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Child health is defined by a complex, dynamic network of genetic, cultural, nutritional, infectious, and environmental determinants
at distinct, developmentally determined epochs from preconception to adolescence. This network shapes the future of children,
susceptibilities to adult diseases, and individual child health outcomes. Evolution selects characteristics during fetal life, infancy,
childhood, and adolescence that adapt to predictable and unpredictable exposures/stresses by creating alternative developmental
phenotype trajectories. While child health has improved in the United States and globally over the past 30 years, continued
improvement requires access to data that fully represent the complexity of these interactions and to new analytic methods. Big
Data and innovative data science methods provide tools to integrate multiple data dimensions for description of best clinical,
predictive, and preventive practices, for reducing racial disparities in child health outcomes, for inclusion of patient and family input
in medical assessments, and for defining individual disease risk, mechanisms, and therapies. However, leveraging these resources
will require new strategies that intentionally address institutional, ethical, regulatory, cultural, technical, and systemic barriers as
well as developing partnerships with children and families from diverse backgrounds that acknowledge historical sources of
mistrust. We highlight existing pediatric Big Data initiatives and identify areas of future research.

Pediatric Research; https://doi.org/10.1038/s41390-022-02264-9

IMPACT:

● Big Data and data science can improve child health.
● This review highlights the importance for child health of child-specific and life course-based Big Data and data science

strategies.
● This review provides recommendations for future pediatric-specific Big Data and data science research.

INTRODUCTION
Despite living in the richest economy in the world, children in the
United States have worse health outcomes as assessed by
quantitative, standardized metrics than children in other upper
income countries.1 Improvements in child health outcomes over
the past 30 years associated with availability of vaccines against
common childhood diseases, greater chance of survival after
preterm birth, and improved nutrition have not reduced race-,
ethnicity-, geography-, and poverty-based disparities in child
health.2,3 Access to large medical, biological, and environmental
data sets and progress in data science provide multidimensional
data and data analytics that more fully capture the dynamic and
complex interactions among genetic background, culture, social
determinants of health, development, environment, and biologic
risk.1,4–8 These new tools build upon the progress from systems
biology omics-based algorithms in which mechanistic explana-
tions of outcomes were anchored in biologic problems to permit
integration of environmental (e.g., pollution), cultural, demo-
graphic, and geographic factors that interact with child develop-
ment and biology to create adverse health outcomes.6,9,10 For
example, machine learning algorithms (approaches that improve
automatically with additional data experience), a branch of
artificial intelligence,11 recognize and apply patterns in multi-
dimensional data that train models for prediction and stratification

of disease risk based on biologic risk as well as developmental,
cultural, and environmental risk determinants of adverse child
health outcomes.5,10,12–14

The epidemiology of child health (children are generally
healthier than adults, represent a smaller fraction of the
population (22% <18 years of age in the United States),15 have
a higher risk of rare diseases, and have an increasing prevalence of
medical complexity (3–5%),15 the lack of progress in reducing
disparities in child health outcomes, and the difficulties in
applying adult-based strategies to improve child health outcomes
highlight the potential for Big Data and new data science to
impact child health. By combining data from traditional sources,
e.g., electronic health records, imaging results, biobanks/registries,
and omics measurements, with demographic, cultural, and
environmental sources, artificial intelligence-based data science
methods may identify previously unrecognized patterns asso-
ciated with childhood disease without starting with an a priori
hypothesis.6 Recent reports have described combining Big Data
from different sources in pediatric oncology, nephrology, and
sepsis diagnosis.16–18 However, these reports underline both the
potential and the difficulties of combining data sets with limited
data dimensions.19 For example, in pediatric oncology, combining
existing institutional registries improves descriptions of natural
history and responses to therapies but does not provide insight
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into contributions of environment, geography, or other less
studied factors to disease risk, response to therapy, or prognosis.16

