19mg
JN ewseyd ur | Jabieq ‘uaipesb *5) - )
1 pue ¢ ] !} 15yD Bbuunp > ul doip |10} SHUNI} WIMs Ajuo Buieam Jie HY %0€
pue ‘ISy) buunp pue a10j3q 1 >>] ‘pakepp .5 Plod ur ulw 06 Aq Pamo||oy HY %0€
395uU0 BULIBAIYS YoNs se ‘uiw 0§ Aq < INQ 1SYD Db 18 1s9) ulw o€ :weiboid uonewipdoe SHUNIY WIMS S}99M 3AIINIASUOD G O} [96]
JO UjW Q| 1B WSI|ogeIdW 1 :UuollewlPdIe 1504 350d pue aid (1SYD) 1593 SSaUS JIe pjod Ajuo Buleam ‘.8 HPIM/SIWI] G UOISIDWIWI J9}eM P|od ulw 06 Ajleq W <. Buno,
(%59)
suuydauids | '] 1 pue wsljogelsw < :yd 21324y 3y} ul skep 91 (YdN) paidepeaid
(9%t€) spolR1S0d10dAX0IpAY (D,8'97— ainyesadwa) + -uou I\ 8
-/1 pue ‘(%%8) aunydauida ‘(%8%) ainsodxa ueaw) 1y NOD UOISISWWI OU SA 2Insodxa  ‘UOISISWWI Y)M
IN A1eunn ‘(9598) awinjoA auun | ‘ainsodxd 21321y 3sod pue aid (duidns Bunsal + 2101y 31043q SAep (g Ja1em pjod ul (duesd|o)  (¥d) pardepeaid [£6]
JRay 3sod ®') pue wsijogelsw | YdN 4y | 404 Jie D,01) SISS3} 9oURIS|0) P|Od IPNN uolsiswwl J.G1 uo buipuadsp uiw 9—0g) suoisiswwi Ajiep 6 WEN LL Dswopey
sainjesadwal
J31em 1 0} ainsodxa 3)dsap syIam Jale| S99M 8 JBNO D, 1°LT syoam g
ur bupaalys pauodas Aj3usanbaly ssa| 13K TOA | uoneaasqo aaissed jeuipnyibuo] 01 ),0€ WOl pIdNpPaY JOAO Y | JOJ YIIM/XZ UOISISWIW] Jd1eM PloD SIuapnis 4 G ‘W € [ze] dde
sbuipui4/synsay ainpadoid bunsa] pjod ainjesadwa | y1bua uonenyqeH o|dwes Apnls  9dualRsRY
uolieniigeH

"sa|pn3s Alojeloge| uolsidawwi Jaxem pjod Apog-3joym £ 3jqel



TEMPERATURE 141

(panupuo))

aJnjesadwsa) Jejndsnwesiul ul 1+ /| 8 9|
SUOISS3S Y30 Ul {UOIIBSUAS P|Od pue HOJWOodSIp
pue ‘Ayunwwi dy1dads jo uoissaiddns

‘Wa)sAs aunwiwi d1euul 3y} Jo ANADR ‘SIddjiew
$S9415-P|0> 1 SUONIPUOD [BJINBUOWLIDY}Y

Japun juasaid Ajuo | sissusboway
Sljoqelaw Jo duasaid M| « yum

1) uy ¢ J93easb pue uondnpoid 1eay dijogelaw
ul 1 Aq paysew uonewipde djwisylodAy

© Po1RJISUOWAP (/| UOISSIS) |0JIU0D
payplew-awil ay3 ‘uondnpoid jesy dljogelaw
Ul © yum 2| pue ] ¢ ajealb Aq payew
91—/ SUOISSdS W04} dAIRINSUl-dIWIRY10dAy 01
pauoilisuel) 1eyl punoy sem (°>'] pue ‘uollesuds
BuuaAys ‘ZOA ‘uondnpoid 1eay dijogelsw

1) uolnewlpde dlwusylodAy e ‘Suolssas 9 Isily u|
9suodsal d1jogelsaw ay) Jo uonenugey
bupnpui jo sjqeded jou Ing asuodsas HPoys
P|0> 9y} JaMO| 03 JUBPIYNS S| ainjesadwal upjs
Ajuo jo buijood ‘Aidydads ainjesadwal anssi
yam asuodsal dijoqelaw ay3 lenlgey ued
ainjesadwa) Apog-dasp pue upys ul t ‘||esdnQ
‘9suodsal J1j0geIdW Ul < INg uolSIIWIW]

150d 3y} Jo ulw G 154y 3y} Buunp ssuodsal
£103€|1UBA 3y} Ul uonenyiqey pamoys dnoib
NIMS “J9Y1in} p9]00d USYM PIAISJO uolengey
ou yum ,81°L A9 t 1 [1un uojsiawwi 3sod
ay) buunp asuodsas dijogesw + e pakeidsip
(dnoib 330D) buijood Apog-dasp ayr Ajlup

dnoub |esanauowiayl Jou Ing dnoib uoisiswiwi
J131em pjod yum Aanas wordwAs pue
swoydwAs d1xodAy Jo Jaquinu ul 1 ‘uoisiawwi
|eJIN3UOWIRY} 0} paledwod uolsIawwW]

191eM PJ0d JSYR 3512493 dIx0odAy Buunp

1 duljeUdIpRIOU pue SuljeuIpY ‘2insodxd
3s1249xa d1xodAy buunp auijeuaipeiou

pue aujjeuaipe 1 pue samod Aduanbaiy ybiy
AYH | ‘uoisiswwl] J31em pjod pareadal 1504

