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Abstract

Activation of the latent kinase PKR is a potent innate defense reaction of vertebrate cells towards viral infections, which is
triggered by recognition of viral double-stranded (ds) RNA and results in a translational shutdown. A major gap in our
understanding of PKR’s antiviral properties concerns the nature of the kinase activating molecules expressed by influenza
and other viruses with a negative strand RNA genome, as these pathogens produce little or no detectable amounts of
dsRNA. Here we systematically investigated PKR activation by influenza B virus and its impact on viral pathogenicity.
Biochemical analysis revealed that PKR is activated by viral ribonucleoprotein (vRNP) complexes known to contain single-
stranded RNA with a 59-triphosphate group. Cell biological examination of recombinant viruses showed that the nucleo-
cytoplasmic transport of vRNP late in infection is a strong trigger for PKR activation. In addition, our analysis provides a
mechanistic explanation for the previously observed suppression of PKR activation by the influenza B virus NS1 protein,
which we show here to rely on complex formation between PKR and NS1’s dsRNA binding domain. The high significance of
this interaction for pathogenicity was revealed by the finding that attenuated influenza viruses expressing dsRNA binding-
deficient NS1 proteins were rescued for high replication and virulence in PKR-deficient cells and mice, respectively.
Collectively, our study provides new insights into an important antiviral defense mechanism of vertebrates and leads us to
suggest a new model of PKR activation by cytosolic vRNP complexes, a model that may also be applicable to other negative
strand RNA viruses.
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Introduction

The presence and replication of viral nucleic acids in vertebrate

cells triggers innate immune responses by the activation of

antiviral enzymes and induction of type I interferon (IFN) genes

[1]. The double-stranded (ds) RNA-dependent protein kinase

PKR is a key mediator of this innate immune defense functioning

as a signal transducer in a variety of cellular processes [2,3].

Human PKR is a latent serine/threonine kinase of 551 amino

acids with two consecutive N-terminal double-strand (ds) RNA-

binding motifs, a linker domain, and a C-terminal kinase domain

[4]. PKR is present in non-stimulated cells at basal levels, but its

expression is upregulated by type I IFN, which allows a robust

response to viral infection [5]. Activation of PKR during infection

involves recognition of viral nucleic acids, which induces a

structural rearrangement leading to dimerization and autopho-

sphorylation of the kinase at threonine residues 446 and 451 [2].

The best-studied natural target site of activated PKR is serine 51

of the alpha subunit of the eukaryotic translation initiation factor 2

(eIF2a). Its phosphorylation brings about a translational block of

cellular and viral mRNAs and hence, a strong impairment of viral

replication [2,3]. In addition, PKR controls transcriptional

activation of the nuclear factor-kappa B (NF-kB) pathway and

was also shown to mediate apoptosis and to function as a tumour

suppressor [3].

Many virus families have evolved gene products targeting PKR,

illustrating the high relevance of this kinase in antiviral defense

[3,6]. The inhibitory mechanisms include PKR degradation,

sequestration of viral dsRNA by a viral protein, preventing PKR

activation through inhibitory viral proteins or viral decoy RNA,

and regulating the phosphorylation of eIF2a through a viral

pseudosubstrate or recruitment of a cellular phosphatase [3]. Early

studies identified dsRNA with a minimum length of 34 base pairs

as a prototypical activator of PKR [7] and the sources of these

kinase-inducing nucleic acids have been well recognized for several

classes of viruses: Complex DNA viruses such as vaccinia virus,

adenovirus or herpes simplex virus transcribe open reading frames

in opposite orientations leading to formation of duplex RNAs [8].
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In reovirus-infected cells, the viral genome consists of dsRNA and

also the genomes of many plus-strand RNA viruses contain long

stretches of extensively base-paired secondary structure elements

[8]. Surprisingly, there is little knowledge about the specific nucleic

acids of influenza and other negative-sense RNA viruses that

trigger PKR activation, as earlier attempts failed to detect dsRNA

in cells infected with such viruses [9,10]. Progress in this area has

been hampered in part by viral suppressors of PKR, which

necessitates the application of reverse genetic procedures for such

analyses.

The influenza A and B viruses are globally distributed

pathogens of the Orthomyxoviridae family that cause acute severe

respiratory disease and around 40,000 deaths each year in the

European Union alone (http://ecdc.europa.eu/Health_topics/

influenza/facts.html). These viruses have a segmented genome

that consists of eight single-stranded viral RNAs (vRNA) of

negative polarity with short complementary sequences at their 59-

and 39-ends [11]. The vRNAs carry a triphosphate group at their

59-ends and associate with the viral polymerase complex and the

nucleoprotein NP into viral ribonucleoprotein (vRNP). In the

nucleus, the viral polymerase synthesizes mRNAs and positive

strand cRNAs that serve as templates for new vRNAs. Progeny

vRNPs are exported to the cytoplasm in the late phase of infection

via the CRM1-pathway to facilitate virus assembly and budding at

the plasma membrane [11]. It has been suggested that

hypothetical dsRNA intermediates produced during virus replica-

tion induce PKR [8,12]. Such a scenario is unlikely, however, as

production of viral RNAs with opposite polarities is a nuclear

event [11], whereas activation of PKR occurs in the cytoplasm

[13]. It was also proposed that influenza virus infection induces

PACT, a stress-activated protein activator of PKR [14], but the

dependency of PKR induction on PACT expression during viral

infection has not been reported yet.

