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Abstract
The use of predator–prey models in theoretical ecology has a long history, and the
model equations have largely evolved since the original Lotka–Volterra system towards
more realistic descriptions of the processes of predation, reproduction and mortality.
One important aspect is the recognition of the fact that the growth of a population
can be subject to an Allee effect, where the per capita growth rate increases with
the population density. Including an Allee effect has been shown to fundamentally
change predator–prey dynamics and strongly impact species persistence, but previ-
ous studies mostly focused on scenarios of an Allee effect in the prey population.
Here we explore a predator–prey model with an ecologically important case of the
Allee effect in the predator population where it occurs in the numerical response of
predator without affecting its functional response. Biologically, this can result from
various scenarios such as a lack of mating partners, sperm limitation and coopera-
tive breeding mechanisms, among others. Unlike previous studies, we consider here
a generic mathematical formulation of the Allee effect without specifying a concrete
parameterisation of the functional form, and analyse the possible local bifurcations in
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the system. Further, we explore the global bifurcation structure of the model and its
possible dynamical regimes for three different concrete parameterisations of the Allee
effect. The model possesses a complex bifurcation structure: there can be multiple
coexistence states including two stable limit cycles. Inclusion of the Allee effect in
the predator generally has a destabilising effect on the coexistence equilibrium. We
also show that regardless of the parametrisation of the Allee effect, enrichment of the
environment will eventually result in extinction of the predator population.

Keywords Allee effect in predator · Partially specified models · Stability ·
Bifurcation · Extinction

Mathematics Subject Classification 34C25 · 92D25 · 92D40

1 Introduction

Modelling predator–prey interactions has always been a mainstream area in mathe-
matical biology and theoretical ecology. Our models have evolved tremendously since
the famous Lotka–Volterra system, with one realistic modification being the introduc-
tion of non-monotonous per capita growth rates to the interacting species, as opposed
to the monotonically decreasing per capita growth rate seen in the logistic equation.
For instance, it is currently well recognised that the growth of natural populations can
be subjected to the so-called Allee effect, where the per capita growth rate increases
at low species densities (Courchamp et al. 2008; Fowler and Ruxton 2002). The Allee
effect can emerge at the population level due to a variety of mechanisms including
enhancement in foraging efficiency, reproductive facilitation, collective defense and
the modification of environmental conditions by organisms (Berec et al. 2007; Cour-
champ et al. 2008; Fowler and Ruxton 2002). There exist two types of Allee effect:
weak and strong Allee effects. The weak Allee effect describes situations in which the
per capita growth rate is increasing at small densities, but which nonetheless remains
positive for low, nonzero population densities, while a strong Allee effect is charac-
terized by a negative population growth at low densities since reproduction cannot
compensate mortality rate. It has been demonstrated that including the Allee effect
in predator–prey models has a strong impact on dynamics, in particular promoting
population collapse and a further species extinction (Boukal et al. 2007; Hilker 2010;
Lewis and Kareiva 1993; Morozov et al. 2006; Sen et al. 2012). In previous theoretical
works, however, the main focus has been the scenario where there is an Allee effect
in the growth rate of the prey rather than that of the predator. The scenarios where
the predator growth is subject to the Allee effect are explored in the literature only
partially. The aim of this paper is to contribute to bridging the gap.

The existing literature on the Allee effect in predators is scarce, and mainly focused
on foraging facilitation among predators which occurs as a result of cooperative
hunting (Alves andHilker 2017;Berec 2010;Cosner et al. 1999; Sen et al. 2019).Math-
ematically, this implies that the functional response of the predator is an increasing
function of the predator density. In particular, it was shown that it might be detrimen-
tal for cooperative hunters to be too efficient in catching prey since this may cause
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resource over-exploitation and eventual extinction of the predator (Alves and Hilker
2017; Sen et al. 2019). On the other hand, the Allee effect can occur in predators due to
other mechanisms such as low fertilization efficiency, a lack of mating partners, sperm
limitation and cooperative breeding mechanisms (Berec et al. 2007; Courchamp et al.
2008; Dennis 1989). From themodelling point of view, including anAllee effect in this
case should affect the numerical response of the predator, since the food conversion
efficiency becomes an increasing function of predator density, while the functional
response remains unchanged. As such, the model properties and ecological predic-
tions will be different compared to the case of the foraging facilitation scenario. Some
studies have considered the Allee effect in predators due to non-foraging mechanisms,
but none of them have been studied exhaustively in terms of the bifurcation structure,
possible dynamical regimes and the role of parameterisations of the Allee effect in the
model equations (Costa and dos Anjos 2018; Zhou et al. 2005). The latter problem
may be a general issue in ecological modelling and is related to so-called structural
sensitivity, which is briefly described below.

In many ecological models, predator–prey systems in particular, there is often an
uncertainty regarding which precise mathematical formulation of the model func-
tions we need to implement in the model equations (Adamson and Morozov 2013).
It is often impossible to determine which particular function we need to use in the
model equations to describe predation, growth, mortality, competition, etc. Several
parameterisations can fit available empirical data well, and different mathematical
formulations can have a valid biological rationale (Flora et al. 2011). Furthermore,
implementation of close mathematical functions (both in terms of functional forms
and their derivatives) in the same predator–prey model may result in different out-
comes, in particular in topologically distinct bifurcation structures yielding different
dynamical regimes (Adamson and Morozov 2013, 2014a). This property is called the
structural sensitivity of biological models (Adamson and Morozov 2013, 2014a, b;
Seo and Wolkowicz 2018). Structural sensitivity may cause major problems in terms
of generality of results obtained using specific concrete formulations of model func-
tions such as growth rates or functional responses (Adamson and Morozov 2014a;
Aldebert et al. 2019). A possible way to address structural sensitivity is to allow for
an unspecified formulation of some functions in the model equations with other func-
tions being fixed, an approach is known as partially specified modelling (Wood and
Thomas 1999). Implementation of the partially specified models approach is espe-
cially relevant for systems with the Allee effect in predators since this phenomenon
is often caused by a variety of mechanisms, and is thus hard to describe by a single
universal functional relation (Courchamp et al. 2008). Moreover, the Allee effect can
depend on the spatial scale of modelling, in which case the use of a single specific
mathematical formulation for the dependence of the numerical response on the overall
predator density is highly questionable (Courchamp et al. 2008).

In this paper we explore a predator–prey model with an Allee effect in the predator
which affects the numerical response of the predator without affecting its functional
response.We consider a partially specifiedmodel,where themathematical formulation
of a strong Allee effect has only a few generic constraints to its shape. We explore the
bifurcation structure of the model including saddle-node, Hopf, generalised Hopf and
Bogdanov–Takens bifurcations of co-dimensions two and three. Then we construct
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and compare full bifurcation portraits obtained for three possible parameterisations
of the Allee effect: the hyperbolic (Monod), exponential (Ivlev) and trigonometric
formulations. We demonstrate that the model may exhibit structural sensitivity with
respect to parameterisation of the Allee effect function. We find that adding the Allee
effect results in emergence of multiple non-trival attractors in the system which can
potentially explain some empirically observed alternative states in ecosystems. We
argue that the Allee effect in the predator growth has a large destabilising effect on
population dynamics, which has been somehow neglected previously.

