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Abstract

Halocynthia aurantium is a marine organism that has been considered a promising source

for bio-functional materials. Total lipids were extracted from H. aurantium tunic, and then

they were separated into neutral lipids, glycolipids, and phospholipids. In the present study,

fatty acid profiles of three lipids and their anti-inflammatory effects in RAW264.7 cells were

investigated. Among the lipid classes, phospholipids showed the diversity of fatty acid con-

stituents, compared with the glycolipids and neutral lipids. Three lipids contain different con-

tents of fatty acids depending on the kinds of lipids. The most contents were saturated fatty

acids (SFAs, 53–69% of the fatty acids) and monounsaturated fatty acids (MUFAs, 15–17%

of fatty acids) and polyunsaturated fatty acids (PUFAs, 14–32% of fatty acids) are followed.

H. aurantium lipids not only dose-dependently inhibited nitric oxide production but also

reduced the expression of inflammatory cytokine genes such as TNF-α, IL-1β, and IL-6 in

LPS-stimulated macrophages. It was also demonstrated that the expression of COX-2 was

dose-dependently suppressed. Moreover, H. aurantium lipids decreased phosphorylation of

NF-κB p-65, p38, ERK1/2, and JNK, suggesting that three lipids from H. aurantium tunic pro-

vide anti-inflammatory effects through NF-κB and MAPK signaling. These results indicate

that H. aurantium is a potential source for anti-inflammation.

Introduction

Lipids, especially essential fatty acids play an important role in the health and development of

humans and play a critical role in the prevention of disease by altering their composition [1].

Lipids are a source of energy and the structure of cell membranes and polyunsaturated fatty

acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are essential fatty
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acids to regulate the inflammatory responses on the macrophage cells, which are considered

anti-inflammatory agents [2–5]. Moreover, they can inhibit the activation of the pro-inflam-

matory transcription factor, such as nuclear factor κB (NF-κB) [3, 5, 6] and suppress the

activation of mitogen-activated protein kinases (MAPKs) signaling pathway [6, 7]. These path-

ways involved inflammatory responses, which produce inflammatory cytokines and inflamma-

tory mediators. [8]. In addition, high levels of EPA and DHA were reported from the lipid

extracts including from total lipids, neutral lipids, and polar lipids of various ascidian species

[9–12]. The lipid extracts from ascidians have improved beneficial health effects, such as anti-

diabetic [13] and antioxidant effects.

Macrophages play important roles in inflammation and they can be activated by endotoxin

which cause the production of inflammatory cytokines such as interleukin-1β (IL-1β), IL-6,

and tumor necrosis factor (TNF)-α, and releasing cyclooxygenase-2 (COX-2) and nitric oxide

synthase (iNOS) catalyze the production of prostaglandin E2 (PGE2) and nitric oxide (NO) as

inflammatory mediators [8, 14]. The natural substances such as alkaloids, steroids, polysaccha-

rides, fatty acids, proteins, and other, which were isolated form marine biomaterials have been

demonstrated strong anti-inflammatory activities [15]. They were determined by inhibiting

the production of NO, TNF-α and suppressing the expression of IL-1β, IL-6, TNF-α, iNOS and

COX-2, in RAW264.7 macrophages activated by lipopolysaccharides (LPS) [16–19].

Halocynthia aurantium is a solitary ascidian found in the Southern, Eastern Sea of Korea,

and Northern Sea of Japan. The tunic is an essential structure part in the outer protective cov-

ering of the body, which contains a cellulose-like substance [20, 21]. Total lipids of H. auran-
tium tunic composed of the most abundant of palmitic acids (16:0), stearic acids (18:0), α-

linolenic acids (ALA, 18:3 n-3), eicosapentaenoic acids (EPA, 20:5 n-3), and docosahexaenoic

acids (DHA, 22:6 n-3) [22]. Similar to ascidian species, H. roretzi showed also the same fatty

acids in total lipids, neutral lipids, and phospholipids. H. aurantium showed biological effects

such as antimicrobial peptides (Dicynthaurin, and Halocidin) [23–25], and antioxidant

effects [26]. Vanadium-binding protein from H. roretzi was investigated in macrophage-like

RAW264.7 cells stimulated by LPS [27, 28]. However, no previous study has evaluated the fatty

acid profiles of individual lipids such as phospholipids, glycolipids, and neutral lipids, which

were isolated from H. aurantium tunic. Moreover, few studies have determined how these

fractionated lipids exert anti-inflammatory activity on macrophages.