Similarly, in pediatric nephrology, development of quantitative
definitions of acute kidney injury and descriptions of acute kidney
injury epidemiology have not yet fully integrated omics or other
potentially informative data elements.17 Big Data strategies for
diagnosis of sepsis in low and middle income countries have
helped improve quality of epidemiologic data but have not
identified pathophysiologic or structural proposals to improve
outcomes.18 Big Data and data science can accelerate improve-
ments in child health outcomes through reductions in health
disparities, improvements in clinical best practices and in quality
and safety outcomes, prediction of individual risk of disease
progression and response to therapies, increased family and
patient-involvement in health care diagnosis and decisions, and
discovery of personalized disease mechanisms. We will begin with
a brief description of the characteristics of Big Data and data
science strategies that will enable improvement in best practices
and discovery of disease mechanisms, followed by examples of
pediatric Big Data initiatives.

BIG DATA CHARACTERISTICS AND STRATEGIES FOR ANALYSIS
Characteristics
Data production in healthcare is high volume and complex,
encompassing a wide variety of inputs and formats including
administrative, biomarker (e.g., genomic), physiologic, biometric,
laboratory, and imaging. Data may be derived from multiple
sources such as electronic health records, medical devices, mobile
health platforms, clinical registries, biobanks, and patient self-
reports.5 Within each of these sources, many different data types
exist that can be further categorized as structured (e.g.,
demographics, laboratory results), unstructured (e.g., free text in
notes and comments), and semi-structured (a combination of
structured and unstructured data).20

The fundamental features of Big Data were originally defined in
the early 2000s by the 3V model,21 which includes Volume,
Variety, and Velocity. This model has since been extended to 6Vs,
adding Variability, Veracity, and Value (Fig. 1).4,21–25

With these core features in mind, healthcare data can be further
characterized by many quantitative properties that have been
previously categorized by Shilo et al. into 7 axes of health data5

(Fig. 2). “Sample size,” a representation of volume, is important for
achieving sufficient statistical power. However, data with an n of 1
(rare diseases) can also provide value in the definition of disease
trajectory and clinical response.26 “Depth of phenotyping”
describes the variety of medical data used to characterize
individuals and ranges from the molecular level (e.g., omics,
microbiome) to the social level (e.g., demographics, lifestyle,
environment, and social determinants of health). Integration of
this array of data into a valuable understanding of health can be
challenging due to lack of data interoperability and of common
definitions. “Longitudinal follow-up” is critical for child health and
includes data gathering over different time points, a characteriza-
tion of variability. The Barker hypothesis27 is a prime example of
the importance of life course tracking to improve child and adult
outcomes. Similarly, outcomes of underrepresented minorities can
be improved with advocacy for engagement and adherence to
follow-up in order to obtain complete long-term data.1 “Interac-
tions between subjects” is an application of value to find the
connections between subjects (e.g., shared environments, twins),
which can increase the statistical power to discover disease
mechanisms. “Heterogeneity and diversity” of a cohort to include
appropriate representation of the real-world population (factors
such as age, sex, ethnicity, socioeconomic status, exposure to
different social determinants of health) contribute to the variety of
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Fig. 1 Big Data features defined by the 6V model. Big Data
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Fig. 2 Quantitative properties represent the complexity of
healthcare data. Descriptions of the 7 axes of health data.
Adapted from Shilo et al.5.
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data. “Standardization of data” and “linkage between data
sources” are vital to veracity and tackling the challenge of having
variety in data.

Analysis strategies
As this wide array of data is gathered, finding meaningful results
requires application of appropriate analytic strategies, the basis of
data science. Three overarching approaches to analysis have been
used: descriptive, predictive, and counterfactual.28,29 Descriptive
analysis utilizes conventional parametric and non-parametric
statistics to provide quantitative estimates of central tendency
and variability. Strengths of this approach include the ability to
condense large amounts of data into single summative metrics
and a high degree of explainability. It is the most common form of
analysis for real-time and historical data used in clinical research
and is frequently the basis for intervention guidelines and
protocols.29 Predictive analysis utilizes observational data to
identify relational patterns between variables, either correlation
or anti-correlation. Additional variables can be added to the model
to control for factors which independently influence outcomes of
interest. Once a model has been constructed, it can be “reversed”
by entering values for each of the variables to generate a
prediction of the probability of the outcome (for binary models) or
an estimated value of the outcome (in continuous models).
In contrast to associations identified by descriptive and

