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Abstract: To prevent severe air pollution, it is important to analyze time-series air quality data, but
this is often challenging as the time-series data is usually partially missing, especially when it is
collected from multiple locations simultaneously. To solve this problem, various deep-learning-based
missing value imputation models have been proposed. However, often they are barely interpretable,
which makes it difficult to analyze the imputed data. Thus, we propose a novel deep learning-
based imputation model that achieves high interpretability as well as shows great performance
in missing value imputation for spatio-temporal data. We verify the effectiveness of our method
through quantitative and qualitative results on a publicly available air-quality dataset.

Keywords: time-series data; spatio-temporal data; missing value imputation; interpretable deep
learning; air pollution

1. Introduction

Air pollution is one of the most challenging environmental problems attracting great
global attention. It is the concentration of small harmful particles in the air, commonly
caused by industry, power generation, and heavy traffic. Air pollution is a factor that
greatly increases human mortality [1]. In 2015, 6.4 million people died because of polluted
air worldwide; this is a much more significant number than those for AIDS (1.2 million), tu-
berculosis (1.1 million), and malaria (0.8 million) [2]. It shows the importance of preventing
air pollution from getting worse.

Analyzing air quality data can be the first step in successfully preventing air pollution
from getting worse and in forecasting future air quality. However, these data are often only
partially observed, making it challenging to accurately analyze air quality. The hardware
problem of air quality sensors and human error during data collection can lead to missing
values. Moreover, since air quality data are collected from various locations simultaneously,
missing values can very commonly occur. Many missing value imputation techniques
have been studied to alleviate the missing value problem in collected data [3,4]. Especially,
deep learning-based imputation methods using recurrent neural networks and generative
adversarial networks have been studied and have achieved great success [5–7].

However, it is difficult to interpret the prediction results of these deep learning-
based models due to the characteristic of data-driven algorithms. Recently, N-BEATS [8]
has shown great success in time-series forecasting, as well as high interpretability. N-
BEATS divides the prediction into three parts: trend, seasonality, and residual. By explicitly
defining the trend and seasonality, N-BEATS enables us to study the reasons for prediction
values. Inspired by these, we propose a novel deep learning-based imputation model
that adopts the high interpretability of N-BEATS for the imputation task. Tailored to the
missing value imputation task, our proposed model sequentially eliminates the bias, slope,
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seasonality, and residual of the input time-series, causing the output to become zero. Then,
the summation of eliminated values can be used to represent the original time-series data.
As our model uses explicitly defined bias, slope, and seasonality equations, the missing
values can be imputed from them. Moreover, our model imputes missing values that occur
in multiple locations simultaneously, utilizing the spatio-temporal information. To show
the effectiveness of our method, we compare the proposed model with several commonly
used imputation methods.

2. Materials and Methods
2.1. Datasets

This study is conducted using two different datasets: the (1) Guro-gu [9] and
(2) Dangjin-si air quality datasets. A summary of the two datasets is provided in Table 1.
We use PM2.5 and PM10 values for our experiments on both of the datasets. We split each
dataset into two subsets according to a target variable, PM2.5 or PM10; in total, the four
datasets are used for the experiments in this study.

Table 1. Summarization of two air quality datasets. We report the statistics with the whole dataset
including training data, validation data and test data. Stdev. denotes the standard deviation of the
data. # locations indicates the number of data collection locations.

Dataset Mean Stdev. # Observations # Locations Missing Rate (%)

Guro-gu (PM2.5) 21.931 30.593 827,051 24 26.014
Guro-gu (PM10) 34.275 47.650 827,049 24 26.027

Dangjin-si (PM2.5) 24.916 41.423 464,720 42 28.964
Dangjin-si (PM10) 43.914 190.288 464,720 42 28.963

The Guro-gu air quality dataset [9] is an air quality dataset collected from 24 different
locations in Guro-gu, Seoul, South Korea. The data were collected every minute from
1 January 2020 to 31 July 2021. We utilize the data collected from 1 January 2021 to 31 July
2021 as test data. 80% of the remaining data are used as training data and 20% are used
as validation data. We can not obtain the ground truth values for missing values in real
datasets. Thus, for evaluation of the missing value imputation performance, we additionally
make 20% of the test data missing and then measure the model performance on them.
The values are removed completely at random. As 7.91% of the test data are missing in
a natural situation, 26.32% of the data are missing when the additional missing values
are considered.

