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Abstract

Background: Closely spaced long inverted repeats, also known as DNA palindromes, can undergo intrastrand
annealing to form DNA hairpins. The ability to form these hairpins results in genome instability, difficulties in
maintaining clones in Escherichia coli and major problems for most DNA sequencing approaches. Because of their
role in genomic instability and gene amplification in some human cancers, it is important to develop systematic
approaches to detect and characterize DNA palindromes.

Results: We developed a new protocol to identify palindromes that couples the S1 nuclease treated Cot0 DNA (GAPF)
with high-throughput sequencing (GAP-Seq). Unlike earlier protocols, it does not involve restriction enzymatic digestion
prior to DNA snap-back thereby preserving longer DNA sequences. It also indicates the location of the novel junction,
which can then be recovered. Using MCF-7 breast cancer cell line as the proof-of-principle analysis, we have identified
35 palindrome candidates and physically characterized the top 5 candidates and their junctions. Because this protocol
eliminates many of the false positives that plague earlier techniques, we have improved palindrome identification.

Conclusions: The GAP-Seq approach underscores the importance of developing new tools for identifying and
characterizing palindromes, and provides a new strategy to systematically assess palindromes in genomes. It will
be useful for studying human cancers and other diseases associated with palindromes.

Keywords: Palindrome, Gene amplification, Inversion-PCR, GAP-Seq, GAPF, Breakpoint, MCF7, Genome instability,
Cancer, Human diseases

Background
Long DNA palindromes are difficult to directly analyze
using standard molecular genetics methods. This is because
perfect and near perfect palindromes, where a sequence is
immediately followed by its exact inverse complement with
very little or no spacer, are able to intrastrand anneal to
form hairpin structures. Palindromes longer than 200 bp
cannot be amplified by traditional PCR using DNA poly-
merases with low strand displacement activity, nor can they
be stably maintained in Escherichia coli. Palindromes are
also underrepresented in high-throughput sequencing re-
sults generated from libraries constructed by PCR amplifi-
cation or sequencing steps that involve emulsion PCR
amplification (Yang H. et al., unpublished observations).

The propensity of palindromes to adopt secondary struc-
ture interferes with DNA replication, transcription and
repair, and leads to genome instability [1-5]. Natural AT-
rich palindromes (PATRRs) exist at sites of some recurrent
chromosomal rearrangements in humans and cause gen-
etic disorders [6-8]. Long inverted repeats that may reflect
de novo palindromes have been found in tumor cells and
cancer cell lines, and are likely drivers of gene amplification
[5,9-12]. Previous studies demonstrated that the novel
junctions of palindromes contained sequences important
for understanding the mechanisms that can lead to de novo
palindrome formation [13,14]. Due to a lack of systematic
approaches to identify and characterize palindromes from
genomes, little is known about the distribution of DNA
palindromes nor their association with human diseases.
Genome-wide Analysis of Palindrome Formation (GAPF)

is a microarray-based technique that has been used for de-
tection of palindromic genome rearrangements in human
cancers [9,12]. It has limitations to eliminate false positive
signals and it cannot predict the orientation of palindromes,
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making the novel junctions difficult to find. We have ex-
plored alternative methods for systematically analyzing pal-
indromes in the genome and here we report our analysis of
de novo DNA palindromes from the MCF-7 breast cancer
cell line [15].
Chromosome rearrangements of the MCF-7 cell line

have been studied by spectral karyotyping [16,17], com-
parative genomic hybridization (CGH) [16,17], array CGH
[18-20], single nucleotide polymorphism (SNP) arrays [21]
and gene expression arrays [18]. A BAC library from MCF-
7 was generated and fully sequenced [22-24], and chromo-
somal breakpoints were established by high-throughput
paired end-sequence profiling [25]. However, these studies
would not detect palindromes due to the instability of pal-
indromes in BAC clones and the inability of the methods
used to directly sequence palindromes. The DNA Paired-
End-Tag sequencing (DNA-PET) technique can detect gen-
omic rearrangements including inverted repeats, but it
cannot identify the palindrome junction or the spacer
[26,27]. Our method builds on the GAPF technique that
enriches for DNA palindromes by a snap-back process of
DNA denaturation and rapid reannealing (Cot0 DNA reas-
sociation kinetics) followed by S1 nuclease digestion (an
endonuclease specific for single-stranded DNA) (Figure 1A),
which was first reported by Tanaka et al. using hybridization
intensity to microarrays to identify candidates [9,28,29].
Here, we were able to significantly improve the detection of
true palindromes by coupling GAPF with high-throughput
sequencing, named GAP-Seq.
We used high molecular weight genomic DNA rather

than enzyme digested DNA prior to DNA snap-back, be-
cause the enzyme digestion can eliminate palindromes con-
taining the restriction site in the spacer or close to the
center and can also limit the length of the signal recovered.
In the analysis of our GAP-Seq data, we were able to iden-
tify true palindrome candidates by a signature pattern of
read density distribution. This signature also predicted the
location of the novel palindrome junction allowing junction
recovery. In this study we identified 35 palindrome candi-
dates from MCF-7 and selected the top 5 candidates for
further mapping. Using inversion-PCR, we recovered 7
novel junctions that had not been identified in any previous
studies despite extensive analysis. The combination of novel
GAP-Seq, bioinformatics analysis and inversion PCR strat-
egies provide a systematic approach for palindrome detec-
tion and novel junction recovery, allowing a more accurate
assessment of the palindrome content in the genome.