conventional predictive modeling, counterfactual prediction
analysis is the foundation of causal analysis and inference. In this
approach, one starts with the outcome and works backwards to
the model inputs to evaluate how changes in the input might
reverse or “flip” the outcome. Counterfactual explanations
describe the smallest change to the input variables that causes
a change from one predicted outcome to another. It is currently
the least commonly used analytic approach. However, it has great
potential to answer causal questions, for example in the genetic
analysis of complex diseases.30

Machine learning analysis
Machine learning refers to computer algorithms which utilize
artificial neural networks to identify salient variables or “features”
from a large pool of candidate variables which, in association,
predict outcomes with the greatest accuracy.31 Although machine
learning is widely considered an “advanced” technique, it
encompasses a broad array of approaches ranging from simple,
conventional regression modeling through deep learning. The
strategy for utilizing machine learning is common across all model
types; first, the system is “trained” by exposing it to a
representative sample cohort of patients with known and labeled
outcomes. As the system learns with each pass through the
training samples, predictive accuracy improves. Once training has
been maximized, the system is validated using a separate cohort
of patients never before seen by the model.
As previously noted, “machine learning” is a broad term

encompassing many different computational strategies including
neural networks, decision trees, support-vector machines, and
deep learning. All machine learning is patterned after human
neural networks—each variable is conceived as a node where the
pathway through the network diverges based on the value at the
node before eventual mapping to the outcome at the end of the
network. When such a system is “learning,” the algorithm makes
observations of individual patients and develops a decision tree, a
branching graph where the value of a given variable increases or
decreases the predicted probability of the outcome and is also
influenced by the path through prior branches in the tree.32,33 As
the algorithm is exposed to more examples, the weights of each
branch point are iteratively increased or decreased until accuracy
can no longer be increased. Not surprisingly, machine learning
systems achieve optimal performance when extremely large
datasets are available for training.

A significant drawback of machine learning analysis is the
challenge of explaining the findings of the algorithm. As
opposed to traditional regression modeling, where each variable
is actively chosen by the investigator, and the relationship to the
outcome is quantified in understandable units, machine learning
decisions are made by a computer based on optimizing
outcome prediction. In “unsupervised” machine learning, out-
come labels are not provided to the computer, and grouping
decisions are made without human input. While this approach
offers the potential to discover previously unknown connections
between variables, it may also result in convoluted and clinically
implausible relationships.

BIG DATA CHALLENGES
The rapid growth of Big Data utilization in healthcare has
unmasked many limitations and challenges. Data quality, accu-
racy, completeness, and availability are major hurdles in using
large healthcare datasets4,34 and can lead to inaccurate analysis,1

biased inference, and false discoveries.35 Similarly, management
and storage of large amounts of data present challenges with
maintaining data security and accuracy over time, archiving data,
managing data warehouses, and removing/disposing of informa-
tion. Applying the most appropriate analytic approach to Big Data
requires understanding of the technical and quality limitations of
Big Data.
Data integration is both a key challenge and a critical

component for improving seamless access to robust, reproducible,
and diverse sources of data.36 Sharing data across institutions, for
example, can be difficult due to differences in data types,
definitions, and formats. Data security and privacy are also
concerns when clinical information is shared, restricting the use
of patient identifying information. Addressing these issues will
require advancements in the standardization of data. The FAIR
Guiding Principles (Findability, Accessibility, Interoperability, and
Reusability) of data management provide guidelines for data
production and data publishing focused on maximizing data
quality and usability and are required by the National Institutes of
Health for data management and sharing plans for all award
applications submitted after January 25, 2023.37,38 Improvements
in data management which incorporate these fundamental
principles will be crucial to harnessing the potential of clinical
Big Data.