Therefore, the present study was to identify the fatty acid composition in H. aurantium lip-

ids, containing neutral lipids, glycolipids, and phospholipids, and their anti-inflammatory

activities using RAW264.7 cells.

Materials and methods

Preparation of fractionated lipids from H. aurantium tunic

H. aurantium used in this study was obtained in Jumunjin market on the he East Sea near

Gangwon Province, South Korea. H. aurantium tunic was dried and homogenized to powder.

Total lipids were extracted using a modified method by Bligh and Dyer [29]. A mixture of

chloroform/methanol (1:2, v/v) containing 0.01% of butylated hydroxytoluene (BHT) to the

solvent as antioxidant [30] was added to 4.5 g of dry weight sample and centrifuged at 3000

rpm for 10 minutes. Subsequently, the organic solvent was collected and filtered. A rotary

evaporator (IKA1 RV10, EYELA, China) was to remove the solvent, and the residual solvent

was removed by nitrogen evaporator (N-EVAP, Organomation Associates Inc., USA). The

extracted lipids with a yield of 33.6 mg (w/w) or 0.75% of dry material were then resuspended

in hexane for fractionation of lipid extracts.
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The total lipids were added into silica gel column filled with silica gel and anhydrous

sodium sulfate using chloroform, acetone, and methyl alcohol to produce the neutral lipids,

glycolipids, and phospholipids, respectively. After separating, these extracts were evaporated

and weighed. The neutral lipids, glycolipids, and phospholipids were shown to have a high

lipid yield of 8.63% (2.9 mg), 30.95% (10.4 mg), and 44.94% (15.1 mg) of total lipid, respec-

tively. The H. aurantium lipids at 2 mg/mL (set to 100%) were prepared in dimethyl sulfoxide

(DMSO, Sigma-Aldrich, USA, Cat# D8418) and stored at −20 ◦C for further analysis.

Analysis of fatty acid profiles

Fatty acid compositions of neutral lipids, glycolipids, and phospholipids were determined

using gas chromatography (GC)-flame ionization detection (FID) (Perkin Elmer, Waltham,

MA, USA) as previously described [31]. Quantification of fatty acid peaks were identified by

the comparison of their retention times with heptadecanoic acid (C17:0) as internal standard

(Sigma-Aldrich, USA, Cat# H3500). Results were presented as quintuplicate (n = 5) indepen-

dent experiments.

Cell culture and treatment

Mouse macrophages RAW 264.7 cell line was obtained from Koran Cell Line Bank (KCLB,

Cat# 40071, RRID: CVCL_0493). The cells were culture in RPMI-1640 medium (Gibco™, Wal-

tham, USA, Cat# 11875–093) supplemented with 10% fetal bovine serum (FBS, Welgene,

Korea, Cat# S001-07) and 1% penicillin/streptomycin (Welgene, Korea, Cat# LS202-02), and

then incubated at 37˚C in a humidified atmosphere of 5% CO2. The lipids were dissolved in

RPMI-1640 medium (GibcoTM, Waltham, USA, Cat# 11835–030) supplemented with 1% FBS

and 1% penicillin/streptomycin to different concentrations at 0.5%, 1.0%, 2.0% and 4.0%.

100 μL of the lipids were culture into the RAW264.7 cells (at a density of 1 × 105 cell/well) for 1

h. After incubation, the presence or absence of 1 μg/mL lipopolysaccharide (LPS from Escheri-
chia coli O111:B4, Sigma-Aldrich, USA, Cat# L4391-1MG) were added into each well for

another 24 h.

Measurement of cell viability and NO production

The cell viability of three lipids from H. aurantium was analyzed using EZ-Cytox Cell Viability

Assay Kit (DaeilLab Service, Seoul, Korea, Cat# EZ-3000) as described by Kim et al. [19].

Three independent experiments were performed in triplicate. Griess reagent (Promega, WI,

USA, Cat# G2930) was used to evaluate the LPS induced the production of nitric oxide [32]

according to the manufacturer’s instructions. Three independent experiments were performed

in triplicate.