The Dangjin-si air quality dataset is an air quality dataset collected from 42 different
locations in Dangjin-si, Chungcheongnam-do, South Korea. The data were collected every
minute from 28 May 2020 to 31 July 2021. The data collected from 1 January 2021 to
31 July 2021 are used as test data. 80% and 20% of the data collected from 28 May 2020 to
31 December 2020 are used as training data and validation data, respectively. As in the
Guro-gu air quality dataset, we eliminate 20% of the test data values and evaluate the
imputation performance for the eliminated values. The missing rates of test data before the
elimination and after the elimination are 16.1% and 32.9%, respectively.

2.2. Imputation Method

We consider the spatio-temporal imputation task. Given a time-series matrix X =
{x1, x2, . . . , xT}with missing values and a missing value mask matrix M = {m1, m2, . . . , mT},
where T denotes the length of a input sequence, xt ∈ RN denotes the t-th observation
of X, and N denotes the number of locations of data collection, we aim to predict the
time-series data without missing values Y = {y1, y2, . . . , yT}. The n-th feature of the input
data represents the time-series collected from the n-th location of data collection. Figure 1
shows examples of X, M, and Y.
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16 / / 25 23 27 0 1 1 0 0 0 16 15 19 25 23 27

24 / 16 / / 24 0 1 0 1 1 0 24 18 16 34 26 24

56 43 49 / 64 / 0 0 0 1 0 1 56 43 49 53 64 57

1 2 65 1 2 65 1 2 65… … …
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Figure 1. Example of time-series data with missing values X, its corresponding missing value mask M, and time-series data
without missing values Y. The slash (/) denotes the missing values. xi ∈ RN is the i-th observation of the target variable
collected from N different locations, where N = 3 for this example.

As shown in Figure 2, our model consists of four different blocks: a bias block, slope
block, seasonality block, and residual block. The blocks sequentially eliminate the bias,
slope, seasonality, and remaining part of the input time-series data.

Bias block Slope block

Seasonality blockResidual block

Time-series 
with missing

Time-series
without missing

Figure 2. Overview of proposed model. X and Ŷ indicate the input and output time-series of the model, respectively.

At first, the bias block estimates the average value of the non-missing values hbias as

hbias = h(1) = ∑T
i=1 ximi

∑T
i=1 mi

. (1)

After that, the output of the bias block is calculated as X(1) = X − h(1). Then, the
rest of the blocks, i.e., slope, seasonality, and residual blocks, compute the outputs as
follows: considering the l-th block, it encodes the output of the previous block X(l−1) into a
coefficient θ(l) using five fully connected layers with LeakyReLU non-linearity [10] as

θ(l) = FC(l)
5 (σ(FC(l)

4 (σ(FC(l)
3 (σ(FC(l)

2 (σ(FC(l)
1 (Flatten(X(l−1))))))))))), (2)

where FC denotes the fully connected layer and σ denotes the non-linearity. A coefficient
θl is a scalar for the slope block, eight-dimensional vector for the seasonality, and 256-
dimensional vector for the residual block. After obtaining θ(l), it is used as a coefficient
for the specific function depending on the block type. The equations of the slope hslope,
seasonality hseasonality, and residual hresidual are

hslope = h(2) = θ(2)v, (3)

hseasonality = h(3) =
4

∑
i=1

θ
(3)
2i sin (2πiv) + θ

(3)
2i+1 cos (2πiv), (4)

and hresidual = h(4) = FCl
6(σ(θ

(4))), (5)

where v = [−T/2,−T/2 + 1, . . . , 0, . . . , T/2− 1] is the vector denoting the time horizon of
the input time-series and FCl

6 is another fully connected layer. Finally, the output of the
l-th block is calculated as
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Xl = Xl−1 − h(l). (6)

As we eliminate the bias, slope, seasonality, and residual of the input time-series
data, the final model output Xl should become a matrix with zero values. In other words,
the summation of hl should become the original data. With this in mind, we train the
model to minimize the mean absolute error between the summation of eliminated values
Ŷ = ∑4

l=1 h(l) = hbias + hslope + hseasonality + hresidual and the ground truth values without
missing Y. In the inference phase, we use Ŷ as a final imputation result.

For the slope block, we use the output of the FCs (Equation (2)) as the inclination of the
linear function without bias (y = ax). Therefore, the output of the FCs should represent the
inclination coefficient of the input time-series to minimize the prediction error. Similarly,
the output of the FCs in the seasonality block is used to represent the coefficient of the
cosine and sine functions (the coefficient of the Fourier series). Therefore, the final output
of the seasonality block is also periodic. To minimize the imputation error, the FCs in the
seasonality block should capture the appropriate coefficient of the periodic function to
represent the seasonality in an input time-series.