Despite uncertainty regarding the mode of PKR stimulation, it

is well established that the influenza A and B virus NS1 proteins

(A/NS1 and B/NS1, respectively) function as PKR antagonists

since mutant viruses with defects in the NS1 gene, but not wild-

type virus, are potent PKR activators [15–17]. The NS1 proteins

of both virus types are multifunctional proteins consisting of 202–

237 and 281 amino acids (aa), respectively. Although their overall

sequence identity is below 25%, they carry a similarly structured

N-terminal dsRNA binding domain located at positions 1–73 (type

A) and 1–93 (type B) [18]. Both NS1 proteins bind to the same

RNAs in vitro including synthetic dsRNA, U6 RNA, and poly(A)-

RNA [19]; however, at present it is unclear whether the NS1

proteins sequester viral dsRNA in the same way as other viral

PKR antagonistic proteins, how dsRNA binding is related to PKR

inhibition and if the A/NS1 and B/NS1 proteins block PKR

activation by the same or different mechanism(s). Interpretation of

studies aiming to define the interactions of influenza viruses with

PKR and their significance for virus propagation is complex due to

the multifaceted nature of NS1 protein function. The NS1 proteins

not only inhibit PKR, but also downregulate the signals leading to

the activation of type I IFN genes [16,20–26]. Moreover, the A/

NS1 protein was shown to inhibit the maturation and export of

cellular pre-mRNAs, to enhance translation, to inhibit the 29-59-

oligo adenylate synthetase (OAS) and to activate the phosphati-

dylinositol 3-kinase (PI3K) [27–35]. In contrast, it is a specific

function of the influenza B virus NS1 protein to inhibit the

conjugation of the antiviral ISG15 gene product to cellular targets

[36,37]. The B/NS1 protein was recently also shown to modify the

nuclear speckle compartment [38]. Thus, a given mutation in the

NS1 gene may affect multiple functions, thereby complicating the

assignment of a specific host factor as being responsible for a

certain phenotype.

In the present report, we propose a novel concept for the

induction and control of PKR by influenza viruses that may also

apply to other negative strand RNA viruses. Analysis of

recombinant viruses showed that activation of PKR is triggered

upon the appearance of viral RNP in the cytoplasm late in

infection. This reaction was recapitulated in vitro by finding that

purified viral RNP complexes induce PKR autophosphorylation.

Genetic complementation analysis demonstrated that the blockade

of PKR by influenza B virus is facilitated by the NS1 protein’s

dsRNA binding activity, which was also essential for efficient viral

replication in vitro and in vivo. Finally, the antagonistic activity of

the NS1 protein was explained by its capacity to form a physical

complex with PKR.

Results

PKR deficiency rescues attenuated replication and
virulence of influenza B mutant viruses with dsRNA-
binding deficient NS1 proteins

Our previous analyses revealed three basic amino acid clusters

at positions 47/50, 58/60/64 and 77/78 in the N-terminal region

of the influenza B virus NS1 protein to be essential for dsRNA

binding as well as for inhibition of PKR and eIF2a phosphory-

lation [16,21] (Fig. 1A). Hence, loss-of-function viruses expressing

NS1 proteins with alanine replacements at those essential positions

(mutants #2, #4, #6) or at amino acids 33/38 (mutant #1,

dsRNA binding reduced) were attenuated for replication in IFN-

competent hosts by several orders of magnitude [16]. In contrast,

viruses expressing NS1 proteins with alanine replacements at

positions 52/53/54 or 83/86 (mutants #3 and #7), which

retained dsRNA binding, inhibited PKR activation and replicated

to high titers [16].

To address the question of whether PKR or another antiviral

factor was mainly responsible for the attenuation of viruses with

dsRNA binding-defective NS1 protein, we conducted a growth

curve analysis in embryonic fibroblasts from PKR+/+ and PKR2/2

mice (Fig. 1B). The WT and control mutant virus #3 replicated

Author Summary

Upon viral infection of vertebrate cells, a vigorous innate
defense response is initiated via the recognition of viral
double-stranded (ds) RNA by the protein kinase PKR,
resulting in the cessation of protein synthesis and
subsequent blockage of viral propagation. The activation
of PKR’s potent antiviral response against influenza and
other viruses with a negative strand RNA genome has
presented a conundrum, however, as previous attempts
failed to detect dsRNA in cells infected with these viruses.
Here, we identify genomic RNA within the ribonucleopro-
tein (RNP) of influenza viruses as a non-canonical activator
of the latent kinase PKR. Cell biological examinations
revealed that the transfer of viral RNP from the nucleus to
the cytoplasm provides a strong stimulus for PKR
activation. Moreover, we provide insight into mechanisms
of pathogenesis by showing PKR and the NS1 protein of
influenza B virus forms a complex in infected cells, which
inhibits PKR activation. This interaction seems to be crucial
for viral pathogenicity, as a strong attenuation of NS1
mutant viruses was largely rescued in PKR-deficient mice
and cells. Taken together, these findings suggest a new
model for the induction and inhibition of PKR by influenza
virus that may also apply to viruses with a similar genome
structure.
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equally well in PKR+/+ and PKR2/2 cells reaching titers of 1–

26106 FFU/ml. Replication of mutant virus #7 was slightly

lower, but this characteristic was independent of the PKR status.

In contrast, replication of mutant viruses #2, #4 and #6

expressing dsRNA-binding defective NS1 proteins was reduced in

normal mouse embryonic fibroblasts (MEF) by about three orders

of magnitude (1.5–7.16103 FFU/ml) in comparison to WT. The

mutant virus #1 replicated to a slightly higher titer (4.96104

FFU/ml). Significantly, the absence of PKR strongly boosted

replication of all four mutant viruses (#1, #2, #4 and #6) to titers

between 5.46105 and 1.16106 FFU/ml. Interestingly, minimal

replication of the isogenic virus with a complete deletion of the

NS1 gene (delNS1 virus) was observed both in the absence and

presence of PKR, pointing to a vital NS1 function beyond the

inhibition of PKR.