EXAMPLES OF BIG DATA INITIATIVES AND STRATEGIES FOR
IMPROVEMENT OF CHILD HEALTH
Although still early in development, pediatric-specific Big Data
projects have begun to emerge that include data commons for
integration and interrogation of data from inpatient and
ambulatory cohorts of children and electronic health record- or
vital sign-based data for development of disease risk scores. Here
we highlight examples of pediatric Big Data initiatives. Other
multi-institutional pediatric data networks are summarized in
Table 1.

Genomic Information Commons
Genomic Information Commons (GIC) is a National Institutes of
Health (NIH)-funded, multi-institutional effort to provide an
extensive, linked database of genotype, phenotype, biospecimens,
and electronic health record-derived metadata in a highly
accessible, federated database.39 A cooperative effort that has
recently expanded from three to nine academic pediatric centers
in the United States, it leverages robust, easy to use computational
infrastructure for preliminary data queries, retention and control of
all data and biospecimens at member institutions, scalable
inclusion of additional member institutions, executed, inter-
institutional data use and material transfer agreements, active
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participation by patients and families in defining network
operations and research priorities, and large and diverse patient
populations for genomic discovery and identification of potential
therapies. Considerable effort has been made to maximize the
value and usability of the data for investigators while maintaining
high privacy and security standards.

PEDSnet
PEDSnet is a national pediatric learning health system with a
multi-specialty network of collaborators from Children’s Hospitals
across the United States.40 Using a common data model from its
original funding source, the Patient-Centered Outcomes Research
Institute (PCORI), this network formed a centralized data sharing
environment with executed, institutional data use agreements to
create large datasets of pediatric clinical data extracted from
electronic health records which enable communities of patients
and clinicians to perform research and quality improvement
projects that improve child health.40,41 PEDSnet currently includes
longitudinal clinical data from 2009 for over 6.5 million children,
about 9% of all the children in the US.42

Clinical data from electronic health records are gathered in
quarterly cycles from the contributing sites in a structured and
templated manner. The PCORI Common Data Model ensures
terminology and data details are standardized and permits
interoperability with other PCORI-sponsored Clinical Data
Research Networks. An extensive data quality assessment process
is used for careful analysis of the quality and characteristics of the
data from each participating site.43 Data issues are categor-
ized,44,45 reviewed by data scientists, and discussed with each
submitting site for resolution to address four dimensions of data
quality, fidelity, consistency, accuracy, and completeness.43

Data security and privacy are addressed with several steps that
include storage of limited datasets in the PEDSnet Data
Coordinating Center without patient identifiers. When data are
requested by researchers, the minimum necessary aggregated
data are provided, and institution-specific information is com-
bined into “counts.” PEDSnet data have been used in 61
publications (June, 2022) that include disease-specific, quality
and safety, and coronavirus disease 2019 (COVID-19)-related
questions.46–49

PhysioNet
PhysioNet is a large collection of clinical and physiologic data from
both inpatient (e.g., traumatic brain injury) and ambulatory (e.g.,
gait analysis) venues that includes open-source tools for
computational analysis.50 Initially established in 1999 with NIH
support, it is now structured into three components:

1. “PhysioBank”—an extensive archive of digitized physiologic
signals from fetal, pediatric, and adult sources.

2. “PhysioToolkit”—an open-source collection of tools for the
processing and analysis of physiologic signals.

3. Extensive documentation and tutorials for new and
advanced users.

Of the 202 PhysioNet databases, 12 are fetal or pediatric
specific. Although most database access is free and without
restriction, a subset of databases requires registration and
completion of a data use agreement. In addition to providing a
data repository that is compliant with the FAIR guidelines,
PhysioNet has helped to standardize multiple types of data file
formats.50–52 This standardization expands the number of software

Table 1. Pediatric Big Data networks.