1593 150d paydlew awi} | uolsidwwi ue
Se PaAISS /| uolsiowwl 531 1sod pue aud e
Se PaAISS 9| pue | suolsiswwl 191em pjod)

‘uoljeAlssqo
(pasndoy-awiy) aaissed [euipnyibuo

awnsod buiyleq

Bueam ‘pasdejd pey uiw o6 10 J,G€ 0}
1194 24niesadwia) [B323M [IAUN D,Z| 18 Jdlem
pauis Ul Uede s}99M OMI-dUO SUOISIDWW]
no-peay ¢ :bunsal 1sod pue aig

saInIXiwW (10 = ¢O'4) dixodAy
pue (1’0 = ¢!4) dixowsou buiyieaiq
BulpA> M 001 :bunsal 3sod pue aid

pawnsai
U3y} pue ujw Q| 40} uiw Oz A19AS uolsIawwW|
P|0D WOJ} PIAOWAI DIIM SIIBQNS SUOISSIS

||e 40} {| UOISSS SE uolleINP SWES Y} PIMO]|0)
/1 UOISS3s ‘insodxa JO ujw Qg |1un 1o ),6°SE
40 2] |nun aInsodxs J91em p|od 9| —| UOISSIS
10} !sep Qg 19A0 UOISIBWIWI J91EM P|Od INO
-peay jo (SAep DAIINIBSUOD §) SUOISSDS [B10} /|

suoys
pulwwims burieam
{191eM PJ0d DL

CSEL

0} pasdnpas sem *| Ajuo ‘sarnuiw g Kjuo 1oy
SUOISIBWWI J91eM P|od Ino-peay ¢ :dnoib NiyS
J8F°EL 0} pasealdsp

¥) pue ),81°L A padnpal sem > aiaym
SUOISIBWWI J91eM Plod 1no-peay ¢ :dnoib 340D

swnisod buiyleq
e buueam Js1em H.z7|L
:sdnoib NIYS 78 340D

(D0G€) |esinduowIBY)
10 (3,C1) PIOD

WL

(£=u)

NIMS ‘(£ = u)

340D ‘(£ = u)
NOD :sdnoib

€ ol yds ! LT

uolsIaww| Jajem
[eJINSUOWIY}

WolL
‘uoisiswiwl 191em

[LLe]
slyezelg

[€01]
uoxdi|

(Aep/xz) suoisiawwl INO-peaY J3jeM UlW § ‘9 Plod W 9L ‘W Z€ [coL] un

sbuipul4/synsay

ainpadold bunsa] pjod

alnjesadwa |
uoneniqgey

yrbua uonenuqgey

a)dwes Apnig

CAIVEIETCH]

‘(penunuod) *£ 3|qey



142 B. R. YURKEVICIUS ET AL.

£ 0} | Aep wolj | UOIBSUIS [BWLIBY} pue ulw
/J,10°0~ Aq abeI9AR UO PadNP3I Sem 1 JO Skl
Ajiep %21 ‘aunsodxa p|od jo skep / se 33| se Aq
A||enueIsgns pasealdul ag ued SN [L19[MS
woJy sissusbowayy bupaalys-uou bunsabbns

ulw 0G| 404 pasdisiuiwpe AjpAaissed
1ns pauonipuod pinbi| e buisn [0d0301d

‘uodnpoud 1eay Apoq ajoym < Yim 9%9¢ Aq ainsodxa pjod (,9¢) buidwepd ainjesadwal

Ausuaiul BupaAys [e101 4 |0d0304d UORRWIPDY

upjs [9noN :bunssy 1sod pue aid

syunJy Bulwims
Bupeam {(Aliep L~
Aq ainjesadwa) 210>
1 0} paubisap) Japl

sKep aAIINDASUOD / 104 UOISIBWIW]
13)em plod palendJid Ino-peay Ajlep Jo y |

[qel]
W,  uopion

sbuipui4/synsay

aInpadcoid bunsa] pjod

ainlesadwsa |
uonenlqgeH

yi1bua7 uonenyqeH

9)dwes Apnls  9dudIdRY

‘(Panunuo)) “£ 3|qeL



TEMPERATURE 143

(panunuo))

awn|oA

|epny pue dseb Aioyjendsul ur < LA SA ZIWWI
ul 235 Q€ 3sd1y 3y} ul + Aduanbaiy A1ojesidsas
‘uolsIaWWI JO dNUIW (| dY} J3AO LININ| O}