To evaluate NS1 dsRNA binding activity in vivo, we compared

the growth of WT and selected mutant viruses in the lungs of wild-

type and PKR2/2 mice [39] three and six days after intranasal

Figure 1. The dsRNA binding activity of the influenza B virus NS1 protein is dispensable for efficient viral replication and
pathogenicity in PKR-deficient hosts. (A) The schematic diagram shows basic amino acid residues in the dsRNA-binding domain of the NS1
protein. NS1 proteins with alanine exchange mutations at the indicated positions have been shown to have strong (+), weak (+/2) or no (2) dsRNA
binding activity [21]. Recombinant influenza B viruses expressing NS1 proteins with abolished dsRNA-binding and mutant virus #1 did not inhibit
PKR activation and eIF2a phosphorylation (2), whereas viruses expressing dsRNA binding NS1 proteins inhibited PKR as WT virus (+) [16]. (B) PKR+/+

or PKR2/2 MEFs were infected with WT virus, delNS1 virus or NS1 mutant viruses #1, #2, #3, #4, #6 or #7 at an MOI of 0.1. Virus titers were
determined at the indicated time points and represent the average of two independent experiments performed as duplicates. Error bars indicate the
standard deviation. (C) For infection studies in mice the indicated representative recombinant influenza B/Lee viruses were chosen according to their
ability to block PKR activation. Groups of eight-week-old female PKR2/2 and wild type C57BL6 mice were anesthetized and infected intranasally with
16105 ffu of the indicated recombinant influenza B/Lee virus. For viral lung titrations, three mice were sacrificed at day 3 and at day 6 post-infection
and virus titers were determined in lung homogenates. Error bars indicate the standard deviation. Statistical analysis indicated significant differences
between WT and mutant virus titers. *, p,0.05; **, p,0.01; n.d., not detectable. Other recombinant viruses were not tested in this setting.
doi:10.1371/journal.ppat.1000473.g001
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infection with 16105 FFU (Fig. 1C). This dose was the highest

applicable amount possible, due to the low growth of some of the

mutant viruses. Wild-type mice had strongly reduced lung titers (by

about two orders of magnitude) of the mutants expressing dsRNA-

binding deficient NS1 proteins (#2 and #4), in comparison to WT

virus and control mutant #7; even so, all three mutant viruses

replicated in PKR2/2 mice to a similar extent as the WT. The

delNS1 virus was not detected at all in normal mice. However,

visible delNS1 virus titers were determined in the lungs of PKR2/2

animals, which were, however, considerably reduced compared to

WT virus. A similar strong attenuation of replication in PKR2/2

mice was recently reported for an influenza B/Yamagata/88

mutant virus expressing a severely truncated NS1 protein of 18

amino acids [40]. The differences in delNS1 virus growth in vitro and

in vivo might be due to a higher permissiveness of the murine

respiratory tract in the absence of PKR compared to fibroblasts, or

the slightly different genetic backgrounds of the PKR-deficient

animals and cells studied. All WT mice survived the challenge with

each virus, but there were marked differences in the body weights of

infected animals (Fig. S1A). WT and the control mutant virus #7

caused a transient weight loss of up to 15%, whereas there was little

or no weight reduction in mice infected with the mutants #2, #4 or

delNS1 virus. Interestingly, PKR2/2 mice rapidly lost weight and

succumbed to infection between day 7 and 9 after challenge with the

WT and all four viruses expressing mutant NS1 proteins, but there

was little weight loss in PKR-deficient mice after delNS1 infection

(Fig. S1B). These findings demonstrate that PKR can strongly

inhibit replication of influenza B virus; however, PKR can be

impeded by the dsRNA binding function of the viral NS1 protein.

DsRNA-binding NS1 proteins form an RNase-sensitive
complex with PKR in infected cells

To test the hypothesis that NS1 forms a complex with PKR

involving dsRNA, we first immunoprecipitated lysates of WT and

mutant virus-infected human A549 cells with anti-NS1 serum

(Fig. 2A). Immunoblot analysis showed that PKR was specifically

coprecipitated with dsRNA binding NS1 proteins expressed by the

WT and mutant viruses #1, #3 and #7. In contrast, very little or

no PKR was detected in precipitates containing the dsRNA

binding-deficient NS1 proteins of the mutant viruses #2, #4 and

#6, that fail to prevent activation of PKR [16,21]. Further analysis

showed that pre-treatment of lysate with dsRNA-specific RNase

III eliminated the detection of WT NS1-PKR complexes in a

dose-dependent manner (Fig. 2B). These results suggest that

dsRNA-binding of the NS1 protein is a prerequisite for complex

formation with PKR.

Wild-type but not dsRNA binding-deficient NS1 protein
co-sediments with PKR and viral RNP

To characterize the intracellular complexes containing PKR

and NS1 protein, we fractionated lysates of A549 cells infected

with the WT or NS1 mutant #4 virus by sucrose density gradient

Figure 2. The dsRNA-binding activity of the NS1 protein mediates interaction with PKR. (A) Human A549 lung epithelial cells were mock
treated or infected with WT virus or the NS1 mutant viruses #1, #2, #3, #4, #6 or #7 at an MOI of 1. Lysates were subjected to
immunoprecipitation (IP) with NS1 antiserum (a) or pre-serum (ctrl). The precipitated complexes were analyzed by immunoblotting with antibodies
specific for PKR (upper panel) and NS1 (lower panel). Whole cell lysates were also analyzed with antibodies specific for PKR, tubulin and NS1 as
indicated. (B) A549 cells were mock treated or infected with WT virus at an MOI of 1. Lysates were prepared that were either mock treated (2) or
treated with the indicated amounts of RNase III for 10 minutes at 33uC prior to immunoprecipitation with NS1 antiserum (a) or pre-serum (ctrl). The
precipitates were analyzed as described in panel 2A (panel to the left). Aliquots of the lysates were also analyzed directly by immunoblotting for PKR,
tubulin and NS1 as indicated (panels to the right).
doi:10.1371/journal.ppat.1000473.g002
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centrifugation (Fig. 3A). Immunoblot analysis of fractions 1 to 9