2 Model formulation and biological rationale

We consider a Gause type prey-predator ODE model with a specialist predator
(Bazykin 1998; Hsu et al. 2001; Kuang and Freedman 1988; Turchin 2003). The
model equations read as follows

dN

dT
= N f (N ) − g(N )P, (1a)

dP

dT
= eψ(P)g(N )P − μP, (1b)

where N and P are the population densities of prey and predator, respectively, at time
T . Note that in the above model, N and P can be also interpreted as the density of a
resource and its consumer, respectively. In other words, the ‘predator’ in the current
model can be a herbivore consuming an autotroph.

The function f (N ) is the per capita growth rate of the prey which we consider here
to be logistic, i.e., f (N ) = r(1 − N

K ) and μ is the intrinsic death rate of the predator
which is assumed to be constant. Functional response of predator (the rate of food
consumption per predator) which we consider here to be of Holling type II and we use
the following parametrisation of g(N ) known as the Holling disk equation (Jost et al.
1999)

g(N ) = aN

1 + aqN
.

In this model, we incorporate the Allee effect in the numerical response of the
predator by assuming that its food conversion efficiency eψ(P) is a functionof predator
density. This is different frompreviousmodelswhere theAllee effectwas also included
in the functional response of the predator (Alves and Hilker 2017; Cosner et al. 1999;
Sen et al. 2019). The maximum food conversion coefficient is given by e (0 < e < 1)
and this value is reached at high P . For simplicity, we neglect direct competitive effects
and interference within the predator population. We assume that the reduction of the
overall growth rate at high predator densities occurs solely due to over-exploitation of
food, i.e., due to a decrease in N . At low predator density, the per capita reproduction
rate becomes smaller, which is described by the function ψ(P).
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Biologically, inclusion of the Allee effect in the numerical response of the
predator only (and not in its functional response) can mimic a multitude of scenar-
ios/mechanisms. A major scenario is that at a low population size it is hard to find a
suitable and receptivemate and this largely reduces the reproduction rate.Mate-finding
Allee effects have been found in a large number of species ranging from small insects
to large birds in terrestrial ecosystems and from zooplankton to whales in the sea
(Courchamp et al. 2008). Due to space limitation, here we can only list a small num-
ber of empirical examples from the literature. Namely,Mate-findingAllee effects were
found in populations of flour beetles (Allee et al. 1949), muskrats (Errington 1940),
whales (Ton 1948), box turtles (Mosimann 1958), condors (Mertz 1971), various zoo-
plankton copepods (Gerritsen 1980; Kiørboe 2006), piping plovers (Strauss 1991),
primates (Dobson and Lees 1989), various parasitoids (Hopper and Roush 1993),
whooping cranes (Wells et al. 1998), pelagic fish (Liermann and Hilborn 2001), and
elk (Larkin et al. 2002).

Another related mechanism impeding reproduction at low numbers is sperm limita-
tion, where fertilisation of eggs requires a sufficient amount of sperm. The biological
rationale is that a female needs to find a male of an optimal size, or she needs to have a
sufficiently large number of males in the surroundings. The corresponding empirical
examples include the blue crab (Hines et al. 2003) and the Caribbean spiny lobster
(MacDiarmid andButler 1999), where sperm limitation occurs due to excessive fishery
which targets large-size males and selectively removes them from the population. The
Allee effect is also possible due to low fertilization efficiency, which is observed in
sessile (e.g. corals) or semi-sessile organisms (e.g. echinoderms, polychaete worms).
For such broadcast spawners, at low population density, the probability of meeting of
sperm and egg in water column becomes largely reduced (Aronson and Precht 2001;
Courchamp et al. 2008). Our model would also mimic the Allee effect due to repro-
ductive facilitation mechanisms. According to this scenario, only the presence of a
sufficiently large number of conspecifics in the neighborhood can trigger reproduc-
tion instincts of individuals. This is the case, for example, of the flour beetle (Allee et al.
1949), queen conch (Stoner and Ray 1993), snails, and lizards (Crews and Fitzgerald
1980; Vernon 1995). Finally, our model can mimic the Allee effect due to coopera-
tive breeding mechanisms, where at low numbers, breeding groups are less efficient
in reproduction and raising young animals. Cooperative breeding is well-known in a
large number of bird species (Koenig and Dickinson 2004).

Mathematically, the function ψ(P) modelling the Allee effect in th predator is
considered to possess the following properties:

(A1) ψ(0) = 0, since at very low densities the population cannot reproduce due to
lack of mating opportunities;

(A2) 0 ≤ ψ(P) ≤ 1 since ψ(P) represents the proportion of the maximal possible
conversion rate e;

(A3) ψ(P) is an increasing function of P , so ψ
′
(P) > 0 for all P ≥ 0, thus we do

not include effects of intraspecific competition;
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(A4) ψ
′′
(P) < 0 for all P ≥ 0 which signifies that the increase in the reproductive

ability (population fitness), while the population size P is being increased, is
monotonically decelerating;

(A5) ψ(P) → 1 for large P (we assume the highest efficiency of reproduction at
large densities).

Next we reduce the number of parameters in the model by non-dimensionalisation
and introduce the followingnon-dimensional variables x = N

K , y = P
krq and t = rT ,

we can transform the equations (1) to

dx

dt
= x (1 − x) − xy

β + x
≡ F1(x, y), (2a)

dy

dt
= αxy

β + x
h(y) − my ≡ F2(x, y), (2b)

with the followingpositive dimensionless parametersα = e
qr ,β = 1

aqK andm = μ
r .

In the above model, the function ψ(P) is transformed into a dimensionless func-
tion h(y) with the same constraints as are imposed on ψ(P). As we mentioned in
the Introduction, we will explore the basic properties of the model for an arbitrary
mathematical formulation of h(y) (model equilibria, stability, possible generic bifur-
cation, etc), i.e., considering the above system as a partially specified model. We will
also consider some concrete parameterisations of h(y) such as h(y) = y

δ+y (Monod

parametrisation), h(y) = 1−e− y
δ (Ivlev parametrisation) and h(y) = tanh( y

δ
) (hyper-

bolic tangent parameterisation) to construct a full bifurcation portrait and explore the
sensitivity of the model dynamics to mathematical formulation of the Allee effect.
Finally, we verify how sensitive the model is with respect to small perturbations of
h(y) which still preserve assumptions (A1)–(A5).