uede
393M 3UO (/NI PUe LINWI) Sjuni} Buiwwims

SUOISISWIW] J31BM PJOd UIMID] Yealq
dNUIW (| + SIINUIW € 10} ),8E Ul PAWIRMII

paijedwod /I 1 dWn|oA dinujw Alojelidsul  Buueam S9INUIW G J0J J91BM PJOd PALINS DG L syunJy bujwwims Ul OZL—SS SAIDI|[0D B JO ISINOD 3y} JINO oLl
‘LIWWI 03 pasedwod /NI Inoybnosyy + YH 03Ul SuoisIdwwl Ino-peay ¢ :buiisal 1sod pue ald bupieam azem )Gl J91BM PjOd 03Ul SUOISISWWI INO-Peay ulw € ‘g W6 u|b3
£ IMD 03 | |MD Woiy 1 dwnjoA |epl] ‘asuodsal awn1sod bujwwims (IML) J91eM
320ys pjod ay1 Jo Led se uole[iIuIA dnuIw 1591 150d pue e bules)\  [eJINSUOWIBYL I9M 9—7 SUOISISWW] pue (JD)
1o ‘fouanbayy Buiylealq ‘YH ul © Ing /£ M) 24d e Se PaAIaS /£ pue | SUOISISWW] J3lem pjod I55€ [IML J91EM PJ0d 3I3M / pue | suolsiaww] ‘(shep /£ [oLL]
01 | |MD wouy A13Ixue ande papodal-§as ul 1 ‘UOIIBAISSGO (PIsnd0j-awiy) dAissed |euipnyibuo 2051 IMD 10} Ajlep X|) suolsiswwl 3no-pesy uiw / ‘7 1% ‘W8 poomieg
uojsiawwy I131em pjod noybnoiyy
£ouanbayy Buiyiesiq + pue ‘uoisisWIW] J91eM Buutesy sjiys
Pl0d Jo ulw Z 3 YH 1t “(Al9A1dadsas ‘o0z pue Buipjoy |ed160joydAsd +
%€/ Aq) awil buipjoy yieaiq | buiuiesy s|njs yiealq Ajjewixew 3jiym syuniy buiwwims uonenyigey W\ 0L
|ed1bojoydAsd + uonenygey pue uonenligey HBupeam (JzL~) J91eM Pl0d PLIIIS Ul SUOISIDWWI syuniy Bulwwims K931y buiyieaiq (Aep ‘uonenygey  [L01]
yioq ‘suoisiawwi pajeadas buimojjo4  Ino-peay ‘pajess ulw gz :buiisal 3sod pue aig Buneam Dz~ /XZ) SUOISISWW] JS}BM P[Od INO-peIY UIW G ‘S W Ol ‘W 0C poomieg
uonenlgey aAup Aiojesdsal jo
93169p ay1 buiuwildp Ul J01de) Juenodwi ue
S| ainjesadwal upjs jo abueyd jo el ay} ‘gs| (4901) 3U0J} 3Y} UO I3S OE + 2eq Y} U0 )
10U Inq ‘s;amoys pajeadal Jale 4goL pue gol D01 (€) 0L 38335 O€ (€) (dS1) %Bq Y1 U0 J,G1 e Ul ¢
sdnoib ul 91z Aq 1 sem Aouanbauy Aioresdsal Jeam WIMS Bulieam D 0| 1e J191em pauifs ul D.ST (27)  (2) ‘(901) ¥2Bq 3y: uo H,0L e ulw ¢ (1) :sdnoib [901]
UOISIdWWI ‘UOISIBWWI JO IS OE ISMl JOAQ SUOISISWW] IN0-peay ujw € :6unsal 3sod pue aid D01 (I) ainsodxa ¢ ‘(Kep/xg) sAep € J9AO SI9MOYS p|od 9 1S W €L ul|b3
uol3e[13UdA d3nujw pasdsul
pue ‘Swn|oA [ep1l ‘YH Ul UOIIRAJIS dAIIIRDI
JO uoneinp 3y} + (dnoib uoneniqgey ayy
Ul UoISISWWI JO SWIN|OA J3)ealb 3y} se ||am se)
dnoib NOD 3ys Ag paiindul suoisIaWwWl JIpoLdd
!s|aAl] uoneniiqey-aid Jeau 01 pauinial SWN|OA
9nuiw Aioyesidsul pue Aouanbaiy A1ojesidsas
INQ 1 paulewsal YH ‘syuow 4| JPuy SyunJs} wims bupeam 01
!(syluow / 10§ paulelal) uoisidawwi pajeadal 1B J9)eM PaLIIIS Ul SUOISISWW] PIeds INo-peay
1s0d A|o1eIpawl UoISIBWWI JO 23S OF L Ulw € ‘Bunssl (syuow | pue ‘/ ‘p ‘z 1e uiebe NOD + ‘dnoib
9y) buunp yYH pue ‘awnjoa anuiw Alojesidsul  pue suoisidwwl pajeadal 9 ay3 Jo uond|dwod syunJy bulwwims (Aep uonenyigey  [001]
‘fouanbayy Alojesidsas 4 :s123fgns paienyiqeH 9yl buimojjoy Aeieipawwi) 3sod pue aid buueam ‘J1em ) Gl /Xg) SAep € JSAO SuoisISWW] INO-peIY ulW € ‘9 ur gzl uoxdi|
1 opIs
ul abueyd Aue 1noyyum dnoib uoneniqey ayi ul pasisawiwi-uou Joy
uolsiawWL dpIsYbU .z ay1 buunp sasuodsau Apoq  1ns1am panjey pue (Rep/x2) NOD £ ‘dnoib
awinjoA pue d1es Alojelidsal ‘gH Jo apniubew 3yl Jo apIs Wb Y3 Jo D0 I JSIBM PaUNIS Ul dwnISod bulwwims  sAep € JaA0 Apoq 3y} JO IPIS YI| Y} JO I1lem uolenlgey [86]
3y} 1 suolsIdwwI dpIs-Y3| (9) paieaday suoisidwwI IN0-peay uiw ¢ :bulisal 3sod pue ald  Buneam azem H.0L 0> pPalils Ul SUoISISWWI INo-peay ulw € ‘9 ugidvniLL uoxdi|
sbuipul/synsay aInpadoid bunsal pjod ainjessdwa | yi1bua uonenyqeH 9|dwes Apnls  9duaIdRY
uonenyigeH

"salpnis asuodsal }d0ys pjod ‘g d|qel



144 B. R. YURKEVICIUS ET AL.

(UONEJIUSA 3)NUIW IO ‘BWIN|OA [epl)