(top to bottom) showed that the NS1 WT, but not the dsRNA

binding-deficient mutant protein co-sedimented with PKR and

NP in higher order complexes in fractions 7 to 9 (Fig. 3A). Dot-

blot analysis detected genomic viral RNA of the HA and NS

segments in the same fractions, indicating the presence of vRNPs

(Fig. 3A, panels ‘‘HA and NS vRNA’’). As expected, control blots

showed in lysates of mutant virus-infected cells the presence of

phospho-PKR, whereas little activation occurred with WT virus

(Fig. 3B, right panel, ‘‘lysate’’). Since PKR co-sedimented with

vRNP the question arose whether these factors interact and if this

interaction could be involved in PKR activation. Therefore, we

immunoprecipitated lysates of WT and mutant virus-infected cells

with PKR-specific antibody and examined the precipitates by

immunoblotting and RNA hybridization (Fig. 3B). Efficient co-

precipitation of the wild-type NS1, but not the mutant protein was

observed (Fig. 3B). We also detected the negative-stranded viral

RNA, a major component of the viral RNP, in the precipitates

without difficulty. Hence, these results indicate that PKR

associates with viral RNP and, depending on intact dsRNA

binding, also with the NS1 protein.

Activation of PKR correlates with cytoplasmic
accumulation of vRNPs

Next, we compared the activation of PKR after infection of cells

with the NS1 loss-of-function mutant #4 and WT virus in relation to

the intracellular localization of vRNP complexes (Fig. 4). Confocal

microscopy detected vRNPs as stained by NP-specific antibody in

the nucleus at 8 hours post infection (p.i.), but increasing cytosolic

signals appeared at 12 and 16 hours p.i. for both viruses (Fig. 4A).

At the later time-points, the NS1 proteins were detected in the

nuclear and the cytoplasmic compartments, although we noted a

slightly stronger nuclear signal for the mutant protein (Fig. 4A).

Starting at 12 hours p.i., the cytosolic appearance of vRNP was

paralleled by detection of activated PKR in cells infected with the

mutant, but not the WT virus (Fig. 4B). A similar picture was

observed in cells infected with the delNS1 mutant virus (data not

shown). Intriguingly, PKR activation by the mutant #4 virus was

strongly reduced in the presence of leptomycin B (LMB), a fungal

drug that specifically inhibits the CRM1 pathway and thus the

nuclear export of vRNP [41] (Fig. 4A). Immunoblotting for NP,

NS1 and tubulin showed comparable viral protein synthesis in the

presence of LMB (Fig. 4B) and cell fraction analysis confirmed that

Figure 3. NS1 WT but not dsRNA-binding deficient NS1 protein co-sediments with PKR and vRNP upon density gradient
centrifugation. (A) A549 cells were infected with WT virus or mutant virus #4 at an MOI of 1. Cells were lyzed 12 hours p.i. and subjected to
centrifugation through a continuous 5 to 50% sucrose gradient. 16 fractions were taken from top to bottom. Fractions 1 to 9 were analyzed by
immunoblotting with antibodies specific for PKR and the viral NP and NS1 proteins. Also, RNA was extracted from gradient fractions 1 to 9 and was
subjected to dot blot hybridization with probes specific for HA vRNA and NS vRNA, respectively (panels ‘‘HA and NS vRNA’’). Whole cell lysates were
analyzed by immunoblotting with antibodies specific for phospho-PKR, total PKR, viral NP, viral NS1 and tubulin as indicated (right panel,‘‘lysate’’). (B)
A549 cells were mock treated or infected with WT virus or virus mutant #4 as described in panel A. Lysates were prepared and subjected to
immunoprecipitation with anti-PKR (a) or control antibody (ctrl). The precipitated complexes were analyzed by immunoblotting for PKR and NS1
proteins. RNA was isolated from an identical set of PKR immunoprecipitates of cells infected with the mutant virus and subjected to dot blot analysis
with an RNA-probe specific for HA vRNA.
doi:10.1371/journal.ppat.1000473.g003
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Figure 4. The nuclear egress of vRNPs late in infection leads to PKR activation. (A) A549 cells grown on glass cover slips were infected with
WT or mutant virus #4 at an MOI of 1. Cells were mock treated or complemented with LMB starting at 3 hours p.i.. At 8, 12 and 16 hours p.i., cells
were fixed and stained for NP (shown in red color), and also for the NS1 protein at the 16 h time-point (shown in green color). Microscopic sample
analysis was conducted by confocal laser scanning microscopy. Scale bar, 10 mm. (B) A549 cells grown in culture dishes were infected with WT virus or
mutant virus #4 at an MOI of 1. Cells were mock treated or complemented with LMB starting 3 hours p.i. and lyzed 8, 12 and 16 hours p.i.. Whole cell
lysates were analyzed by immunoblotting with antibodies specific for phospho-PKR, total PKR, NP, NS1 and tubulin as indicated.
doi:10.1371/journal.ppat.1000473.g004
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LMB strongly reduced cytosolic NP levels under these condition

(Fig. S3). These findings suggest that activation of PKR is

associated with the cytosolic appearance of vRNPs late in

infection.

Purified viral RNPs trigger PKR kinase activity in vitro
To test the hypothesis that influenza virus RNP activates PKR

directly, we purified vRNPs from influenza B/Lee virions (Fig. S2)

and tested them for stimulation of PKR autophosphorylation. V5

epitope-tagged PKR was expressed in 293T cells and precipitated

from cell lysate with tag-specific antibody. Activation of the

precipitated kinase in the presence of vRNP was assessed by

incubation with [c-32P]-ATP followed by analysis on SDS gels and

autoradiography. Fig. 5A shows an exposure of autophosphory-

lated PKR (lanes ‘‘32P-PKR’’) and the same region of the gel after

staining with Coomassie Blue (Lanes ‘‘PKR-V5’’, ‘‘NP’’ and

‘‘IgG’’). Interestingly, the purified vRNP stimulated PKR

autophosphorylation in a dose-dependent manner similar to the

synthetic dsRNA polyriboinosinic: polyribocytidylic acid (pI:C)

(Fig. 5A). Pre-treatment of vRNP with either dsRNA-specific

RNase III or ssRNA-specific RNase I prior to the kinase reaction

abolished PKR activation, which argues against the presence of a

protein activator of PKR in the reaction (Fig. 5A). Significantly,

influenza virus RNP hardly activated the dsRNA binding-deficient

PKR-K60A mutant, further confirming the dsRNA-dependency

of vRNP-mediated kinase stimulation (Fig. 5B). Control reactions

showed that the PKR-K60A mutant enzyme was activated by

heparin, a common trigger for PKR autophosphorylation [3],

excluding the possibility that the mutation affected general kinase

activity. We note that influenza virions package only RNPs

containing negative-stranded genomic RNA and not complemen-

tary nucleic acids [42], which could induce double-stranded

hybrids. Moreover, the kinase assay conditions used prevented the

viral polymerase from transcribing complementary RNA, which

could hypothetically induce duplex RNA.