3 Model equilibria and their stability

3.1 Possible equilibria in the system

Westart our investigation by exploring the number and the location of systemequilibria
for an arbitrary formulation of the Allee effect h(y). It is easy to see that model (2)
always has one trivial equilibrium point E0 = (0, 0) and one axial (predator-free)
equilibrium point E1 = (1, 0).

An interior equilibrium point E∗ = (x∗, y∗) will be a point of intersection of the
following two non-trivial nullclines in the interior of first quadrant

f 1(x, y) ≡ 1 − x − y

x + β
= 0, (3a)

f 2(x, y) ≡ αx

x + β
h(y) − m = 0. (3b)
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Fig. 1 Qualitative behviour of the predator nullcline in model (2)

For the feasibility of y∗, we must have 0 < x∗ < 1 (see Eq. (3a)) and from this

condition we can verify that 0 < y∗ ≤ (1+β)2

4 . We solve (3b) for x to obtain the
equation for the non-trivial predator nullcline

x = mβ

αh(y) − m
. (4)

For the feasibility of x∗, we must have y∗ > h−1(m
α
). Since the Allee effect function

h(y) is bounded by 1, from h(y) = m(x+β)
αx we find x∗ >

mβ
α−m with α > m. We

differentiate Eq. (4) with respect to y to obtain

dx

dy
= − αmβh

′
(y)

(αh(y) − m)2
< 0 as h

′
(y) > 0.

For the second derivative of the predator nullcline we have

d2x

dy2
= αβm

(αh(y) − m)2

[
2α(h

′
(y))2

αh(y) − m
− h

′′
(y)

]
> 0,

as h
′′
(y) < 0 and αh(y) > m. From the above we derive that the predator nullcline

(3b) is strictly decreasing as a function of x and it is always convex. Furthermore,
the curve lies in the region where x >

mβ
α−m and y > h−1(m

α
). Taking into account

the above properties, a possible shape of the predator nullcline is shown in Fig. 1; the
dashed lines represents the vertical and the horizontal asymptotes.

From the geometric properties of the nullclines one can see that there will be at most
two points of intersection (between the non-trivial nullclines in the interior of the first
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Fig. 2 Relative position of nullclines in model (2) constructed for the Allee effect parametrisation given
by the Monod function h(y) = y

δ+y with δ = 0.4 (no equilibrium), δ = 0.315 (a single equibrium), and
δ = 0.1 (two equilibria points): one is a saddle point (black dot), the other is a topological focus (red dot).
Other parameters are α = 1.8, β = 0.4 and m = 0.5

quadrant) and so there can be atmost two interior equilibria.An example of intersection
of the model nullclines for the parameterisation of h(y) given by h(y) = y

δ+y is shown
in Fig. 2. One can see that a gradual increase in δ (which defines characteristic predator
densities atwhich theAllee effect has a pronounced strength) from small to large values
results a saddle-node bifurcation which is described in detail in the next sections. Note
that this property is observed for the other two parametrisations of h(y) considered.
Clearly, in the absence of the Allee effect, only one non-trivial equilibrium is possible,
corresponding to the intersection of the vertical line x = mβ/(α − m) and the prey
nullcline (3a).

3.2 Stability of equilibria

Here we explore the stability for the equilibria of model (2). The following proposition
defines the stability of the axial equilibria.

Proposition 1 For any choice of h(y) satisfying assumptions (A1)-(A5)

(i) The trivial equilibrium point E0 is a saddle;
(ii) The axial equilibrium point E1 is locally asymptotically stable.

Proof The Jacobian matrix of model (2) at any point is given by

J (x, y) =
[
1 − 2x − y

β+x + xy
(β+x)2

− x
β+x

αβ yh(y)
(β+x)2

αx
β+x h(y) + αxy

β+x h
′
(y) − m

]
. (5)
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(i) The eigenvalues of the Jacobian matrix at E0 are 1 and −m. Therefore it is a
saddle point irrespective of the choice of h(y), having a stable manifold along
y-axis and an unstable manifold along x-axis.

(ii) The axial equilibrium point E1 is locally asymptotically stable (a stable node) as
the eigenvalues of the Jacobian matrix are −1 and −m for any choice of h(y).

�	
An important conclusion is that, in the presence of an Allee effect in the predator,

achieving a very low population densities by the predator will result in its eventual
extinction, so the Allee effect is strong.

Next we explore the stability of the interior equilibria. As follows from the previous
section, model (2) admits at most two interior equilibrium points which we denote by
E1∗(x1∗, y1∗) and E2∗(x2∗, y2∗) such that 0 < x1∗ < x2∗ < 1. The Jacobian matrix
evaluated at E∗ = (x∗, y∗) can be expressed as

J (E∗) =
[
x f 1x x f 1y
y f 2x y f 2y

]
(x∗,y∗)

, (6)

where we have used f 1(x∗, y∗) = 0 and f 2(x∗, y∗) = 0. Since f 1 and f 2 are
smooth functions, we can differentiate both expressions (3) to obtain

f 1x = − f 1y
dy( f 1)

dx
, f 2x = − f 2y

dy( f 2)

dx
,

where dy( f 1)

dx and dy( f 2)

dx are the tangent lines to the nullclines f 1(x, y) = 0 and
f 2(x, y) = 0, respectively. We substitute the above expressions into the Jacobian
matrix

J (E∗) =
⎡
⎣−x f 1y

dy( f 1)

dx x f 1y

−y f 2y
dy( f 2)

dx y f 2y

⎤
⎦

(x∗,y∗)

. (7)

Therefore, for the determinant of the Jacobian we obtain

Det(J (E∗
i )) =

[
xy f 1y f 2y

(
dy( f 2)

dx − dy( f 1)

dx

)]
(x∗,y∗)

. (8)

Now f 1y (x, y) = − 1
β+x < 0 and f 2y (x, y) = αx

β+x h
′
(y) > 0 as h

′
(y) > 0. Substi-

tuting the above derivatives we have

dy( f 1)

dx
= 1 − β − 2x = 2(xm − x), (9a)

dy( f 2)

dx
= −βh(y)

β + x

1

xh ′
(y)

< 0, (9b)
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Fig. 3 Determining the type and stability of interior equilibria in model (2). For detail see the text

where xm = 1−β
2 is the x-coordinate of the point where the nullcline f 1(x, y) = 0

attains its maximum within the first quadrant (for 0 < β < 1).
Depending upon the positions of two points of intersections between the two non-

trivial nullclines (cf. (3)) with respect to the point of maximum on the prey nullcline,
we can consider following two cases,
Case:1 0 < xm < x1∗ < x2∗ < 1 and Case:2 0 < x1∗ < xm < x2∗ < 1.
Case:1 Suppose φ1 and φ2 are angles made by the tangents to f 1(x, y) = 0 and
f 2(x, y) = 0 at E2∗. Then from Fig. 3 one can see that π

2 < φ1 < φ2 < π which
implies

dy( f 2)

dx

∣∣∣∣∣
E2∗

>
dy( f 1)

dx

∣∣∣∣∣
E2∗

. (10)

Therefore from the above inequality and expression (8) we get Det(J (E2∗)) < 0.
Hence E2∗ is a saddle point.