‘fousnbaiy A1ojendsas ‘YH <) panowal sem
£131XUe [RUOIIIPPE UBYM UDAS dsuodsal ydoys
PJO> 3y} JO UOIIBN}IGRY B JO dIN|IR) Ul PAYNSI
uonenygey buunp Aaixue pajeaday ‘dnoib
K1a1xue pajeadas Joj suolsIaWWI uonenligey
Jo ueaw pue ‘(josyuod-3sod) 7 ‘(josuod

-91d) | suolsIaWwWl UM S|9AI| A1dIXUE Ul «

UOISISWIWI (| 3Y} 10§ 32UO pasn

Ajuo sem uondadap asaym ‘A1aixue a1ndy (7) pue

syse} yiew pue uondadsp buisn uoisidswwl Yyoes

1591 150d pue 10} pasies sem A1a1xue a1vym ‘Alaixue pajeaday

aid e se paAIdS / pue | sUOISIDWWI Jd1eM Pjo)  dwnisod Buiwwims (1) :sdnolb jeuswiiadxa om] ‘(skep 7 1oy Ajiep

‘UofIeAISqO (Pasnd04-awly) dAissed |euipnybuo bBuueam lv1em )G X|) suoIsIswwi J31em p|od InNo-peay uiw /£ ‘2

i¥
‘W 9 :(7) dnoig
iv  [sOl]
‘W 2L (1) dnoin  poomieg

sbuipui4/synsay

ainpadold bunsa] pjod ainjesadwsa] y16ua uonenuqgeH
uonenyqey

a|dwes Apnis  adualasey

‘(panunuod) ‘8 9|qeL



Reduced thermal
sensation

Delayed onset of
shivering

Reduced levels of
NE/NA
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Reduced cold pain

Reduced cold
shock response

Reduced
vasoconstriction

Reduced blood
pressure

Figure 3. Timeline of changes in perceptual and physiological responses due to cold habituation.

immersions may develop into insulative and/or
hypermetabolic adaptations with longer-term cold
water exposure, though the habituated or blunted
shivering response may persist.

Short term water exposure: Habituation of the
cold shock response

Other adaptations specific to cold water immer-
sion relate to the reflex inspiratory gasp and sub-
sequent cardiovascular (HR) and respiratory (tidal
volume, breathing frequency) responses that com-
prise the CSR [55,56]. Habituation of the CSR has
important implications for increasing chances of
survival. Lessening the response can reduce the
risk of water inhalation upon accidental immer-
sion, thus decreasing the risk of drowning. There
have been many studies on the topic, all of which
consistently report habituation of the HR and
ventilatory responses after neck deep immersion
utilizing 5-7 repeated immersions of 2-7 min each
in 10-15°C water over 1 to 9 days (Table 8) [98-
105]. Partial immersions (half of body split down
midline) [98], and repeated cold showers [106]
have also been shown to reduce some components
of the CSR, the mechanistic implications of which
will be expanded upon below.

Timeline of cold habituation

The methods of cold habituation studies vary
greatly, with laboratory acclimation periods ran-
ging from 5-80 repeated exposures over 1 day up
to 2 months, to studies of those who have experi-
enced natural lifetime cold exposure. Cold

habituation itself involves several factors, as pre-
viously mentioned, all with varying timelines of
adaptation. Habituation of cold sensation appears
to be the first to occur, typically showing reduced
ratings after the 1* or 2™ exposure [85,107-109].
Pain from intense cold applications/exposures
(cold pressor, thermodes) also start to habituate
by the 2" trial [85] with others reporting signifi-
cant decreases in pain by the 5™ day of repeated
exposures [83]. The anxiety associated with cold
water immersions has been shown to be reduced
by about the 3™ day of repeated immersions [110],
which may be a factor in the habituated cardior-
espiratory responses related to cold shock, as these
responses are significantly reduced by the 4™ or 5™
repeated immersion [98-101]. Perhaps surpris-
ingly, habituation of the CSR may persist for sev-
eral months after habituated responses are
achieved, with some components remaining habi-
tuated for up to 14 months [100], indicative of a
long-term or long-lasting habituation. However,
the decay of CSR and other cold habituated
responses remains largely unexplored.

During cold air exposures, vasoconstriction and
BP responses seem to have variable timelines of
habituation. Leppaluoto et al. showed habituated
vasoconstrictor and BP responses at different
times between days 4-8, but by the end of the 11
day exposure, these responses had returned to a
non-habituated state, despite circulating NE, a
marker of sympathetic activity, being lower on
both days 5 and 10 [107]. The delay in shivering
reported by Bruck and colleagues occurred by the
3" exposure [66]. Brazaitis et al. reported
decreases in shivering, metabolic heat production,



146 e B. R. YURKEVICIUS ET AL.

and cold discomfort during the first 6 immersions.
After the 6™ immersion, they reported a further
decrease in shivering, yet showed an increase in
metabolic heat production, perhaps indicating that
the 6™ to 7" immersion may be the threshold
point for the shift from shivering-derived to non-
shivering-derived thermogenesis [111].

While time course data remain limited, the cur-
rent literature suggests that cold habituation
responses likely occur between the 3™ and 11
exposure. As exposures become more severe
(colder temperatures, longer durations, water
immersion), physiological changes may advance
into systemic insulative or hypermetabolic adapta-
tions rather than habituated responses, as seen
during prolonged repeated (1-3h/day, 3-5 weeks,
10-20°C) cold water immersions [96,97,111].
Figure 3 summarizes the time course of perceptual
and physiological changes due to cold habituation.