It is difficult to determine whether the removal of the 59-

triphosphate group on the vRNA within the native RNP reduces

PKR stimulation [43]. Phosphatase not only hydrolyzes the 59-

triphosphate, but also removes the phosphate groups on activated

PKR and the donor nucleotide, and a subsequent elimination of

the phosphatase by phenol extraction would obstruct RNP

structure. However, we showed that phosphatase treatment

strongly reduced activation of PKR by synthetic influenza virus

model vRNA containing the terminal 59- and 39- ends, indicating

a contribution of the 59-triphosphate (Fig. 5C). In conclusion, these

experiments suggest that influenza virus RNP, most likely via

structured regions within the genomic RNA and its unmodified 59-

end, activates PKR.

Discussion

The present study showed that PKR is a major factor restricting

the growth of influenza B virus in vitro and in vivo and revealed

mechanisms for its activation and subversion. We previously

reported that mutational inactivation of the dsRNA binding

domain of the B/NS1 protein attenuated viral replication and

ablated the control of PKR and eIF2a phosphorylation, but only

slightly affected IFN suppression [16]. Our new analysis firmly

establishes that the key activity of the B/NS1 dsRNA binding

domain is to silence PKR and excludes the possibility that another

antiviral factor(s) is chiefly responsible for the observed growth

defects of the mutants: The absence of PKR restored a virulent

phenotype of the mutant viruses expressing dsRNA binding-

deficient NS1 protein in mice and viral titers were elevated to the

range of wild-type virus in the lungs of PKR2/2 mice and

fibroblasts. Interestingly, this is slightly different to a reported main

function of the dsRNA binding domain of the influenza A virus

NS1 protein in targeting the antiviral 29-59-OAS/RNase L system

[32]. Our study revealed a further distinction between type A and

B influenza viruses since the B/delNS1 virus behaved benignly in

both PKR+/+ and PKR2/2 mice, whereas a comparable A/delNS1

virus regained virulence in PKR null mice [15]. This finding points

to the existence of an additional important function of the B/NS1

protein during viral replication, which is possibly related to its

recently reported activity in modifying the nuclear speckle

compartment of the host cell [38].

The interactions of PKR with its RNA effectors and viral

inhibitors are complex and incompletely understood. Our analysis

of defined loss-of-inhibition mutant viruses offers new insights into

the conundrum of how dsRNA-dependent PKR is activated

during infection by influenza virus that does not generate long

duplex RNA [10]. Based on several lines of evidence, we put

forward the hypothesis that influenza virus RNP functions as a

non-canonical activator of PKR in the cytosol: First, PKR

autophosphorylation in infected cells occurred concomitantly with

the cytosolic appearance of vRNP, when a functional NS1 protein

was absent. Second, PKR activation was largely abolished when

the nucleo-cytoplasmic export of vRNP was blocked by LMB

treatment. Third, biochemical analysis demonstrated that purified

vRNP activates PKR in an in vitro kinase assay directly. The RNA-

dependency of this stimulation was shown by its sensitivity to pre-

treatment with single- and double-strand-specific RNases and the

failure of the vRNP to activate a dsRNA binding-defective PKR.

We favour the explanation that the vRNA promoter structure

formed by the partially complementary 59- and 39-ends within

vRNP is an important determinant for PKR activation. Synthetic

A-form RNA consisting of a short stem region flanked by single-

stranded nucleotides was previously shown to efficiently stimulate

PKR in vitro [44]. There is now ample evidence from structural,

biochemical and functional studies that the 14–16 nucleotides of

the vRNA termini engage in base-pairing interactions and exist in

form of a panhandle and/or a related corkscrew structure [45–47]

(summarized in [11]). Intriguingly, the 59-ends of influenza virus

RNAs carry a triphosphate structure [11] and this chemical group

was recently reported to support activation of PKR by stem-loop

RNA [43]. In fact, the present study is the first characterization of

a natural viral RNA/RNP with a 59-triphosphate group that

triggers PKR, as the studies mentioned above tested exclusively

synthetic model RNAs. Our mechanistic model suggests PKR can

contact RNA residues within the vRNP despite their association

with the viral NP and polymerase proteins.

A second novel aspect of our study centres on the mode by

which the influenza B virus NS1 protein inhibits PKR. Previously,

we showed that dsRNA binding mutations within NS1 prevented

PKR inhibition, but did not eliminate the suppression of IFN

induction that is triggered through the RNA helicase RIG-I

[9,16,48]. Our new study explains the former observation by

showing that the NS1 protein entangles PKR into an immuno-

precipitable complex in infected cells. These PKR-NS1 complexes

were sensitive to treatment with dsRNA-specific RNase and the

interaction required a functional NS1 dsRNA binding domain.