We can proceed in a similar fashion and use the fact that (this is not shown in Fig.
3 for brevity)

dy( f 1)

dx

∣∣∣∣∣
E1∗

>
dy( f 2)

dx

∣∣∣∣∣
E1∗

(11)

and to prove that Det (J (E1∗)) > 0, i.e., E1∗ is not a saddle point. The stability of
E1∗ is determined by the sign of f 1x (x1∗, y1∗) + f 2y (x1∗, y1∗). Note that

f 1x (x1∗, y1∗) = 2(xm − x1∗) < 0 as xm < x1∗, (12a)

f 2y (x1∗, y1∗) = αx1∗h′(y1∗)
β + x1∗

> 0. (12b)
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Hence E1∗ is locally asymptotically stable if

f 1x (x1∗, y1∗) + f 2y (x1∗, y1∗) < 0. (13)

Case:2 In this case we can also prove that E2∗ is a saddle point proceeding in a similar

manner as above. For the stability of E1∗ we have from (9a), dy( f 1)

dx

∣∣∣∣
E1∗

> 0. Hence

we get from (8), Det(J (E1∗)) > 0. Also

f 1x (x1∗, y1∗) = 2(xm − x1∗) > 0 as xm > x1∗, (14a)

f 2y (x1∗, y1∗) = αx1∗h′(y1∗)
β + x1∗

> 0. (14b)

As tr(J (E1∗)) = f 1x (x1∗, y1∗) + f 2y (x1∗, y1∗) > 0, hence E1∗ is unstable.
To conclude, the interior equilibrium E2∗ is always a saddle point, whereas E1∗ is

a topological focus which depending on parameters can be either stable or unstable.

4 Local bifurcations in themodel

Here we consider possible local bifurcations in model (2).

4.1 Saddle-node bifurcation

Suppose E(x, y) is the point at which two non-trivial nullclines touch each other in
the first quadrant when a bifurcation parameter of the model is being varied. The slope
of the tangents to the curves at E become equal. This signifies that

dy( f 1)

dx

∣∣∣∣∣
(x, y)

= − f 1x
f 1y

∣∣∣∣∣
(x, y)

= − f 2x
f 2y

∣∣∣∣∣
(x, y)

= dy( f 2)

dx

∣∣∣∣∣
(x, y)

, (15)

and hence we have

f 1x f 2y − f 1y f 2x

∣∣∣
(x, y)

= 0. (16)

In this case Det
(
J (E)

) = 0 and E becomes a non-hyperbolic equilibrium point.
This situation corresponds to a saddle-node bifurcation in the model. We explore this
bifurcation in more detail.

As an example, we consider m to be the bifurcation parameter and denote by m ≡
mSN the bifurcation point. The eigenvectors of both the matrix J (Ē) and its transpose
corresponding to the zero eigenvalue are, respectively given by v = [1, 1− β − 2x̄]t
and w = [α ȳh ′

(ȳ), 1]t . We need to check the transversality conditions for a saddle-
node bifurcation (Perko 2013). We denote F = (F1(x, y), F2(x, y))t and we further
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follow the same notation of (Perko 2013) to obtain

wt Fm(Ē;m = mSN ) = −1 
= 0,

wt D2F(Ē;m = mSN )(v, v) = −2α x̄ ȳh
′
(ȳ)

β + x̄
− β ȳh(ȳ)

(β + x̄)2[
2 + 2β

x̄(β + x̄)
− βh(ȳ)h

′′
(ȳ)

x̄(β + x̄)(h ′
(ȳ))2

]
< 0,

as h
′′
(y) < 0. Hence the transversality conditions are always satisfied and variation

of m results in a saddle-node bifurcation. Similar results can be obtained by varying
other model parameters.

4.2 Hopf bifurcation

In the previous subsection we show that the two interior equilibrium points are gener-
ated through a saddle-node bifurcation. The non-saddle interior equilibrium (E1∗) can
be stable or unstable depending on model parameters. It loses its stability when the
sign of the trace of the Jacobian matrix has changed through zero (from negative to
positive) via a Hopf bifurcation. In this section we show that system (2) undergoes a
Hopf bifurcation when a model parameter is varied. Here we choose β as a bifurcation
parameter. The Jacobian matrix at E1∗ is given by

J (E1∗) =
[ x1∗

β+x1∗ (1 − β − 2x1∗) − x1∗
β+x1∗

αβ y1∗h(y1∗)
(β+x1∗)2

αx1∗y1∗
β+x1∗ h

′
(y1∗)

]
.

Now let us assume that β = 1 − 2x1∗ + αy1∗h
′
(y1∗) ≡ βH . This is an implicit

expression for β as the components of the equilibrium point containg β as well. Now
we assume that the following three conditions are satisfied at β = βH ,

(H1) TH = tr(J (E1∗;β = βH )) = 0,

(H2) �H = det(J (E1∗);β = βH ) > 0,

(H3) If λ(β) is the complex eigenvalue of J (E1∗) then d
dβ

(Re(λ(β)))

∣∣∣
β=βH


= 0.

Then E1∗ loses its stability through a Hopf bifurcation at β = βH .
Assuming Re(λ(β)) is real part of a complex eigenvalue of J (E1∗), we can write,

Re(λ(β)) = tr(J (E1∗))/2 = x1∗
2(β + x1∗)

{
1 − β − 2x1∗ + αy1∗h

′
(y1∗)

}
.
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Now Re(λ(β)) is equal to zero when β = βH . Differentiating Re(λ(β)) with respect
to β we find that

d

dβ
{Re(λ(β))} = x1∗

2(β + x1∗)

{
−1 − 2

dx1∗
dβ

+ α
dy1∗
dβ

(
h

′
(y1∗) + y1∗h

′′
(y1∗)

)}

+ β

2(β + x1∗)2
dx1∗
dβ

{
1 − β − 2x1∗ + αy1∗h

′
(y1∗)

}
. (17)

Now as E1∗ satisfies (3a) we have,

dy1∗
dβ

= 1 − x1∗ + dx1∗
dβ

(1 − 2x1∗ − β) .

Finally using the fact 1 − β − 2x1∗ + αy1∗h
′
(y1∗) = 0 at β = βH and above result

in (17) we get

d

dβ
{Re(λ(β))}

∣∣∣∣
β =βH

= x1∗
2(βH + x1∗)

[
−1 + α(1 − x1∗)

(
h

′
(y1∗) + y1∗h

′′
(y1∗)

)
−

dx1∗
dβ

(
2 − α(1 − 2x1∗ − βH )(h

′
(y1∗) + y1∗h

′′
(y1∗))

)]
β=βH

.