Specificity of cold habituation

Habituation to the cold is often reported when an
individual is repeatedly exposed to a cold stimulus,
with pre- and post-acclimation measurements
occurring in the same environment. For example,
in the cold air tests listed above, participants
experienced the same exposure each day which
eventually resulted in a habituation of the physio-
logical responses to that specific cold stimulus.
Many studies that fail to see habituation tend to
test for adaptations using a different type of cold
stimulus (e.g., cold water vs cold air or local vs
whole-body). In the aforementioned study by
Savourey et al. for example, one month of twice-
daily thigh-deep cold water immersions induced
habituated responses (i.e., higher skin tempera-
tures and a smaller rise in BP) during a standar-
dized 5°C foot immersion [79,80]. Conversely,
during a 1°C whole-body cold air exposure of
those same participants, lower skin and core tem-
peratures were observed (with no change in meta-
bolic heat production), in what appeared to be a
hypothermic-insulative type of adaptation. These
data suggest that habituated responses may be
specific to the acclimation stimulus.

Temperature and severity of the cold exposure
also play a role in the level of adaptation observed.
Habituation of the initial CSR to a particular water

temperature can be induced, at least to a degree,
with repeated exposures to a milder stimulus.
Tipton et al. exposed participants to six 3-min
head out immersions in 15°C water over 3 days
and reported partially habituated responses of
respiratory frequency, minute volume, and HR
when the participants were immersed in 10°C
water [99]. Similarly, a study by Eglin and Tipton
used cold showers in an attempt to habituate the
CSR  upon chest-deep immersion [106].
Participants were showered with 10-15°C water
on small body surface areas, either the chest,
back, or both for 1-3 min totaling 6 exposures
over 3 days and were then immersed in 10°C
water. Although only a portion of each partici-
pant’s body was directly repeatedly exposed to
cold, a partial reduction in CSR was observed
upon whole body exposure.

However, in a different study, these authors
reported an adaptation threshold when they
immersed participants in 12°C water for different
lengths of time [103]. One group was cooled until
skin temperature dropped to 13.5°C (skin cooling
only) while the other was cooled until core tem-
perature dropped by 1.2°C (skin and core cooling).
During the test exposure, both groups showed
habituation of the immediate CSR. However, as
the skin cooling group’s exposure began to exceed
their previous level of cold stress, physiological
responses returned to a non-habituated level. The
core cooling group continued to show a habituated
metabolic response until their core cooled past the
level that was previously experienced during the
repeated exposures, after which it returned to a
non-habituated state - that is, the metabolic heat
production response was no longer blunted.

In a study examining the perceptual responses
to local cold water immersion, Carman and
Knight performed a test using foot exposures
to colder water than the repeated exposures,
and reported a similar adaptation threshold
[83]. Participants were either repeatedly exposed
to 1°C or 5°C, and were then tested in the
opposite condition. Those exposed to a lower
temperature than previously experienced showed
pain responses that returned to baseline, rather
than remaining habituated. Together, these stu-
dies indicate a specificity of the habituation
response, where a change in the type or severity



of exposure often results in responses returning
to a non-habituated state.

Mechanisms of cold habituation

Multiple potential mechanisms may contribute to
blunted thermoeffector responses following cold habi-
tuation and include reduced sensory input from skin
thermoreceptors, altered central processing of afferent
signals and autonomic activation, and/or altered per-
ipheral mechanisms. As mentioned previously, rodents
and cats housed in 5°C show decreases in the sensitivity
of peripheral thermoreceptors responsive to low tem-
peratures [22]. In humans, there are data, though lim-
ited, suggesting that the number of functioning cold
receptors may be reduced in the forearm skin of occu-
pational workers routinely exposed to cold air in the
winter months, and this reduction in estimated func-
tioning receptors has been associated with reduced
thermal sensation [22]. Humans frequently report
lower cold sensation and pain ratings after repeated
cold exposures, potentially indicating a role for similar
peripheral sensory mechanisms.

{ Catecholamine release

{ Thermal perception and
discomfort

{/ Ventilatory cold shock response
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One of the interesting questions concerning cold
habituation is whether habituated cold responses
cross over to non-cold exposed sites, as it may indi-
cate a largely central mechanism contributing to
habituation. Carman and Knight repeatedly exposed
one foot of participants to 5°C for a total of 40
exposures, resulting in a habituation to cold pain
[83]. Leblanc and Potvin showed similar results
when exposing participants’ left hands to 40 repeated
cold water immersions, resulting in reduced pain
responses [81]. In both studies, when testing the
contralateral body part in the same temperature
used for habituation, pain responses were either
similar to pretest levels or were sensitized (i.e. aug-
mented response for a given stimulus), suggesting
that only the repeatedly exposed part had habituated,
potentially supporting a peripheral, rather than cen-
tral, mechanism. Interestingly, when Eagen per-
formed repeated exposures of just the middle
finger, the immersed finger and not the contralateral
finger had reduced cold pain, yet the reduced drop in
finger temperatures while immersed was similar [78].
This may indicate that cold perception is
specific, while other vascular or

location

Attenuated rise in BP & HR

{ Cutaneous vasoconstriction

Higher skin temperature

{ Shivering thermogenesis

Figure 4. Summary of the physiological and perceptual changes that occur due to cold habituation in humans.
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physiological adaptations may be more contralater-
ally transferable.