The most likely interpretation of these findings is that RNA to

which both proteins bind facilitates the interaction of PKR and

NS1. Interestingly, the association with PKR appears to be

necessary but not sufficient to preclude its activation. In fact, all

NS1 mutants that were not associated with PKR failed to block

kinase activation (this study; [9,16,48]), but the NS1 mutant #1

did not prevent PKR activation even though it interacted with the
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Figure 5. Purified viral RNP activates PKR autophosphorylation in vitro. (A) V5-tagged PKR was expressed in 293T cells and precipitated from
lysate by anti-V5 antibody. Kinase activation was assayed on precipitated PKR in the presence of 10 mCi [c-32P]ATP for 30 min at 30uC. PKR was
activated as indicated by 2.5, 5 or 7.5 ml vRNP, or 2.5 ng/ml pI:C. In further reactions, 5 ml vRNP were pre-treated with 5 U RNase III or 5 U RNase I,
respectively. Kinase reactions were analyzed by SDS gel electrophoresis and autoradiography (upper panel). Autophosphorylation of PKR was
evaluated using the AIDA software and is given as fold activation compared to mock treated PKR. The values represent the average of three
independent experiments. Error bars indicate the standard deviation. After exposure the SDS gel was stained with Coomassie blue to visualize
precipitated V5-PKR, NP and the IgG heavy chain (lower panel). (B) V5-tagged PKR and V5-tagged mutant PKR-K60A that does not bind dsRNA were
expressed in 293T cells, precipitated and stimulated in the autophosphorylation assay by vRNP or treatment with heparin as indicated. Quantification
was done as described in panel A. (C) V5-tagged PKR was expressed in 293T cells, precipitated and subjected to the kinase activation assay as
described above. PKR was incubated as indicated without or with 0.3, 1.0 or 3.0 mM of a transcribed model vRNA of 53 nucleotides, which was mock-
treated or dephosphorylated by phosphatase, respectively, as indicated.
doi:10.1371/journal.ppat.1000473.g005
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enzyme. Clearly, more work is required to determine the whole

catalogue of events leading to the blockade of PKR by influenza B

virus. Slightly different modes of PKR association, which did not

require dsRNA binding in GST pull-down assays were suggested

for the A/NS1 protein [49,50]. We have therefore initiated

comparative studies to determine whether the two divergent NS1

proteins employ different or similar ways to block PKR.

At present, we can only speculate about the nature of the RNA

component in NS1-PKR complexes in influenza B virus-infected

cells. The presented data argue for a scenario in which cytoplasmic

vRNP complexes are recognized by PKR and provide the major

stimulus for its activation. We detected both vRNA and the NS1

protein in PKR immunoprecipitates from infected cell lysate

raising the possibility that NS1 prohibits activation of PKR by

cytosolic vRNP through the formation of a hetero-trimeric

complex. However, we cannot rule out the option that binding

of NS1 to PKR in infected cells is mediated by a yet undetermined

viral or host-derived nucleic acid; for that reason more work will

be required to elucidate the specific components involved.

The influenza B virus non-structural NS1 protein has

apparently evolved in a way that suits the specific needs of the

pathogen to inhibit PKR (Fig. 6). During the first hours of

infection viral RNPs are confined to the nucleus and not accessible

for the cytosolic sensor (Fig. 6A). At later stages, the vRNPs are

exported to the cytoplasm where they assemble into progeny

virions at the plasma membrane. Cytoplasmic vRNPs act as PKR

activators in the absence of functional NS1 protein, thus reducing

protein synthesis and virus growth (Fig. 6B). However, in the wild-

type situation NS1 protein is expressed and prevents activation of

PKR by vRNPs, thereby facilitating full-level synthesis of

structural viral proteins and efficient viral propagation (Fig. 6C).

This scenario is supported by the dynamic intracellular trafficking

of the B/NS1 protein showing that it migrates to nuclear speckles

early in infection, but relocalizes to the cytoplasm at later time-

points [38]. The model may also explain phenotypes of mutant

influenza viruses with lesions in the NS1 protein that activate PKR

and show a selective reduction in the synthesis of late viral gene

products [16,17,51].

Finally, we suggest that activation of PKR by other negative

strand RNA viruses that generate little or no detectable long

duplex RNA may occur in a similar way. The genomes of many of

these viruses enter the cytoplasm as part of an RNP structure and

carry a 59-triphosphate group. In fact, the conserved ends of the

genomic RNAs of several members of the Bunyaviridae also form a

structured panhandle [52] and the level of phosphorylated eIF2a
increased during infection with the prototypic Bunyamwera virus

[53]. Further observations suggest that also non-segmented

negative-strand RNA viruses may induce PKR by a ribonucleo-

protein structure; for instance, the Ebola virus VP35 protein

counteracts stimulation of PKR, indicating indirectly that

members of the Filoviridae family activate and prevent induction

of the kinase [54]. In addition, replication and virulence of

vesicular stomatitis virus, a member of the Rhabdoviridae, is strongly

enhanced in PKR-deficient mice [55]. Exploring the methods used

by viral pathogens to counteract PKR not only promises an

improved understanding of the innate immune defense against

viral infections, but may also foster the development of novel

therapeutic substances. Our study suggests that it should be

possible to shift the course of influenza virus infection from

efficient pathogen replication towards its elimination via the body’s

innate defense if the NS1-mediated blockade of PKR could be

suspended. The recent description of substances capable to

modulate NS1’s activity in IFN suppression supports the concept

that this viral protein is indeed amenable to control by therapeutic

substances [56].

Materials and Methods

Cells and viruses
293T and A549 cells were grown in Dulbecco’s modified Eagle

medium (DMEM) supplemented with 10% fetal calf serum (FCS),

2 mM L-glutamine, and antibiotics. Madin-Darby canine kidney

(MDCK) type II cells were grown in minimal essential medium

(MEM) with the same additives. MEFs were prepared from

C57BL/6 mice (PKR+/+) or mice devoid of functional PKR

(PKR2/2) [39] and cultured in DMEM supplemented with 10%

FCS, 2 mM L-glutamine and 50 mM b-mercaptoethanol. All cells

were maintained at 37uC and 5% CO2. The recombinant

influenza B/Lee WT and mutant viruses DNS1, NS1 33/38

(#1), NS1 47/50 (#2), NS1 52/53/54 (#3), NS1 58/60/64 (#4),

NS1 77/78 (#6), and NS1 83/86 (#7) have been described

elsewhere [16,20]. To analyze viral replication, monolayer

cultures of PKR+/+ or PKR2/2 MEFs were infected at a

multiplicity of infection (MOI) of 0.1 and incubated at 33uC in

DMEM containing 0.2% bovine albumin and 0.5 mg/ml trypsin.