Analysis of immune gene expression by quantitative real-time PCR

The mRNA expression levels of immune-regulated genes were determined by qRT-PCR. TRI

reagent1 (Molecular Research Center, Cincinnati, OH, USA, Cat# TR118) was used to extract

the total RNA from RAW264.7cells. High capacity cDNA reverse transcription kit (Applied

Biosystems, Foster City, CA, USA, Cat# 4368814) was used to reverse transcribe cDNA. Real-

time PCR was performed on QuantStudio™ 7 FlexReal-Time PCR System (Applied Biosys-

tems, Foster City, CA, USA) using TB Green1 Premix Ex Taq™ II (Takara Bio Inc., Shiga,

Japan, Cat#RR820A). The relative expression levels of IL-1β, IL-6, TNF-α, and COX-2 were

normalized using the β-actin (S1 Table). Results were presented as triplicate independent

experiments.
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Western blotting analysis

Cell lysates were prepared using RIPA buffer (Tech & Innovation, Hebei, China, Cat# BRI-

9001) containing 0.5 mM EDTA solution, and a protease & phosphatase inhibitor cocktail

(Thermo Fisher Scientific, USA, Cat# 78440). SDS-PAGE and western blotting were per-

formed. The protein was analyzed by immunoblot using primary antibodies against phospho-

nuclear NF-κB-p65 (Cell Signaling Technology, MA, USA, Cat# 3033, RRID: AB_331284),

phospho-p38 (Cell Signaling Technology, MA, USA, Cat# 9211, RRID:AB_331641), phospho-

ERK1/2 (Cell Signaling Technology, MA, USA, Cat# 9101, RRID: AB_331646), phospho-JNK

(Cell Signaling Technology, MA, USA, Cat# 9251, RRID: AB_331659), and α-tubulin (Abcam,

Cambridge, UK, Cat# ab15246, RRID:AB_301787), and then was incubated with secondary

antibodies as goat anti-rabbit IgG (H+L)-HRP (GenDEPOT, TX, USA, Cat# SA006-500). The

protein bands were measured by the ChemiDoc XRS+ imaging system, and ImageLab software

(Bio-Rad, Hercules, CA, USA). Results were presented as triplicate independent experiments.

Statistical analysis

All data were subjected to analysis of variance using Statistix 8.1 Statistics Software (Tallahas-

see, FL, USA). One-way ANOVA followed by the Duncan’s multiple range test was used to

evaluate the significance of the differences (p< 0.05). Data are expressed as mean ± standard

deviation (SD).

Results

Fatty acid profiles of neutral lipids, glycolipids, and phospholipids, which

were isolated from H. aurantium tunic

Fig 1 presents the percentages of fatty acids composition in neutral lipids, glycolipids, and

phospholipids, which determined by GC-FID analyses. The results showed that the highest

amount of the lipids were SFAs in neutral lipids (63.75%), glycolipids (52.70%), and phospho-

lipids (69.45%). Total amount of MUFAs were 16.92% in neutral lipids, 14.87% in glycolipids,

and 16.52% phospholipids. Moreover, total amount of PUFAs are 19.34, 32.44, 14.03% of neu-

tral lipids, glycolipids, and phospholipids, respectively.

At first, myristic acid (14:0), palmitic acid (16:0), and stearic acid (18:0) was mainly con-

tained in SFAs, and in addition the phospholipids also showed arachidic acid (20:0). At second,

Fig 1. Fatty acid composition (%) of H. aurantium tunic lipids. (A) Neutral lipids. (B) Glycolipids. (C) Phospholipids. The letters a–h indicate

significant differences (p< 0.05) between the amounts of fatty acids, which were obtained from each lipid of H. aurantium tunic. Results represent

means ± SD (n = 5). SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid.

https://doi.org/10.1371/journal.pone.0270794.g001
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the major MUFAs are palmitoleic acid (16:1n-7) and oleic acid (18:1n-9) and they were con-

tained with 4.92 and 11.99% in neutral lipids, 8.16 and 2.96% in glycolipids, and 7.25 and

6.82% in phospholipids, respectively. At third, the major PUFAs are linoleic acid (18:2n-6) and

eicosapentaenoic acid (20:5n-3) which were 13.87 and 5.46% in neutral lipids, 2.24 and 4.49%

in glycolipids, and 5.43 and 2.29% in phospholipids. Especially, the presence of stearidonic

acid (18:4n-3) and arachidonic acid (20:4n-6) was also identified in glycolipids (22.20 and

3.51%) and phospholipids (3.64 and 1.27%).

Effect of neutral lipids, glycolipids, and phospholipids from H. aurantium
tunic on macrophage cell proliferation

To determine if the fractionated lipids containing neutral lipids, glycolipids, and phospholipids

are not toxic to RAW264.7 macrophages, we investigated cytotoxicity using an EZ-Cytox cell

viability assay kit. As shown in Fig 2A, our results showed that the neutral lipids, glycolipids,

and phospholipids did not give any cytotoxicity at concentrations of 0.5–4.0% of lipids.