Additionally, when training, we can not obtain the ground truth values for missing
values in real datasets. Therefore, we use an additional technique to effectively train the
model to impute the missing values. Following the previous work [11], we additionally
drop the part of input data randomly for every iteration, and train the model to restore
the dropped values. During the training, we use the time-series with 20% of additional
missing values as an input time-series X and use the original time-series as a ground truth
time-series Y. The model is trained to minimize the mean absolute error for the non-missing
values of Y.

2.3. Experimental Details

For the training of the proposed model, we utilize Adam optimizer [12] with hyperpa-
rameters β1 = 0.9 and β2 = 0.999. The output hidden vector dimension of fully connected
layers in the blocks is set to 64. We chose the vector dimensions of θ(l) of the seasonality and
residual blocks as empirically showing the best performances. The input horizon is set to
60, so that the model imputes the one-hour data at once. The negative slope of LeakyReLU
non-linearity is set to 0.2. During the training, we shift up the input data with a value from
zero to ten with a probability of 25% and scale the input data with a factor from zero to
three with a probability of 25%. The shifting and scaling can be applied simultaneously.
We set the batch size to 512 and the learning rate to 0.00001. We train the model until
there is no performance improvement on the validation dataset for 5 epochs. An Intel®

Xeon® Processor E5-2650 v4 machine equipped with 128GB RAM is used to conduct the
experiments. The models are trained on a single NVIDIA Titan X GPU with a random seed
42 in an Ubuntu 16.04.6 LTS environment. All the experiments are implemented in the
PyTorch 1.7.0 deep learning framework [13] using Python 3.6.10.

2.4. Evaluation Metric

We measure the model performance with two metrics: mean absolute error (MAE)
and symmetric mean absolute percentage error (sMAPE). MAE is a common evaluation
metric for time-series imputation calculated as MAE = 1

B ∑B
i=1 |ŷ− y| where B denotes the

number of input data. However, since it averages out the error without considering the
scale of the error, it can be inaccurate when the error scale changes over time. In contrast,
sMAPE, which is calculated as sMAPE = 1

B ∑B
i=1

|ŷ−y|
(ŷ+y)/2 · 100%, is a scale-invariant metric.

Considering that the values of PM2.5 and PM10 vary from zero to over a thousand, the
scale-invariant metric can accurately measure the imputation performance of the model.
Moreover, even when an observed value is zero, sMAPE can be utilized, in contrast to the
mean absolute percentage error, MAPE = 1

B ∑B
i=1

|ŷ−y|
y · 100%, one of the commonly used

scale-invariant metrics.
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2.5. Baseline Models

We compare the proposed model with the following baselines:

Mean substitution (Mean): The missing values are substituted with the average value of
the training dataset.
Spatial average value substitution (SA): We replace the missing values with the aver-
age value of the data collected from different locations. The value is calculated as ŷi =
1
N ∑N

j=1 xj
i(1−mj

i), where xj
i indicates the input data at time step i that is collected at the

j-th data collection location.
Multivariate imputation by chained equations (MICE): We use MICE [3] to impute the
missing values. MICE makes multiple imputations using chained equations. MICE is
implemented using the FancyImpute library.

3. Results

We cannot obtain the complete real datasets. Therefore, we additionally eliminate 20%
of the test datasets and measure the imputation error on them. The eliminated values are
unseen data for the model and used only for the evaluation of the imputation performance.
The imputation error is measured using MAE and sMAPE. Table 2 shows the imputation
performance for the proposed model and the baselines, on Guro-gu air quality dataset.
As shown in the table, mean imputation is very inaccurate. The average value of the data
collected from different locations shows a better performance than the mean imputation.
MICE surpasses the mean and spatial average value imputation methods. However, it
still has significantly large error, especially for PM10 (9.291 MAE and 31.408 sMAPE). The
proposed model consistently outperforms the baselines by a large margin.

Table 2. Imputation performances of the proposed method and of other imputation methods on the
Guro-gu dataset. Our results show the performance of the proposed method, which achieves the best
imputation accuracy.