Virus titers were determined by indirect immunofluorescence

staining and were expressed as fluorescence-forming units (ffu)/ml

as described before [20].

Figure 6. Model for the induction and inhibition of antiviral PKR by influenza virus. The three panels show the localization of the genomic
vRNA/RNP complexes with structured 59- and 39-ends together with the phosphorylation status of PKR in early (panel A) and late phases (panels B
and C) of virus infection. Viral RNP is located in the nucleus early in infection and is not accessible for cytosolic PKR (panel A). Upon nuclear export at
later stages, vRNP complexes stimulate PKR activation in the absence of functional NS1 protein, leading to an inhibition of viral proteins synthesis and
replication (panel B). However, the presence of functional viral NS1 protein suppresses this antiviral reaction thereby supporting high-level viral
propagation (panel C).
doi:10.1371/journal.ppat.1000473.g006
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Infections of mice
Eight-week-old female wild type C57BL6 PKR+/+ and PKR2/2

mice with the mixed 129/Sv(ev)6C57BL/6J background [39]

were anesthetized and infected intranasally with 50 ml of

phosphate-buffered saline (PBS) containing 16105 ffu of the

indicated recombinant influenza B/Lee viruses. For viral lung

titrations, three mice were sacrificed at day 3 and at day 6 post-

infection. Mice lungs were homogenized in 1 ml PBS, and titrated

by immunofluorescence using a monoclonal antibody against

influenza B virus nucleoprotein (Abcam; ab20711-100). Compar-

ison of viral lung titers in WT and mutant virus-infected mice at

each time-point was done using the Student’s t test for pairwise

comparisons. For monitoring of viral disease, 8 animals were

weighed daily for two weeks and euthanized when observed in

extremis. Mice were bred and maintained at the Mount Sinai

School of Medicine in accordance with Federal and university

guidelines.

Plasmids
pcDNA3.1-PKR-V5/His was constructed by integration of the

human PKR cDNA into the vector pcDNA3.1-V5/His (Invitro-

gen). The derived pcDNA3.1-PKR-K60A-V5/His plasmid was

constructed with the QuikChange mutagenesis kit (Stratagene).

The integrity of the constructs was confirmed by DNA cycle

sequencing.

Immunoprecipitation and immunoblot analysis
2.56106 A549 cells were mock-treated or infected with WT,

DNS1 or NS1 mutant virus at an MOI of 1. Cell extracts were

prepared 8 hours p.i. in IP lysis buffer (1% Igepal-CA 630,

150 mM NaCl, 20 mM Tris?HCl, pH 7.5, 1 mM EDTA, 10 mM

Na-b-glycerophosphate, 2 mM Na3VO4, 1 mM Pefabloc). When

indicated, lysates were pre-incubated with RNase III (Ambion) for

10 min at 33uC before incubation with B/NS1-specific rabbit

antiserum [16]. Immune complexes were collected on protein-G-

agarose beads (Roche), washed and the precipitated proteins were

dissolved in SDS sample buffer. For PKR immunoprecipitation

cells were lyzed in kinase binding buffer (20 mM Hepes pH 7.5,

300 mM NaCl, 5 mM Mg(OAc)2, 10% glycerol, 25 mM Na-b-

glycerophosphat, 2 mM Na3VO4, 1 mM Pefabloc) containing

0.5% Igepal-CA 630. PKR was precipitated with rabbit anti-PKR

antibody (Epitomics) and immunocomplexes were collected as

described above. The precipitated proteins were analyzed as

indicated by SDS gel electrophoresis and immunoblotting using

the primary B/NS1-specific rabbit antiserum, mouse anti-PKR

antibody 71/10 (Ribogene) or rabbit anti-PKR antibody (Epi-

tomics), mouse anti-NP antibody (AbD Serotec), rabbit anti-

phospho-PKR (Thr446) antibody (Cell Signaling), mouse anti-

tubulin antibody (Sigma) and suitable secondary horseradish

peroxidase (HRP)-conjugated IgG together with an enhanced

chemiluminiscence protocol (Pierce). To detect PKR-associated

viral nucleic acids, the PKR immunoprecipitate was subjected to

proteinase K digestion and phenol extraction. Purified RNA was

subjected to dot blot analysis with probes specific for HA vRNA as

described below.

Density gradient centrifugation
2.56106 A549 cells were mock-treated or infected with B/Lee

WT or NS1 58/60/64 (#4) mutant virus at an MOI of 1 at 33uC.

Cells were lyzed 12 hours p.i. in LyP-100 buffer (25 mM Hepes

pH 7.5, 100 mM NaCl, 2.5 mM MgCl2, 0.1% Igepal-CA 630,

10 mM b-glycerophosphate, 2 mM Na3VO4, 1 mM Pefabloc,

5 ml/ml RNasin). Lysates were loaded onto a continuous sucrose

gradient (5 to 50% in LyP-100 buffer) and centrifuged in a

SW60Ti rotor (Beckman) for 150 minutes at 30.000 rpm and 4uC.

Sixteen 250 ml fractions were taken from top to bottom. Fractions

1 to 9 were halved and analyzed by immunoblotting or subjected

to RNA extraction (RNeasy, Qiagen), respectively. Denatured

extracted RNA in 7.5% formaldehyde and 10xSSC were dotted

onto Nylon transfer membrane and NS and HA vRNAs were

detected with segment-specific DIG-labeled probes. DIG-labelled

probes were generated from linearized template DNA by T7 RNA

polymerase-mediated transcription using the DIG Northern

Starter Kit (Roche).