Anti-inflammatory effects of neutral lipids, glycolipids, and phospholipids

from H. aurantium tunic on NO production

To investigate the anti-inflammatory activity of fractionated lipids from H. aurantium tunic,

we measured lipid-mediated inhibition of NO production in LPS-stimulated RAW264.7 cells

using Griess reagent assay. NO production was determined using different of three lipids at

0.5–4.0% concentrations. Neutral lipids, glycolipids, and phospholipids of H. aurantium tunic

gradually decreased NO production in LPS-stimulated RAW264.7 cells according to the lipid

concentration (Fig 2B).

Anti-inflammatory effects of neutral lipids, glycolipids and phospholipids

from H. aurantium tunic on immune-associated gene expression

Since NO production was significantly inhibited by the fractionated lipids from H. aurantium
tunic, we measured the mRNA expression of immune-associated genes such as IL-1β, IL-6,

TNF-α, and COX-2 in LPS-stimulated RAW264.7 cells by qRT-PCR. The expression levels of

inflammatory cytokines were significantly down-regulated depending on the concentration of

H. aurantium lipids, including neutral lipids (Fig 3A), glycolipids (Fig 3B), and phospholipids

Fig 2. The effects of neutral lipids, glycolipids and phospholipids from H. aurantium tunic on macrophage proliferation. (A) Cell proliferation.

(B) NO production. Significant different at p<0.05 (�) compared with RPMI.

https://doi.org/10.1371/journal.pone.0270794.g002
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(Fig 3C). Our results showed that the IL-1β expression was highly reduced by H. aurantium
lipids and the expression levels of other cytokine genes such as IL-6 and TNF-α were dose-

dependently decreased. Moreover, the expression levels of COX-2, another well-known

inflammatory biomarker, were dose-dependently suppressed according to the concentration

of neutral lipids, glycolipids, and phospholipids from H. aurantium tunic.

Anti-inflammatory effects of neutral lipids, glycolipids and phospholipids

from H. aurantium tunic on MAPK and NF-κB signaling pathway

In order to investigate the understanding of the molecular mechanism by which H. aurantium
lipids exert their anti-inflammatory effect, immune signaling pathways such as NF-κB and

MAPK were analyzed. Our results indicated neutral lipids (Fig 4A), glycolipids (Fig 4B), and

phospholipids (Fig 4C), which were isolated from H. aurantium tunic, dose-dependently inhib-

ited the phosphorylation of NF-κB p-65, ERK1/2, JNK, and p38 in a dose-dependent manner.

These results showed that fractionated lipids from H. aurantium tunic inhibited inflammation

through MAPK and NF-κB signaling pathways in LPS-stimulated RAW246.7 cells.

Discussion

Halocynthia aurantium, an edible ascidian species, has not been studied, although tunicates

and ascidians are well-known to contain biologically active compounds. This study was

Fig 3. Quantification of immune-associated gene expression (fold) in LPS-stimulated RAW264.7 cells. (A) The relative mRNA expression of

neutral lipids. (B) The relative mRNA expression of glycolipids. (C) The relative mRNA expression of phospholipids. Significant different at p<0.05 (�)

compared with LPS.

https://doi.org/10.1371/journal.pone.0270794.g003
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undertaken to analyze the fatty acid composition in fractionated lipids including neutral lipids,

glycolipids, and phospholipids from H. aurantium tunic, and to investigate their anti-inflam-

matory effects on LPS-stimulated macrophages.

Recently, the total lipids of H. aurantium tunic were analyzed the fatty acid compositions,

consisting of the most abundant of palmitic acids (21.73±2.16), stearic acids (33.13±3.22),

oleic acid (6.78±0.28%), LA (2.72±0.23%), dihomo α-linolenic acid (4.09±0.36), EPA (3.88

±0.31%), and DHA (3.38±0.34%) [31]. The current results showed the fatty acid profiles of

fractionated lipids (neutral lipids, glycolipids, and phospholipids) from the total lipids

extracted from H. aurantium tunic (Fig 1).