The above expression should be checked for the given mathematical formulation of
the Allee effect h(y). In particular, we have numerically verified that this quantity is
non-zero at the Hopf bifurcation threshold for the parameterisations considered here:
the Monod, Ivlev and trigonometric functions.

4.3 Generalized Hopf (Bautin) bifurcation

In this subsection we consider a co-dimension two bifurcation called a Bautin or
generalized Hopf (GH) bifurcation. This bifurcation occurs when the interior non-
saddle equilibrium has purely imaginary eigenvalues and the first Liapunov number
becomes zero. We consider β and m as bifurcation parameters. Therefore in β–m
parametric plane, there is a critical point which lies on the Hopf bifurcation curve.
In the next proposition we will show that the model undergoes a GH bifurcation by
choosing β and m as bifurcation parameters.

Proposition 2 Model (2) undergoes a Bautin (generalized Hopf) bifurcation around
the interior equilibrium point Ê = (x̂, ŷ) at the bifurcation threshold (βGH ,mGH )

whenever the following conditions hold

(GH1) �GH = det(J (Ê);β = βGH , m = mGH ) > 0,

(GH2) TGH = tr(J (Ê);β = βGH , m = mGH ) = 0,

(GH3) l(Ê;β = βGH , m = mGH )) = 0,

123



7 Page 14 of 27 D. Sen et al.

where l is the first Liapunov number.

Proof See supplementary material SM1. �	
Examples of the above type of bifurcation for several parameterisations of h(y) are

provided in Sect. 5.

4.4 Bogdanov–Takens bifurcation

Another type of co-dimension two local bifurcation observed in model (2) is a
Bogdanov–Takens (BT) bifurcation. In a two dimensional parametric plane, this bifur-
cation occurs at a pointwhere aHopf bifurcation curvemeets a saddle-node bifurcation
curve tangentially. In the previous subsection, we chose β as the bifurcation parameter
for the Hopf bifurcation andm for the saddle-node bifurcation. Therefore we will con-
sider β andm as bifurcation parameters for the BT bifurcation and suppose that model
(2) exhibits a BT bifurcation at Ē = (x̄, ȳ) and the parametric thresholds are denoted
by (β,m) = (βBT ,mBT ). From the general bifurcation theory (Perko 2013) it is
known that Ē satisfies the equations of nullclines (3) and also the Jacobian matrix is

similar to

[
0 1
0 0

]
at Ē for the parameter threshold (β = βBT ,m = mBT ). The follow-

ing proposition provides the conditions for model (2) to undergo a Bogdanov–Takens
bifurcation.

Proposition 3 If we choose β and m as bifurcation parameters, then system (2) under-
goes aBogdanov–Takens bifurcationaround the interior equilibriumpoint Ē whenever
the following conditions hold

(BT1) tr(J (Ē;β = βBT , m = mBT )) = 0 ,
(BT2) det(J (Ē;β = βBT , m = mBT )) = 0.

Proof See supplementary material SM 2 for detail. �	
We found that model (2) may undergo a Bogdanov–Takens bifurcation of either co-

dimension 2 or co-dimension 3. The latter requires an extra condition of degeneracy
given in the supplementary material. Note that a co-dimension 3 Bogdanov–Takens
bifurcation, if it exists, should be of the type involving a double equilibrium point
(Dumortier et al. 1987). Indeed, the other type of this bifurcation—knownas the cusp—
would require a triple equilibrium point which is impossible for this model as shown
in Sect. 3. For the same reason, a co-dimension 4 Bogdanov–Takens bifurcation is
impossible in this system. Examples of Bogdanov–Takens bifurcation of co-dimension
2 and 3 for particular parameterisations of h(y) are provided in the next section.

5 Parametric diagrams and phase portraits

In this section, we construct global parametric diagrams for the considered model for
three different mathematical formulations of theAllee effect h(y) given by theMonod,
Ivlev and trigonometric tangent functions. Note that all of them satisfy assumptions
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Fig. 4 Graphs of
parameterisations of the Allee
effect in the predator given by
the Monod (y/(y + δ)), the Ivlev
(1 − exp(−y/δ)) and the
trigonometric (tanh(y/δ))
functions; δ = 0.2

(A1)–(A5). Examples of all three curves constructed for δ = 0.2 are shown in Fig.
4. Note that for the plotted functions the initial slopes and their asymptotic values for
large y are the same.

The model contains 4 parameters, so it is convenient to present our results in a 3
dimensional parametric space and then explore the alteration to the portrait by varying
a fourth parameter.We construct portraits in the (α, δ,m) spacewith a further variation
of β. For all considered formulations of h(y), the parameter δ can be interpreted as
the intensity of the Allee effect. In particular, in the case where δ vanishes the system
becomes the classical Rosenzweig–MacArthur predator–prey model.

Examples of parametric portraits for the three functional forms of h(y) are given
in Fig. 5, in each case β = 0.8 is kept fixed. We show the skeletons of the parametric
portraits given by local bifurcations: to avoid overloading the diagram, we do not
include the non-local bifurcations which are shown in the corresponding cross sections
in next figures. The saddle-node bifurcation surface is denoted by the blue curves.
These curves show intersections of the saddle-nodebifurcation surfacewith boundaries
of the parameteric diagram. The intersection of the Hopf bifurcation surface with the
boundaries is denoted by red curves. The saddle-node and Hopf surfaces intersect
along the Bogdanov–Takens bifurcation curve which consists of green and magenta
coloured parts: the magenta colour corresponds to a Bogdanov–Takens bifurcation of
codimension 2with a positive product of the state variables in the normal form (see SM
2 for detail) and is denoted as BT+; the green part of the curve givesBogdanov–Takens
bifurcation of codimension 2 with this product having negative sign and is denoted
as BT−. The black curve represents the location of Generalised Hopf points on the
Hopf bifurcation surface. This curve emerges from the point of Bogdanov–Takens
bifurcation of codimension 3 (denoted as BT 0). From comparison of the diagrams
in Fig. 5, we conclude that the global bifurcation structure in the parametric space
remains the same topologically for all three formulations of h(y).

To better understand the parametric structure and feasible phase portraits in the
model, we explored two-dimensional cross sectional diagrams for a constant α and
β. In the main text, we present the diagrams for the Monod formulation of h(y).
The diagrams for the other functional forms of h(y) are shown in the supplementary
material (SM 3). An example of a (δ,m) diagram constructed for α above the BT 0

point is shown in Fig. 6a; the other two (δ,m) diagrams in the same figure are
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Fig. 5 Three dimensional diagram (α, δ,m) of model (2) for the Allee effect parameterised by: a theMonod

response h(y) = y/(δ + y); b the Ivlev response h(y) = 1 − e−
y
δ ; c the trigonometric tangent function

h(y) = tanh( y
δ
). In each diagram, β = 0.8. The explanation of the surfaces and curves is in the text

constructed for α below the BT 0 point. Figure 6b describes the situation where the
(δ,m) plane does not intersect the GH bifurcation curve, the opposite case is shown
in Fig. 6c. The corresponding phase portraits of the model are given in Fig. 7.