Leptomycin B (LMB) treatment of infected cells
16106 A549 cells were either mock-treated of infected with B/

Lee WT or NS1 58/60/64 (#4) mutant virus at an MOI of 1.

7.5 ng/ml LMB (Sigma) or an equal volume of 70% methanol as a

solvent control was added to the supernatant at 3 hours p.i.. At 8, 12

and 16 hours p.i. cells were lyzed in kinase binding buffer

containing 0.5% Igepal-CA 630 and were analyzed by immuno-

blotting, as described above. The fractionation of cell lysate is

described in the supporting materials and methods section (Text

S1). In parallel, A549 cells grown on glass coverslips were infected

and treated with LMB as described above. The cells were fixed with

2.5% paraformaldehyde and permeabilized with 0.2% Triton X-

100 at 8, 12 or 16 hours. Viral NP was stained with primary mouse

anti-NP antibody (AbD Serotec) and secondary goat anti-mouse

Alexa 594 antibody (Molecular Probes). Cells were not stained for

PKR as the available antibody appeared to be not suitable. Cells

were analyzed with a LSM510 Meta confocal laser scanning

microscope (Zeiss, Jena, Germany) equipped with a 63x/1.2 water

objective lens. Data were analyzed and processed by the LSM

Image Browser 3.5 and Adobe Photoshop 4.0 software packages.

PKR autophosphorylation assay
56106 293T cells were transfected with pcDNA3.1-PKR-V5/

His or pcDNA3.1-PKR-K60A-V5/His, respectively. Cells were

lyzed in kinase binding buffer containing 0.5% Igepal-CA 630, the

cleared lysate was incubated with mouse anti-V5 antibody (AbD

Serotec) and immunocomplexes were collected on protein G-

agarose. The beads were washed twice with kinase binding buffer

and twice with kinase assay buffer (20 mM Hepes pH 7.5, 50 mM

KCl, 2 mM Mg(OAc)2, 2 mM MnCl2, 25 mM Na-b-glyceropho-

sphat). The activation assay was performed on immobilized PKR

in kinase assay buffer with 250 mM ATP, 10 mCi [c-32P]-ATP,

5 mM Na3VO4, 1 mM NaF, 1 mM DTT. Viral RNPs were

purified from detergent-treated virions as described in the

supporting methods section (Text S1). PKR was activated by

addition of pooled influenza B virus vRNP fraction, 2.5 ng/ml poly

I:C (Sigma) or 12.5 ng/ml heparin (Sigma), respectively, and

incubated for 30 min at 30uC. Autophosphorylated PKR was

analyzed by 10% SDS-PAGE and visualized by autoradiography.

Densitometric evaluation was done with the AIDA 4.18.028

software and is given as fold activation compared to mock-treated

PKR. For RNase treatment, vRNPs were incubated for 15 min at

37uC alone or with 5 U RNase III (Ambion) or 5 U RNase I

(Ambion), respectively, prior to the kinase reaction. For PKR

activation by synthetic vRNA, the plasmid pV-WT [57] was

digested with MboII (Fermentas), treated with Klenow fragment

(Fermentas) for 10 min at 37uC and used as a template for T7

RNA polymerase mediated in vitro transcription. The 53 nt long

model vRNA containing the terminal 59 and 39 end sequences of

influenza virus NS segment connected by a short linker was

purified by a Quick Spin Oligo Column (Roche) and mock-treated

or treated with Antarctic phosphatase (NEB) for 30 min at 37uC.
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The phosphatase was inactivated at 65uC for 15 min. vRNAs were

purified by phenol/chloroform extraction and ethanol precipita-

tion and concentrations were determined by UV spectroscopy.

Precipitated PKR was incubated with mock-treated or phospha-

tase-treated vRNA for 30 min at 30uC. Autophosphorylation of

PKR and densitometric analyses were done as described above.

Supporting Information

Figure S1 Pathogenicity of influenza B viruses expressing

dsRNA-binding defective NS1 proteins is enhanced in PKR null

mice. (A) Groups of eight-week-old female PKR2/2 and wild type

C57B6 mice were anesthetized and infected intranasally with

16105 pfu of the indicated recombinant influenza B/Lee virus.

For monitoring of viral disease, 8 animals were weighed daily for

two weeks, and mean percentage weight loss of each group was

compared with the weight immediately prior to infection. Mice

were euthanized when observed in extremis. (B) Survival rate of

PKR2/2 mice after infection with recombinant influenza B

viruses. Dead animals were scored daily and represented as the

percentage of surviving animals.

Found at: doi:10.1371/journal.ppat.1000473.s001 (0.18 MB TIF)

Figure S2 Preparation of vRNPs from recombinant influenza

B/Lee virus. Virus was grown in embryonated chicken eggs and

subjected to lysis and centrifugation over a discontinuous glycerol

gradient as described in Text S1. Fractions were taken from top to

bottom and analyzed by SDS-PAGE and Coomassie blue staining

(upper panel) and immunblotting with NP specific antibody

(middle panel). RNA was extracted from the fractions and

subjected to reverse transcription (RT)-PCR with primers specific

for the vRNA of the NS segment (lower panel).

Found at: doi:10.1371/journal.ppat.1000473.s002 (0.58 MB TIF)

Figure S3 Treatment of infected cells with LMB inhibits the

nuclear export of NP. A549 cells were infected with influenza B/

Lee WT virus at an MOI of 1. Cells were mock treated or

complemented with LMB starting at 3 hrs p.i.. Cells were lyzed at

15 hrs p.i. and cytoplasmic (C.) and nuclear fractions (N.) were

generated. The fractions were analyzed by immunoblotting for

viral NP and the marker antigens for the nuclear and cytoplasmic

fractions, PARP and tubulin, respectively.

Found at: doi:10.1371/journal.ppat.1000473.s003 (0.11 MB TIF)

Text S1 This file contains supporting materials and methods.

Found at: doi:10.1371/journal.ppat.1000473.s004 (0.03 MB

DOC)
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