In line with this notion, Tipton et al. reported that
habituated CSR can indeed cross over to the opposite
half of the body [98]. Using a specially designed wet-
suit for half-body exposures, subjects were exposed
only on the left side of the body to six 3-min immer-
sions in 10°C water over a 3-day period. Post-testing
on the right-side of the body revealed a habituation
of the CSR. This habituation of non-cold exposed
regions points to a central mechanism for habitua-
tion and suggests that habituation of the CSR is not
reliant on direct peripheral stimulation [98].

Additional evidence for altered central integration
of afferent signals or autonomic activation is provided
by multiple human studies that include measures of
circulating catecholamines. Reductions in plasma NE
concentrations have been consistently observed fol-
lowing short-term, repeated cold air exposures [6-8],
suggesting that cold habituation lowers sympathetic
activation. It is worth noting that these studies also
demonstrated that habituated responses to cold air
occur independent of any change in thyroid stimulat-
ing hormone or thyroxine, two hormones that are
known to regulate basal metabolism.

More direct study of brain activity provides further
evidence of habituation occurring through a central
mechanism in humans. Mulders et al. subjected volun-
teers to sinusoidal cooling (between 31 and 14°C) on
the forearm and measured perception ratings over time
alongside electroencephalogram (EEG) activity [109].
They found that perception of cooling was reduced
over time and EEG activity was attenuated. The authors
theorized that changes in peripheral sensation reduced
brain activity to the cooling stimulus which may have
been caused by receptor fatigue or a peripheral adapta-
tion. Involvement of specific brain regions was also
studied by Klingner et al. The authors used blood-
oxygenation dependent level signaling as a measure of
neuronal activity and showed a decrease in deoxyhe-
moglobin concentration in the somatosensory cortex
following repeated median nerve stimulation that led to
habituation, indicating decreased neuronal input and
local processing in the parietal lobe [112]. The frontal
areas of the cerebral cortex have also been suggested to
be needed to develop habituation; data from rats indi-
cate that bilateral frontal lesions prevent habituation of
the HR response [113]. Data from humans using

chlorpromazine [114] further suggest the frontal cortex
area is important for habituation. However the
mechanism for this habituation is not known since
chlorpromazine blocks cholinergic, adrenergic, dopa-
minergic, and histamine receptors. Although little is
known about the pathways involved in habituation of
the cold response, mechanisms of habituation are often
located centrally, either occurring in the spinal cord or
in higher brain systems.

Cold-induced vasodilation

Humans who regularly experience occupational
local cold water exposure, such as Gaspe fishermen
[72] and British fish filleters [74], and/or are habi-
tually exposed to systemic cold, such as the Eskimos
[57] and Lapps [115], exhibit a habituation response
marked by greater hand skin temperatures that are
often explained by an earlier occurrence of CIVD
when exposed to cold water. The meaningful induc-
tion of this habituation response during incidental
and/or intentional systemic cold exposure has been
sought after by interested military personnel from
both cold and temperate climates alike.

Livingstone et al. [116,117] performed a series of
investigations involving CIVD modulation amongst
Canadian Armed Forces Personnel following 14-
91 days of Arctic temperatures. Post-Arctic exposure,
personnel underwent 30 min of finger ice water (0-
0.1°C) exposure to evaluate CIVD responses.
Interestingly, 14 days of exposure elicited lower initial
finger temperatures than before testing, an increase in
the time to first temperature rise, a decrease in the first
vasodilative rise temperature, and a decreased average
finger temperature during 5-30 min of ice water
immersion. In contrast, 91 days of similar Arctic
exposure elicited the opposite response in all three
variables: decreased time to first temperature rise, an
increase in the first vasodilative rise temperature, and
increased average finger temperature during 5-
30 min of ice water immersion. While length of
exposure may at least partially explain the differential
response, later work by Livingstone et al. suggests that
the influence of seasonal cold exposure in Canada
may prove to be just as impactful to CIVD as Arctic
exposures and therefore confound full CIVD modu-
lation interpretation [118].



Branching away from personnel that may regu-
larly experience cold in their daily lives, seasonal or
otherwise, further investigations sought to test the
ability of 28 days of systemic Arctic (=37 to —12°C
outdoors, 7-20°C inside sleeping huts) cold exposure
to influence CIVD in tropical Indian soldiers as
compared to temperate Russians and Arctic natives.
CIVD was evaluated using whole-hand immersion
to the styloid process at 4°C for 30 minutes. Twenty-
eight days of exposure was sufficient to increase
mean skin temperature, finger blood flow, and a
CIVD index in the tropical Indians to a level that
was similar to the migrant Russians but still lower
than that of the Arctic natives. While no definitive
relation of CIVD response to oral temperature was
observed, oral temperature tended to show a slight
fall or rise for very good or very poor CIVD respon-
ders, respectively [119]. Other published work from
these same authors further suggests that these
improvements in CIVD following repeated cold
exposure may be accompanied by a reduced sympa-
thetic response as indicated by a reduction in cold
pressor reactive BP and HR [120].

Collectively, the case can be made that a founda-
tional ability to undergo CIVD fluctuations follow-
ing systemic cold exposure persists within humans
but is sympathetically clamped to a degree propor-
tional to the combined influence of the level of cold
stress as well as the degree of hypothermia. It might
be said that the level of cold stress is influenced by
the novelty, severity, acute cold exposure volume
(How long have the individuals been exposed to a
cold stimulus recently?), and chronic cold exposure
volume (consistent systemic cold exposure over their
lifetime vs. seasonal systemic cold exposure vs. no
consistent or seasonal systemic cold exposure). The
complex interplay between these factors does not
currently allow for clear determination of the degree
to which repeated cold exposure may predictively
modify CIVD responses and variations in CIVD
methodologies contribute to difficulties in precise
comparison of study-to-study results [29].