From Fig. 6a–c one can see that for large values ofm and δ (region R1) there are no
coexistence equilibria in the system: the only (global) attractor is the state E1, where
only the prey survives, whereas the predator goes to extinction. The corresponding
phase portrait is shown in Fig. 7a.

Reduction in the strength of the Allee effect (small δ and high rates of mortalitym)
results in the emergence of a pair of equilibrium points: a saddle E1∗ and a node E2∗
(region R2). The non-saddle point is only locally stable: its basin of attraction is limited
by that of the axial equilibrium point E1, which is shown in Fig. 7b. For large values
ofm (on the right hand side of a BT point), a decrease in δ will result in a saddle-node
bifurcation where the non-saddle point E1∗ will be unstable (region R4). In this case,
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Fig. 6 a–c Examples of bifurcation diagrams in δ–m parametric plane for the Monod parameterisation of
the Allee effect in predator plotted for α above and below the BT 0 point shown in Fig. 5a. The parameter
values are: a α = 7.1; b α = 6.0 and c α = 6.6; in all cases β = 0.8. d Two dimensional diagram (β,m)

constructed for α = 7.1 and δ = 0.2. In each diagram, the dark blue curve is a saddle-node bifurcation
curve. The red curve is a Hopf bifurcation curve. The green curve is the curve of a fold bifurcation of limit
cycles. The cyan curve describes a homoclinic bifurcation. The meaning of the regions Ri is explained in
Fig.7 and in the main text

the global attractor will be the prey only state E1 (the phase portrait is shown in Fig.
7d). The loss of stability of E1∗ when crossing the Hopf bifurcation curve around
the BT point depends on the sign of the BT point. For BT+ (Fig. 6a) transition from
R2 to R4 occurs via region R5 by crossing the homoclinic loop bifurcation curve. A
locally stable interior equilibrium E1∗ bcomes surrounded by an unstable cycle which
forms its basin of attraction (Fig. 7e). All trajectories starting outside this cycle will be
attracted to the prey only state E1. The transition from region R5 to region R2 occurs
via a homoclinic loop bifurcation. For BT− (Fig. 6b), the transition from R2 to R4
occurs via region R3 by crossing a supercritical Hopf bifurcation curve. In region R3,
an unstable internal equilibrium E1∗ is surrounded by a stable limit cycle (Fig. 7c).
One can see that in Fig. 6a, for smaller m, a decrease in δ from region R4 results in a
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fold bifurcation of limit cycles. In region R6 we have two limit cycles: the inner cycle
is stable, the outer cycle is unstable (Fig.7f). The outer cycle forms the boundary of
the basin of attraction for the state E1.

The diagram in Fig.6c is more complicated as compared to Fig.6a,b. In particular,
a new region R8 emerges, where three limit cycles can coexist: the inner limit cycle
is stable, the middle cycle is unstable and the outer one is stable. The corresponding
portrait is shown in Fig.7h.

For the Ivlev and trigonometric formulations of h(y), the bifurcation diagrams in
the δ–m plane constructed for α above and below the BT 0 point are topologically
equivalent (see supplementary material SM3). However, for fixed β and α the location
of the bifurcation curves as well as the types of bifurcation (e.g., BT+ versus BT−
type of bifurcation) in the δ–m plane may be substantially different, especially when
comparing the Monod parametrisation with the other two functional forms. This indi-
cates sensitivity of the model to the functional form of h(y). We explore the structural
sensitivity in more detail in the next section.

Consider now variation of the fourth model parameter β. A decrease in β results in
a shift of the saddle-node and Hopf bifurcation surfaces in the (α, δ,m) space closer to
the α−δ plane. The length of the curve of Bogdanov–Takens points (the intersection
between the saddle-node andHopf bifurcation)will be shortened and itmoves upwards
on the saddle-node bifurcation surface. The codimension 3 Bogdanov–Takens bifur-
cation is still observed. The above properties hold true for all three functional forms
of h(y) considered.

Finally, we consider the case where β gradually decreases and the other parameters
are kept fixed. This corresponds to the ecologically important scenario in which the
environment undergoes gradual eutrophication: an increase in the carrying capacity
K in the original model (1) corresponds to a proportional decrease in β in the dimen-
sionless model. An example of a diagram in the β−m plane is constructed for the
Monod parametrisation of h(y) (Fig. 6d). The parameter regions in the diagram have
the same meanings as in Fig. 6a-c. A gradual decrease of β results in destabilisation
of the coexistence equilibrium and a further collapse of the population of predator
(transition from region R2 to region R4). Thus in a eutrophic environment, the only
stable equilibrium in the model is E1 being a predator free equilibrium. Note that in
this diagram we have a new region denoted as R7 in which a locally stable equilibrium
E1∗ is surrounded by two limit cycles: the inner cycle is unstable whereas the outer
one is stable. The corresponding phase portrait is shown in Fig. 7g. Similar bifurcation
behavior is observed for the other two parameterisations of h(y).

6 Structural sensitivity of themodel

An important part of our investigation is exploring the dependence of model behaviour
on the choice of parametrisation of the Allee effect given by h(y). In the previous
section, we show that the skeleton of the bifurcation diagram is topologically robust to
the mathematical shape of h(y) (Fig. 5) when we use three different parameterisations
given by the Monod, Ivlev and hyperbolic tangent functions. The relative positions of
bifurcation surfaces and possible dynamical regimes remain the same. On the other
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Fig. 7 Phase portraits for the
model with the Monod form of
h(y). a–f are constructed for
α = 7.1, β = 0.8; the other
parameters are a δ = 0.12,
m = 2.66, region (R1); b
δ = 0.1, m = 2.6, region (R2);
c δ = 0.01, m = 0.96, region
(R3); d δ = 0.2, m = 2, region
(R4); e δ = 0.085, m = 2.67,
region (R5); f δ = 0.03,
m = 1.456, region (R6). g is
plotted for α = 7.1; δ = 0.2;
β = 1.347; m = 1, region (R7);
h is plotted for α = 6.6,
β = 0.8, δ = 0.02, m = 1.09,
region (R8)

hand, we also find that for a fixed set of parameters the parametric diagrams can
differ considerably, even for close functions h(y). This property is known as structural
sensitivity of biological models.