Name Focus Data sources

Children’s Data Network Linkage and analysis of administrative records across
agencies to inform programs and policies

Healthcare data, Social Services, Education

Children’s Hospitals Neonatal
Database (CHND)

Large valid dataset for level IV NICU patients for
comparative clinical outcomes and resource
utilization

Periodic EHR extraction into common data
model, Children’s Hospital Association
administrative dataset

Collaborative Pediatric Critical Care
Research Network (CPCCRN)

Multi-institutional network for research in pediatric
critical care medicine

Research protocols and study results

Genomic Information
Commons (GIC)

Linkage of genomic data, phenotypic data, and
biospecimen metadata to accelerate discovery and
collaboration

EHR, Genomic laboratory results, Research
surveys

ImproveCareNow Registry Centralized data repository of clinical data for
children with inflammatory bowel disease (IBD)

Medical record data at time of diagnosis and
every outpatient clinic visit for IBD

National COVID Cohort
Collaborative (N3C)

Centralized data repository of clinical data for
suspected and confirmed COVID-19 patients (all ages)

Periodic EHR extraction into common
data model

PCORnet Partnership of 8 large Clinical Research Networks via a
coordinating hub creating a large comprehensive
data network to advance research and public health

Periodic EHR extraction into common data
model, patient- reported data, and payor data

Pediatric Emergency Care Applied
Research Network (PECARN)

Multi-institutional network for research in pediatric
emergency medicine

Research protocols and study results

PEDSnet Pediatric observational research and clinical trials
using large comprehensive multi-specialty network
(member of PCORnet)

Periodic EHR extraction into common
data model

PhysioNet Free access to large collections of physiological and
clinical data and related open-source software

Standardized data repositories

TriNetX Large international network and data repository with
web-based platform to explore data for research,
protocol design, cohort identification, and real-world
data analysis

Direct links to health care organizations with
specific data repositories, and periodic EHR
extraction into common data model

Vermont Oxford Network (VON) Data repository for very low birth weight infants and
all NICU admissions to advance quality improvement,
research, and education

Periodic EHR extraction into common
data model

Z.A. Vesoulis et al.

4

Pediatric Research



tools that can be used to conduct analyses by researchers
including many free and open-source options, providing equitable
data access for researchers with limited resources such as those in
low and middle-income countries.

Electronic Health Record-based risk scores
Late onset neonatal sepsis is a significant contributor to
morbidity and mortality. The nSOFA score53 is a sepsis prediction
score, based upon the adult SOFA (Sequential Organ Failure
Assessment) score and pSOFA (a pediatric variation developed
for older children54) score, which utilizes elements from
electronic health records to identify infants at high risk for
sepsis related mortality. As with the adult SOFA score, a rise in
the nSOFA score was highly correlated with sepsis related
mortality—a difference that could be detected within 6–12 h of
sepsis evaluation. This score has since been validated in a multi-
center cohort of more than 600 infants55 with excellent
performance, noting an area under the curve (AUC) of 0.88 for
the prediction of mortality. The nSOFA score has also been
shown to discriminate between survival and non-survival on the
first day of life in extremely preterm infants.56,57 These examples
highlight the potential for application of data science analytics
on data extracted from electronic health records to generate
useful tools for severity of illness stratification and targeted
treatments.
In older, hospitalized children, identification and stratification of

illness severity and need for critical care have used tools initially
developed and validated in adult populations58 (e.g., Early
Warning Scores (EWS) such as the National Early Warning Score
(NEWS)).59,60 In a retrospective study, 2–3% of pediatric hospital
admissions experience cardiopulmonary arrest and require
resuscitation.61 The Pediatric Early Warning System (PEWS) score62

provides a similar predictive model for the pediatric inpatient
population. In subsequent validation, PEWS scores identified
patients at risk of deterioration 12 h in advance of clinically
apparent deterioration,63 reduced the risk of emergency response
calls shortly after admission from the Emergency Department,64

improved timely and orderly transfer of patients to the ICU,65 and
increased the number of days without medical codes outside the
ICU.66