Non-shivering thermogenesis

Changes in thermogenesis in brown adipose and
muscle tissue have recently been examined follow-
ing repeated days of cold exposure [121-123].
Interestingly, repeated cold exposures may
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increase NST in the presence of a habituated shi-
vering response. Blondin et al. exposed individuals
to 20 cold exposures, via a water perfused suit (10°
C), over a 4 week period. Pre- and post-cold accli-
mation testing was conducted during a 4°C stimu-
lus in the water-perfused suit. Following the
4 weeks of repeated cold exposure, they observed
a 21% overall reduction in shivering intensity but
no change in total heat production [45,122], sug-
gesting that NST increased. Interestingly, they
found that: a) BAT oxidative capacity increased
by 45% when subjected to 18°C water in the suit,
b) the coupling between muscle activity and meta-
bolic heat production was improved, c) the proton
leak in muscle that occurs with acute cold expo-
sure was abated (suggestive of an increased cou-
pling of oxidative phosphorylation), and d)
continuous and burst shivering was lowered in
the vastus lateralis. Their data point to a shift in
NST from skeletal muscle to BAT. Furthermore,
these authors [123] have found that repeated, rela-
tively mild cold exposure (water-perfused suit at
10°C) decreases deep muscle recruitment that has
been shown to occur during acute cold exposure
[124]. Indeed, in their repeated cold exposure
study, [18 F]fluorodeoxyglucose, a marker of shi-
vering activity, decreased in the longus colli and
sternocleidomastoid.

In a similar but shorter adaptation protocol
consisting of just 7 days of cold water immersion,
reductions in shivering thermogenesis were
observed during a cold test in which skin tempera-
ture was clamped at 26°C using a water-perfused
suit. Total heat production was the same before
and after the 7 days of cold exposure, indicating
that there may have been a shift from shivering to
NST [125]. These results indicate that shivering,
but not overall heat production, became habitu-
ated. The authors postulated that a potential
mechanism for NST in muscle cells may occur
through an uncoupling mechanism, which is likely
activated by the binding of the peptide sarcolipin
to SERCA, the Ca®>* pump located in the sarco-
plasmic reticulum membrane, causing Ca**-slip-
page and generation of heat [126], although this
has yet to be confirmed. It is important to note
that this shift to NST may require a more severe or
prolonged period of cold exposure and/or may
represent a later phase of cold adaptation that
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follows the initial reduction in total metabolic heat
production often associated with habituation.

Modifiers of cold habituation

Low temperatures are often encountered together
with hypoxia (i.e., at high-altitude); thus, the effect
of concurrent hypoxic exposure on cold habituation is
particularly relevant to field environments. Given that
hypoxic exposure can modulate acute and adaptive
responses to cold [127-130], adaptation to cold may
be altered at altitude. In an effort to answer this
question, Keramidas and colleagues examined a
group of individuals on an 11-day expedition on the
Antarctic Plateau, a high-altitude region with low
ambient temperatures [131]. Following the expedi-
tion, the authors observed a hypothermic pattern of
cold acclimation characterized by attenuated cuta-
neous vasoconstriction and suppressed shivering,
which suggests that normal habituation responses to
cold occur during concomitant hypoxic exposure at
altitude.

Other concurrent stressors, including mental
stress, fatigue, sleep deprivation, and caloric
restriction also alter physiological responses to
cold stress [2,132] and thus may modify the cold
habituation response. LeBlanc and Potvin used
mental arithmetic to stress participants during 40
repeated cold water hand immersions (2.5 min, 4°
C) over 4 weeks [81]. Group 1 was exposed to cold
water only, while Group 2 was required to add
numbers verbalized by the experimenter during
each hand immersion. Both groups showed
reduced BP responses over time, but when mental
arithmetic was removed and Group 2 was only
exposed to the cold water test, perceptual and
pressor responses returned to a non-habituated
state. The authors suggested that the added mental
stress distracted from the cold exposures and
inhibited habituation to cold alone. The authors
also saw this as evidence for a central mechanism
to habituation, as no peripheral habituation
occurred during repeated exposures in the com-
bined stressor group, and perhaps indicates an
interconnectedness of learning pathways that
could not be separated thereafter.

More recent data from Barwood and colleagues
demonstrated that when high levels of anxiety are
superimposed on whole-body cold water immersion,

habituation of the acute cardiorespiratory response (i.
e., CSR) to cold water immersion is blunted [105,133].
Moreover, acute anxiety partially reverses habituated
responses to cold water immersion in already habitu-
ated individuals [133]. Brain regions in the frontal and
prefrontal cortex that respond to thermal afferent
information and are likely involved in habituation
[113,114] are shared with those that respond to cer-
tain psychological responses and therefore may be a
central location by which anxiety modulates cold-
water habituation. Specific alterations in common
neural circuitry that mediate the effects of anxiety on
cold habituation remain speculative but provide an
important line of inquiry. Examining the effects of
mental stress on adaptation responses to cold expo-
sure is particularly relevant for occupational groups
and military personnel, as they often encounter such
combined stressors in operational field environments.
Survival training that targets lowering anxiety before
and during immersion may provide a protective ben-
efit for at-risk personnel.