Structural sensitivity of models is an important issue in ecological modelling with a
large number of insightful examples provided (Adamson andMorozov 2013, 2014a, b;
Aldebert et al. 2019; Flora et al. 2011; Wood and Thomas 1999). The biological
rationale behind this idea is that any realistic ecological dependence h(y) can be some
combination of the three parameterisations considered above, or, more generally, any
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Fig. 8 The degree of structural sensitivity � in model (2) to variation of the parameterisation of the Allee
effect in the predator h(y), shown for different β. The ε-neighbourhood of h(y) is defined using the relative
difference between the base function and its perturbations. Destabilisation of the equilibrium for the base
function (Monod parameterisation) occurs at β = 0.975 For further detail see the text and also (Adamson
and Morozov 2013, 2014a). The other parameters are α = 7.1, δ = 0.12, m = 1.8 and D = 10

other mathematical functions. Here we explore the sensitivity of model predictions
to a small variation of h(y) by considering the entire set of functions which satisfy
assumptions (A1)–(A5), and we use the methodology from (Adamson and Morozov
2013, 2014a). Here we investigate the sensitivity of the stability of the interior non-
saddle stationary state to small but finite perturbation of h(y) starting from one of
the functional forms considered above. Mathematically, we consider the following
situation.

Let the base function h(y) be of Monod type. We consider small deviations h1(y)
from the base function h(y) such that h(y)(1 − ε) ≤ h1(y) ≤ h(y)(1 + ε) and the
second derivative of h1(y) is negative and bounded, −D < h′′

1(y) ≤ 0, D > 0 (note
that the base function also satisfies this condition). For simplicity we slightly relax our
assumption (A5) and allow h1(y) → 1 + ε, y → ∞, although this fact is not crucial
for the general outcome and conclusions. We conduct the sensitivity analysis in the
same way as when investigating the role of the functional response of the predator
in stability dynamics in the Rosenzweig–MacArthur model (Adamson and Morozov
2013). To quantify the structural sensitivity to the choice of h1(y)we use the degree of
structural sensitivity� introduced in (Adamson andMorozov 2013).� represents the
probability that for two randomly chosen functions of h1(y), the coexistence stationary
state will have the same stability properties (Adamson andMorozov 2013), to be stable
or unstable. The maximal degree of sensitivity possible in the system is equal to one,
signifying maximal uncertainty in the system

Figure 8 shows the degree of sensitivity � as the parameter β is varied. From the
figure one can conclude that a decrease in β eventually results in destabilization of the
system for any parametrisation of h1(y): we graduallymove from the region of stability
to the region of instability shown in the figure. However, depending on the particular
choice of h1(y), this destabilisation may occur within a wide range of β, thus the
system has a plasticity to resist destabilisation caused, for example, by eutrophication
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(a high value of K in the original system signifies a low β in the dimensionless model).
Another important observation is that the system exhibits large uncertainty even if the
deviation ε from the base function is small (< 5%). Considering the Ivlev and the
hyperbolic tangent as the base function provides similar results.

7 Discussion

The role of the Allee effect in population dynamics has been largely addressed in
both empirical and theoretical literature. Surprisingly enough, there has been almost
no thorough mathematical investigation into the bifurcation structure of any predator–
prey model with an Allee effect in the predator, in particular, this concerns the realistic
scenario, where the Allee effect is included in the numerical response of the predator
without affecting its functional response (Berec et al. 2007; Courchamp et al. 2008;
Dennis 1989). This is in a striking contrast to the situation with single species popula-
tion models or classical predator–prey models with an Allee effect in the prey growth,
which have been discussed in all detail and are now included in standard student text-
books in mathematical ecology (Kot 2001). The current study is intended to partially
bridge the existing gap. Importantly, our results are not based on a particular math-
ematical formulation of the function describing the Allee effect, rather we consider
various parameterisations of h(y)which satisfy only few qualitative constraints (A1)–
(A5). We have also addressed (for the first time) the issue regarding the sensitivity of
the model with respect to parameterisation of the Allee effect (known as the structural
sensitivity).

In this section, we will mostly focus on ecological implications of the mathematical
results obtained in the previous sections. We should stress, however, that it is crucial
to define the way of how we should formally assess the consequences of the Allee
effect on the population dynamics. Indeed, this question is far to be a trivial one
since distinct paradigms exist in the literature (Alves and Hilker 2017; Berec et al.
2007; Courchamp et al. 2008; Dennis 1989). In fact, evaluation of the role of the
Allee effect in population success should largely depend on the choice of the initial
density, and this fact is still somehow disregarded in the literature. Indeed, consider
two populations, where one possesses a self-accelerating per capita reproduction rate,
and the other one which is characterised by a constant per capita growth rate: for
simplicity we assume the growth rates of both populations at some low density to be
the same. Then an increase in the population density would result in an increase in
the per capita growth rate of the species with an Allee effect, and this will clearly
indicate the benefits of possessing an Allee effect. For example, hunting cooperation
is considered to be beneficial for predators up to certain level of population density
(Alves and Hilker 2017). On the other hand, considering higher population densities
as the starting point for comparison (e.g. population densities where the Allee effect is
not pronounced) will show a different outcome. For the same initial per capita growth
rates, the species without an Allee effect will be more advantageous since a sudden
drop of the population size would not largely affect its per capita growth whereas the
population with an Allee effect may exhibit a significant decline in reproduction rate
with a threat of extinction. For example, low fertilization efficiency, a lack of mating
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partners, and sperm limitation are usually considered as negative and undesirable
features for population persistence (Berec et al. 2007; Courchamp et al. 2008; Dennis
1989).

Arguably, for many species, their reproduction rate is often empirically estimated
at densities which are away from the extinction threshold, where the Allee effect is
not well-pronounced. As such, we suggest that in theoretical models the impact of the
Allee effect on dynamics should be assessed via comparisonwith a scenariowithout an
Allee effect, where for both scenarios per capita reproduction rates are assumed to be
the same at some ‘safe’ densities. For the current theoretical study, this mathematically
signifies that we need to compare the Allee effect in model (2) with the same model
with h(y) ≡ 1 since for large y the value of h(y) tends to unity, which corresponds to
the classical Rosenzweig–MacArthur predator–prey model (Kot 2001). Note that the
model with the Allee effect becomes the Rosenzweig–MacArthur model in the case
δ → 0+.

Following the above philosophy, our first important conclusion is that introducing
the Allee effect in predator’s numerical response generally acts as a destabilising
factor of a stable coexistence of the prey and the predator in the case where the
predator is specialist. Moreover, the Allee effect can result in extinction of predators
regardless of initial density. This can be seen from the bifurcation diagrams, when the
parameter δ, characterising the strength of theAllee effect, increases from small values
δ � 1, corresponding to the Rosenzweig–MacArthur predator–prey model, to some
large values. Interestingly, destabilising influence of the Allee effect in the predator
is observed even for a linear functional response as well (see supplementary material
SM4 for detailed illustration). It is well-known that the coexistence equilibrium of
the classical Rosenzweig–MacArthur predator–prey model with a linear functional
response and a constant h(y) is globally stable. Introducing an Allee effect into the
predator growth results in stability loss, with either generating sustained oscillations
(in this case both prey and predator still persist in the system in an oscillatory mode)
or leading to extinction of predator (via different scenarios) for any initial population
density. Destabilisation of the system is facilitated with a pronounced saturation in
the functional response of the predator (small β) and with an increase in the strength
of the Allee effect—interpreted in the model as a gradual increase in δ. Biologically,
this signifies that having density-dependent h(y) rather than a constant h(y) efficiency
of predator impedes control over the prey population: the response of the predator to
variation of the prey density in the system with the Allee effect becomes delayed and
this allows the prey to escape from the control.