Target Variable Metric Ours Mean SA MICE

PM2.5
MAE 1.170 18.634 8.972 4.825

sMAPE 7.155 75.236 36.771 28.865

PM10
MAE 2.738 30.024 17.646 9.291

sMAPE 9.385 73.259 43.464 31.408

Table 3 shows the imputation error on the Dangjin-si air quality dataset. Even when
performance is evaluated with the data measured in Dangjin-si, a tendency similar to that
of the results of the Guro-gu data appears. Simple naive imputation methods, i.e., the mean
imputation method and the spatial average value substitution method, show large errors
compared to MICE and our proposed model. The proposed model shows much smaller
error than MICE.

Table 3. Imputation performances of proposed method and other imputation methods on the Dangjin-
si dataset. The proposed method shows the best imputation accuracy.

Target Variable Metric Ours Mean SA MICE

PM2.5
MAE 1.149 16.780 9.646 4.524

sMAPE 9.710 81.604 52.389 34.859

PM10
MAE 4.664 33.521 20.465 12.279

sMAPE 13.702 86.151 56.168 44.624
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To further study the effectiveness of our proposed model, we illustrate the prediction
results in Figure 3. Our method consistently shows the results most similar to those of the
label. MICE and spatial average value substitution methods show competent results. How-
ever, they failed to accurately predict all missing values. The mean imputation method does
not capture the input time-series information, leading to poor imputation performance.

MICE SA Mean

minute

PM
10

Figure 3. Qualitative time-series imputation results of our method in comparison with baseline models. The results are
obtained with PM10 test data collected at Guro-gu. We mark the missing values in the input as gray background. For all
the compared models, the non-missing values (white background) are the same as the label. Label denotes the original
time-series without missing values. SA indicates the spatial average value imputation method.

Figure 4 illustrates the interpretability of our proposed model. The cumulative predic-
tion results of the bias (blue line), slope (orange line), seasonality (green line), and residual
(red line) blocks are shown in the figure. To compare each prediction result with the label
(black line), we draw the label four times. We use the PM2.5 test data collected at Guro-gu.
In real application, the missing values (gray background) are imputed with the final model
prediction (red line).
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minute

+ ++

Figure 4. Cumulative prediction results of the bias, slope, seasonality, and residual blocks. The results are obtained with
PM2.5 test data collected at Guro-gu. Label denotes the original time-series without missing values.

4. Discussion

Several studies have used deep learning based models to impute missing values of
time-series data. For example, Che et al. [5] proposed a recurrent neural network based
missing value imputation method. It utilizes the time interval that contains information on
how long the values have not been observed, so that the model can choose whether to use
the information of last observed value automatically. This study highlighted the potential
of deep learning-based imputation methods. Luo et al. [6] used a generative adversarial net-
work to generate the missing values. It significantly improved the imputation performance
but had limited real application because the additional training procedure is included in
the inference phase, leading to slow inference speed. Cao et al. [14] proposed a bidirectional
recurrent neural network for imputation of time-series data. They showed the effectiveness
of their imputation method with the application of imputed data to classification tasks.

Compared to previous studies, we try to explicitly express the time-series data in terms
of bias, slope and seasonality, so that we can interpret the prediction results of the model
by dividing them into trend, seasonality, and residual. By doing so, we achieve competent
imputation performance, surpassing those of mean imputation, spatial average value
imputation, and MICE by a large margin. The qualitative imputation results also show the
effectiveness of our method. It is notable that our method consistently predicts a similar
results to those of the groundtruth. Additionally, cumulative prediction results of the bias,
slope, seasonality, and residual blocks show the interpretability of our model prediction.

However, our method has a limitation. The prediction result of the seasonality block
is not fit well to the original value. The poor performance of the seasonality block mainly
comes from the Fourier function that represents the seasonality in an input time-series.
We used a finite discrete Fourier series with pre-defined periods, and consequently, the
model can not capture the seasonalities having a different period from the pre-defined
ones. In addition, the seasonalities of the Guro-gu and Dangjin-si datasets appear in quite
long periods, e.g., yearly basis, which is difficult for the model to handle at once due to the
limitation of computational resources. We will find the appropriate seasonality function for
air quality data in future work. Utilizing our model has the advantage of allowing us to
know the problem of the model through interpretable prediction results.

5. Conclusions

This paper proposes a novel end-to-end model that imputes missing values in air
quality time-series data. The model predicts the bias, slope, seasonality and residual of an
input time-series data, so that missing values can be imputed by combining them. Our
method surpasses several commonly used imputation methods, e.g., mean imputation,
spatial average value imputation, and MICE at imputing missing values in the Guro-gu
and Dangjin-si air quality datasets. Qualitative results comparing the proposed method
and the baselines show the effectiveness of our method.
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