Physiology-based risk scores
Over the last two decades in the NICU, the use of multiple devices
for monitoring physiology-based signals including the electro-
cardiogram (ECG), pulse oximetry, respiratory rate, arterial blood
pressure, transcutaneous partial pressure of carbon dioxide (CO2),
cerebral and organ oximetry (via near-infrared spectroscopy
(NIRS)), and electroencephalogram (EEG) has increased. Despite
this broad array of available data, clinicians use these physiologic
biomarker data almost exclusively for in-the-moment decisions
and most often from only one signal, such as targeted oxygen
saturation thresholds to reduce risk of retinopathy of prematurity
(ROP). Computational integration of individual or multiple
monitored physiologic biomarkers over time may reveal unrecog-
nized patterns of pathology.
For example, the Heart Rate Observation (HeRO) score uses ECG

characteristics,67 comprised of beat-to-beat variability in heart
rate, accelerations, and decelerations (indicative of autonomic
nervous system tone), to predict continuous sepsis risk in the next
24 h.68 Extensive neonatal validation testing has demonstrated the
HeRO score’s superior performance over more traditional labora-
tory or clinical assessments and can reduce sepsis-related
mortality by as much as 20%.69,70

Using a similar approach to the HeRO score, several groups have
used other quantitative physiologic biomarkers (e.g., heart rate
variability) to predict adverse long term neurodevelopmental
outcomes,71–73 moderate-severe MRI abnormalities, or death.72,74

Similarly, quantitative characteristics of continuous EEG monitoring

can be used to predict the later occurrence of seizures75 and
outcomes at 24 months76 and 5 years.77

RESEARCH GAPS AND FUTURE DIRECTIONS
Despite the potential of Big Data strategies to improve child
health and patient safety by trans-institutional identification of
rare patient phenotypes, adverse patient events (e.g., sentinel
pediatric events or adverse drug reactions),78 and responses to
therapies, significant barriers remain in the practical application of
research strategies to real-world bedside care.79–81 One of the
most significant barriers is the lack of a universal, interoperable,
modular system for capturing and sharing medical data.
Proprietary and institutionally cloistered electronic health record
systems limit discovery of critical components of best clinical and
nursing practices82 and of pediatric-and disease-specific patient
characteristics, disease risk, and adverse events. In addition, the
large volume of data generated during healthcare delivery
requires intentional system design that optimizes future data
usability and minimizes cost for data extraction, reformatting, and
loss. Similarly, although linkage of individual medical records
longitudinally across maternal/fetal, neonatal, child, and adult
epochs would be of great value for discovery of fetal, neonatal,
and childhood origins of pediatric and adult diseases, such a
system remains largely impracticable unless all the care for an
individual is obtained within a single health system across the life
course. Even within open source electronic health record systems,
multiple data formats which vary according to system and region
reduce interoperability across institutions.83 The PRISM model
described by Hirschfeld et al.84 provides a theoretical framework
for the future of intentional system design that captures elements
of the health phenotype across four dimensions (experience,
performance, adaptability, potential) and results in a life course
model of an individual’s health (an Ideal Health Prism) which could
enable comprehensive study of the fetal and childhood origins of
childhood and adult diseases.
Through several different programs, such as the Big Data to

Knowledge (BD2K) program, the NIH has emphasized the
importance of using FAIR principles to insure availability of NIH-
funded project data for the scientific community.37 Through
resources such as GIC, PhysioNet, and PEDSNet, secure pediatric
data with common formatting models are becoming available.
However, compliance with Health Insurance Portability and
Accountability Act of 1996 (HIPAA)-associated privacy rules often
necessitates extensive manual data review and modification to
ensure that all protected health information has been removed.
For example, removal or shifting of all elements of date and time
(high value Big Data components) in a truly random fashion and
uniformly across elements for linkage consistency due to HIPAA
protection is both laborious and prone to introduce errors.
Another challenge is the integration of multimodal data. Most

of the analytic strategies previously described utilized data from a
single source (e.g., the electronic health record) and along a
similar time scale. Although this approach simplifies the data
collection process, such “siloed” data provide an incomplete
understanding of the disease process. Several recent projects85–87