Habituation may be modified by a psychological
component. Smith et al. provided evidence showing
that those with higher self-reported resiliency and
life purpose ratings were able to better habituate to
repeated cold pain, which suggested that motivation
levels may affect an individual’s willingness to
endure the cold for long enough time-periods to
allow habituation to occur to a greater degree [85].
Recently, Park and Lee provided evidence support-
ing this idea by showing that those who self-identi-
fied as having a high tolerance to cold had stronger
CIVD responses than those with self-identified low
tolerance [134]. This raises the question as to
whether psychological components can have rele-
vant effects on physiology or if those who naturally
display strong physiological attributes also naturally
have higher psychological resolve.

Sleep deficiency has also been shown to prevent
or delay habituation responses [84,135,136].
Although the effects of sleep restriction on habi-
tuation of physiological cold responses remain lar-
gely unexplored, sleep-deprived individuals appear
to be less able to habituate to pain associated with
cold-water hand immersion (i.e., cold pressor test),
which may be due to alterations in central pain-
inhibitory signaling pathways [84]. However, the
potential effects of sleep deprivation, along with
fatigue and caloric restriction, on vascular,



metabolic, and cardiorespiratory responses to cold
exposure require further investigation.

Cross-adaptation: Cold habituation and
altitude

As discussed above, the primary responses to cold
exposure, including peripheral vasoconstriction and
increased metabolic heat production (i.e., shivering),
are driven by activation of the autonomic nervous
system [2,4]. It is well-established that cold habituation
blunts the sympathetic response to cold exposure, but
evidence also suggests that cold habituation alters auto-
nomic responses to altitude, which may have important
metabolic implications for hypoxic exercise [102]. This
phenomenon whereby an environmental exposure
provides physiological adaptations to an alternative
environment is referred to as cross-adaptation.

In humans, attenuated metabolic responses asso-
ciated with cold habituation have been linked to
improvements in exercise economy in the cold [ie.
lower oxygen uptake and respiratory exchange ratio
(RER)] [137]. A lower RER is reflective of preferential
fat oxidation, which may provide a beneficial cross-
adaptation effect at altitude if carbohydrate utilization
is spared for exercise performance. In line with this
notion, there is evidence, albeit limited, to suggest that
alterations in the autonomic and metabolic responses
following repeated cold exposure may confer perfor-
mance benefits at altitude. In a study by Lunt et al,
repeated cold-water immersions (12°C) reduced the
sympathetic response to acute hypoxic cycling exercise,
evidenced by reduced circulating catecholamines and
increased high frequency power of HR variability [102].
In addition, ventilation, oxygen uptake, and RER were
reduced and symptom severity responses to hypoxia
were improved following the cold-water immersion
intervention. These data suggest that a habituation
response to cold may provide a performance benefit
for individuals that perform physical work at altitude.
However, the 10-min exercise bout in this study was
short in duration and was performed in normobaric
hypoxia, limiting its generalizability to prolonged exer-
cise performance at altitude. Additional studies are
required to further investigate the functional effects of
cold habituation on responses to altitude and the
mechanisms mediating a potential cold-to-hypoxia
cross-adaptation. While there are multiple mechanistic
pathways and proteins (e.g, cold-induced RNA
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binding protein and shock proteins) that are responsive
to both cold and hypoxia, the specific cellular responses
that may contribute to this cross-adaptation have not
been examined.

Future directions

Despite the abundance of cold research, there remains a
multitude of unanswered questions within the litera-
ture. Firstly, the physiological mechanisms responsible
for cold habituation remain unclear. There is evidence
for both peripheral and central factors in habituation of
vasoconstriction, shivering, perception, and CIVD.
Determining the specific mechanisms (e.g., neural or
vascular) for each of these responses will greatly expand
our understanding of the physiological and psycholo-
gical changes that occur with repeated cold exposure.
Along with the mechanisms, the timeline of change for
each of these factors is ambiguous. Comparing results
of various studies gives insight into the potential time-
frame of change, but more controlled experiments with
continuous measurements are needed to construct a
more precise timeline, along with long-term follow-up
to characterize its decay. Parsing out the most efficient
exposure type, length, and severity will be important in
determining how to optimize the development of cold
habituation, which could potentially translate into cold
exposure regimens for outdoor workers and athletes
(elite and recreational) to improve their physiological
and psychological performance. Furthermore, there is
limited evidence that cold habituation may change
responses to other environmental stressors. Exploring
this in detail may lead to exciting new discoveries on
cross-adaptation and physiological mechanisms that
are shared by different extreme environmental
exposures.

Summary and conclusions

Habituation is a process of learning in which repeated
exposure to a stimulus leads to decreased behavioral
and neuronal responses [14,138], the purpose of which
is to distinguish vital information from extraneous
noise. The habituation process is evolutionarily con-
served from one-celled organisms to mammals and
occurs in response to various forms of repeated stimuli.
In humans, cold habituation is marked by a blunting or
attenuation of the thermoeffector responses of periph-
eral vasoconstriction and shivering thermogenesis as
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well as perception of cold (Figure 4). Habituated cold
response mechanisms are demonstrated after repeated
short duration mild cold exposures and may benefit the
human through increased skin temperatures and
decreased shivering. Cold habituation also results in
decreased sympathetic nervous system activation, the
effects of which may offer benefits in other environ-
ments such as high altitude. Based on current literature,
habituation seems to occur mainly through central
mechanisms, but some aspects may be mediated by
mechanisms in the periphery. Further research is
needed to fully parse out habituation-driven mechan-
isms in an effort to determine the most efficient means
to induce habituation in benefit of the cold-exposed
human outdoors.
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