The predicted by the model destabilising role of the Allee effect demonstrates that
cyclic population dynamics should occur in predator–prey systems more frequently
as it was suggested earlier. For example, in the case of a Holling type I functional
response, which is well-known to be stabilising, empirically observed oscillations of
population numbers are usually attributed to factors as environmental/demographic
noise, seasonal forcing, complex age structure of the population, complexity of the
food webs, etc (see (Barraquand et al. 2017) and the references therein). On the other
hand, an Allee effect can be an alternative explanation of oscillatory dynamics of
a large number of case studies which occur in non-eutrophic environments with a
stabilising functional response of the predator/consumer.
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Our second important conclusion is that destabilisation of the coexistence equi-
librium in the system with an Allee effect in the predator can occur not only via a
supercritical Hopf bifurcation scenario (appearance of a small-amplitude stable limit
cycle) but via a subcritical one. In the latter case, destabilisation of the equilibrium
will leads to eventual extinction of the predator since the only possible attractor of
the model is the state with only prey population being present (regime R4 in the
model, Fig. 7). On the other hand, eutrophication of the environment—which in the
dimensionless model corresponds to a decrease in the parameter β—would eventually
result in extinction of the predator regardless of the scenario of stability loss of the
equilibrium (supercritical and subcritical). Indeed, in the case of a supercritical Hopf
bifurcation, the resultant predator–prey cycle grows in size and enters the basin of
attraction of the prey-only equilibrium: mathematically this occurs via a homoclinical
bifurcation.

Our resultsmayhave important implications for the biological control of the pests by
predators andparasitoids. It has been reported that in a large number of cases, biological
control agents have failed to get established even if under laboratory conditions they
could survive by consuming target pest species (Bellows 2001; Roderick and Navajas
2003; Orr 2009; Bompard et al. 2013). A possible explanation is the presence of an
Allee effect in the biological control agents which becomes more pronounced in the
environment as in a lab. For example, the initial density of the predator can quickly
fall below the critical threshold because of dispersal and diffusion. However, there
can be a more complicated scenario where the initial density of the predator can be
very high, but a pronounced Allee effect will still not allow a long-term persistence of
species. Our model mathematically describes this as a globally unstable co-existence
state (regime R4 in the model, Fig. 7). As a conclusion, the choice of the appropriate
species for an efficient biological control should be made carefully. For example, for
parasitoids it is preferred to use haplodiploid species (i.e., where the males are haploid
and females diploid) to alleviate the negative demographic consequences of mate-
finding Allee effects, which is well-pronounced in diploid species (Hopper and Roush
1993; Bompard et al. 2013).

Thirdly, we found that inclusion of the Allee effect in the predator growth largely
increases the complexity of the system as compared to the scenario without an Allee
effect, i.e., the original Rosenzweig–MacArthur predator–preymodel. One of themost
interesting observation is the possibility of non-trivial multiple attractors, which can
be interpreted as alternative ecosystem states. The model predicts two such regimes
denoted by R7 and R8, see Fig. 7. They are (i) a stable equilibrium coexisting with a
stable limit cycle and (ii) two stable limit cycles, respectively.Note that in the literature,
there is an ongoing debate on possible origins of alternative states generated through
various ecological mechanisms (Schröder et al. 2005). In the simplest case, alterna-
tive stationary states are two contrasting equilibria (Scheffer et al. 2003; Scheffer and
Carpenter 2003). However, more interesting patterns with non-equilibrium coexisting
attractors have been reported in the literature as well. In particular, empirical observa-
tions demonstrate the possibility of alternative attractors where depending on initial
condition the population dynamics can show either cyclic or stable coexistence sce-
nario (Zamamiri et al. 2001). Other empirical studies demonstrate the possibility of
coexisting cyclic oscillations with contrasting amplitude and periodicity (McCauley
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et al. 1999; Henson et al. 2002). Interestingly, in the Daphnia-algae predator–prey sys-
tem reported in (McCauley et al. 1999), the observed coexisting cycleswere considered
to be a consequence of variability of the available food for zooplankton (e.g. a more
complicated prey-dependent functional response of the predator or food-dependent
efficiency of reproduction), whereas the density dependence of Daphnia’s vital rates
was somewhat intentionally disregarded. On the other hand, the presence of an Allee
effect (e.g. an emergent Allee effect is known to be present in Daphnia (de Roos et al.
2003)) can be arguably an alternative explanation of the co-existing cyclic behaviour.

Finally, we should stress that unlike the scenario with the Allee effect in prey—
which is currently considered to be straightforward in the literature—including the
Allee effect in predators can be somewhat tricky since this can be done either by mod-
ifying the functional response or the numeric response of the predator. Biologically,
this signifies that distinct mechanisms of emerging the resultant demographic Allee
effect—a decrease in reproduction at low population numbers—should bemodelled in
a differentway. In particular, themechanisms such as low fertilization efficiency, a lack
of mating partners, sperm limitation, cooperative breeding and similar mechanisms
(see empirical examples in Sect. 2) should be included in the numerical response of
predator only, whereas collective exploitation of a resource such as cooperating hunt-
ing should be included in both functional and the numerical responses. It is rather
surprising that this fact has not been largely explored in the literature yet.

As a first step to fill the existing gap, we compared the stability of two similar
predator–prey systems: in onemodel the Allee effect was due to collective exploitation
of resources (as in the study (Alves and Hilker 2017)) and in the other one the Allee
effect was due to the lack of mating partners (for details see SM4). Note that unlike the
mentioned work (Alves and Hilker 2017) we included saturation in the Allee effect in
the functional response of predator (see the model equations in SM4). For simplicity,
we considered the case where the functional response of the predator is of Holling type
I. We found that a pronounced Allee effect (large saturation in h(y)) has somewhat
different consequences for the two systems. Using bifurcation diagrams, we compared
the stability regions for both models. We found that an Allee effect due to collective
exploitation of resources considered in (Alves and Hilker 2017) facilitates persistence
of the predator as compared to the scenario where the Allee effect is included only
in numerical response (e.g. due to mate-finding) since the stability region for letter
model is smaller in size. However, a more detailed comparison of the two mentioned
approaches to modelling the Allee effect in predator should be an interesting separate
study.
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