have demonstrated that building a complex model using multi-
modal data with different scales can generate neonatal outcome
predictions with greater accuracy than single-domain predictions
alone. Examples of different scales include race or genetic
background, which are immutable characteristics, sepsis status
which is discrete but may evolve over time, and vital signs, such as
heart rate or blood pressure, which are continuously changing.
Further development of artificial intelligence-based data science
tools which integrate genomic susceptibility with developmental
epoch, environmental factors, social determinants of health,
maternal/fetal characteristics, and family/patient self-reported
data will be necessary.88 Meta-dimensional analysis, specifically
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concatenation-based integration, is one potential strategy but is
not yet in routine use.89

Life course research is an example of integration of multiple
data types from diverse sources (e.g., institutional data ware-
houses and research repositories) to capture the complexity of
health trajectories.14,90,91 Incorporation of geocoded data and
environmental factors as well as patient-reported measures such
as social well-being into the electronic health record represent
concrete strategies for greater inclusion and more accurate
representation of populations currently underrepresented in
research and permit analysis of the impact of social determinants
of health on disease pathogenesis and response to therapies.91

A significant note of caution must be raised about racial bias in
the use of physiology and electronic health record-based Big Data.
Two sources of error may contribute to data-related bias. First,
devices may not reliably capture measures owing to differences in
physiology or phenotype. For example, significant recent attention
has focused on the poor performance of pulse oximetry in adult
and neonatal African-American patients.92,93 Lack of inclusion of
melanin’s light absorption in the red and infrared spectrum in the
underlying pulse oximeter algorithm increases the risk of occult
hypoxemia in both adult and neonatal populations94 and of
adverse neonatal outcomes.95,96 Second, even when collected
data are reliable, machine learning models must be trained on
representative samples that avoid racial bias. As recently
demonstrated in a comparison of a new, intentionally designed
machine learning algorithm for the prediction of ICU mortality
with several widely used scores (APACHE, SAPS II, and MEWS), at
least two of these systems (SAPS II and MEWS) were found to have
significant racial bias.97 As with occult hypoxemia, the potential
risk of harm comes from false negatives or underestimated
disease risk. The equal opportunity difference analysis performed
in this study is an optimal tool to identify these deficiencies.
The longstanding problem of gaps in studies of medications

and medical devices in pediatric age groups represents an
important priority for Big Data and data science to improve child
health. As a consequence of these gaps, between 25% and 90% of
medications are prescribed to children in an “off label” manner
without regulatory approval.98 Instead of data-driven use, treat-
ment options expand organically through extrapolation of adult
data,99 anecdotal reports by providers, and practice drift.100,101

Although the primary focus of Big Data and data science has been
on improving diagnosis of disease, elucidating mechanisms, and
predicting outcomes, these same data science tools can and
should be used to identify treatment response in children from
real world data. For example, multicenter, federated data
commons and advanced data analytics can be leveraged to
identify and pool small numbers of infants and children at
individual institutions into sample sizes which permit statistically
valid examination of treatment response and adverse outcomes.
Recently, real world data from electronic health records and other
sources have been successfully analyzed to obtain regulatory
approval for previously off-label medications in children.102

SUMMARY
The urgency of the COVID-19 pandemic has demonstrated the
potential for rapid application of Big Data and data science to
integrate and analyze electronic health record data across health
care systems and countries for identification of child-specific
disease characteristics, best clinical practices, and responses to
therapeutic interventions.103,104 These studies suggest the feasi-
bility of the application of Big Data and data science to child
health questions and the potential impact of such studies on
prediction and mitigation of disease risk over decades of life.
Realizing the potential of these tools for integrating genetic risk
with developmental epoch, environmental factors, social determi-
nants of health, patient- and family-reported data, and disease

biology will require funding prioritization from the NIH and other
agencies, unprecedented collaboration among institutions, inves-
tigators, and patients/families, consolidation of existing data
networks, and child health-specific innovation.
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