The lipid extracts including neutral lipids, glycolipids, and phospholipids, which isolated

from H. roretzi were found to be similar to the total lipids of H. aurantium [12]. In addition,

the lipid extracts of Hippocampus trimaculatus, containing neutral lipids, glycolipids, phospho-

lipids reduced the production of NO, IL-6, IL-1β, and TNF-α in LPS-stimulated RAW264.7

cells [18]. Moreover, many studies investigated the anti-inflammatory activities of various bio-

active compounds from ascidian species. The enzymatic hydrolysates derived from Styela
clava down-regulated LPS-induced expression of iNOS and COX-2, suppressed the production

of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α and they inhibited LPS-

induced phosphorylation of ERK, JNK, and p38 [33]. Thomson et al. reported that polysaccha-

rides isolated from the Ascidiella aspersa exhibited anti-inflammatory effects in vitro and in
vivo systems [34]. H. roretzi also exhibited the anti-inflammatory effect of carotenoids and

vanadium-binding protein, which down-regulated the expression of pro-inflammatory cyto-

kines, including IL-1β, IL-6, and TNF-α as well as iNOS and COX-2 mRNA expression on

LPS-stimulated RAW264.7 cells [28]. Similar to previous reports, our results also showed that

H. aurantium lipids including neutral lipids, glycolipids, and phospholipids effectively sup-

pressed the expression of inflammatory cytokines, such as IL-1β, IL-6, and TNF-α (Fig 3)

which are pro-inflammatory cytokines that activated T cells, maturation of B cells, and

Fig 4. The effects of fractionated lipids from H. aurantium tunic on the protein expression associated with NF-κB and MAPK pathways in LPS-

stimulated RAW264.7 cells. (A) Western blot and relative band of neutral lipids. (B) Western blot and relative band blot of glycolipids. (C) Western

blot and relative band of phospholipids. Significant different at p<0.05 (�) compared with LPS.

https://doi.org/10.1371/journal.pone.0270794.g004
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activation of NK cells, especially monocytes or macrophages [35]. In addition, the COX-2

expression levels, which is a key enzyme in the production of prostaglandins (PGE2) by LPS-

stimulated macrophages in the inflammatory process [36], was down-regulated by H. auran-
tium lipids depending on the lipid concentration (Fig 3). These results suggested that H. aur-
antium lipids are biomaterials to contain anti-inflammatory effects on immune systems in a

physiological system.

In immune signaling pathways, there are critical two pathways including NF-κB and

MAPK pathways, in which NF-κB is a transcription factor, is a critical regulator mediator for

iNOS, COX-2 transcription, and the production of cytokines in LPS-induced macrophages

[37, 38], and The MAPK pathway is considered one of the main intracellular signaling path-

ways that regulate inflammatory responses [39]. Our current results showed that three lipids

from H. aurantium tunic reduced the activation of the NF-κB pathway by inhibiting the phos-

phorylation of the NF-κB p-65 subunit (Fig 4). In addition, H. aurantium lipids inhibited the

expression of MAPKs (ERK1/2, JNK, and p38) in LPS-induced RAW 264.7 cells in a dose-

dependent manner. Similar to ascidian species, vanadium-binding protein from H. roretzi has

reported being anti-inflammatory effects. This protein inhibited the LPS-stimulated inflamma-

tory response in RAW264.7 macrophages through NF-κB and MAPK pathways [27]. Skipjack

tuna eyeball oil was identified as the main fatty acids of DHA (25%) and EPA (5%), inhibited

the production of NO and pro-inflammatory cytokine by suppressing the activation of NF-κB

and MAPK signaling pathways in RAW264.7 cells [40]. Taken together, these results indicated

that three lipids of H. aurantium tunic induced the suppression of NO, and immune-regulated

genes in activated macrophages through the inhibition of NF-κB and MAPK pathways.

Conclusions

The present study demonstrated that the fractionated lipids from H. aurantium tunic, includ-

ing neutral lipids, glycolipids, and phospholipids composed of the highest contents of 16:0

and 18:0 as SFAs, 16: 1n7 and 18:1n9 as MUFAs, and 18:2n6 and 20:5n3 as PUFAs. Three lip-

ids of H. aurantium tunic significantly inhibited the production of NO and the expression of

immune-associated genes such as IL-1β, IL-6, TNF-α, and COX-2. Likewise, the decreased

expression levels led to further activation of NF-κB p-65 and MAPK molecules, such as ERK1/

2, JNK, and p38, thus alleviating the immune response. These results might be helpful to

understand the anti-inflammatory mechanisms of H. aurantium lipids on immune cells and

suggested that H. aurantium is a potential source for anti-inflammation.
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