Results
Bioinformatics for identification of DNA
palindrome candidates
Using Roche 454 sequencing of Cot0 DNA derived from
MCF-7 and IMR-90 (a normal fibroblast cell line used as
a control), we obtained approximately 1 million reads

(Table 1) from each cell line. The average read length for
IMR-90 was 318 bp and for MCF-7 was 279 bp, and our
coverage was equivalent to ~10% of the total human gen-
ome. 28% of the reads from MCF-7 sample mapped to
unique regions of the human genome (Table 1). We expect
DNA palindromes to be enriched among double strand se-
quences found in Cot0 DNA and preserved in the GAP-
Seq protocol. 48% of the reads from MCF7 represented
repetitive DNAs that were masked by Repeatmasker [30],
12% of the reads from MCF-7 mapped to mitochondrial
DNA. The reference mitochondria DNA (mtDNA) is calcu-
lated to be about 1.6% of the human genomic DNA content
(NCBI Build 36/hg18) based on average 3000 copies
[31,32]. Therefore, mtDNA in MCF-7 and IMR-90 se-
quencing was enriched 8–16 fold. We expected enrich-
ment of mtDNA because covalently closed circular single
strand DNAs are interlocked and stay together during
denaturation.
The location of palindromes in the unique portion of

the genome can be observed as regions with a higher than
expected number of sequence reads. Our estimated cover-
age of the non-repetitive sequences (~8 x 107 bp) mapped
to total unique genome sequences (~1.26 x 109 bp)
is ~6%. To determine palindrome locations, we looked for
unique sequence regions that were over-represented as
determined by the base read ratio “B”. For a single read
mapped to the unique region of the genome, B = 1
(Figure 1B-1&2). For overlapping reads forming a contigu-
ous genomic region (contig) “C”, the base read ratio is the
sum of the read lengths divided by the length of the

contig. Thus for contig “c” Bc¼
Xn cð Þ

r¼1
ReadLength r;cð Þ=

ContigLength cð Þ based on the total length of uniquely
mapped reads where n(c) is the number of reads in contig c,
ReadLength(r,c) is the read length of read r in contig c, and
ContigLength(c) is the length of contig c. Contigs are limited
to the mapped unique sequences and exclude repetitive se-
quences masked by Repeat Masker. To combine adjacent
contigs that are likely to represent a single locus, we joined
contigs where B ≥ 1.5. For pragmatic reasons we focused on
enriched unique sequence intervals that were within 7.5 kb
from each other (Figure 1B-3). Enrichment of joined contigs
was compared by using a Rank Score “R” calculated as the
sum of the read lengths assigned to each joined contig
divided by the length of the joined contig minus the length

of the masked regions (M), thus for JoinedContig “a” Ra¼
Xn cð Þ

r¼1
ReadLength r;cð Þ= JoinedContigLength cð Þ‐M að Þð Þ;

(Figure 1B-4).

To demonstrate the stringency and specificity of our cri-
teria, we conducted a simulation analysis to look for ran-
dom hotspots based on our coverage (See Methods). The
computer randomly selected positions for an equivalent
number and bp of mapped reads in the genome and
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clustered them using the same parameters used in iden-
tifying our genuine palindrome candidates. In the simu-
lated data 4% of reads fell into regions with base read ratio
(B) >1.5. After clustering into joined contigs, we identified
the top 50 loci, all of which had a rank (R) of <0.75
(Table 2). Using the same metrics, only 9 regions of IMR-90
(including 2 from Y chromosome) had R >0.75 (Table 2 and
Additional file 1: Table S2). In contrast, 35 of the regions
identified in MCF-7 had R >0.75 that can be considered
good candidates for DNA palindromes (Additional file 2:
Table S1). Two regions with highly clustered palindromes
were identified on chromosomes 17 and 20, which are con-
sistent with a high degree of rearrangement seen in these re-
gions from previous studies [20,22].
We also sequenced GAPF prepared DNA from MCF-7

and IMR90 by Illumina sequencing. In MCF-7, 25 mil-
lion reads were generated with average length 36 bps,
and 94% of the reads were mapped. The mapped bp was
equivalent to ~28% of the total human genome (hg18).
The Illumina sequencing data yielded a higher coverage
of the genomic DNA and was used for evaluating Roche
454 identified palindrome candidates.

Sorting of the palindrome candidates for physical analysis
For the 35 palindrome candidates obtained by the bioinfor-
matic and statistical analyses, we further analyzed their read
density by plotting the number of sequence reads in 1 kb
bins extending over the enriched areas including 10 kb up-
stream and downstream (Additional file 3: Figure S1). Al-
though the size of palindromes could be several Mbp in the
genome, the genomic DNA isolation step shears the DNA
into smaller fragments generally less than about 50 kb. In
addition, denatured palindromes reanneal more efficiently
in regions closer to the palindrome center. Therefore, the
palindromic DNA closest to the center is more highly
enriched than sequences further away. The result is a signa-
ture pattern represented by a higher read density toward
the palindrome center. However, this pattern is obfuscated
by problems associated with mapping repeated sequences.
For example, a 1 kb bin that corresponds to a repeated se-
quence could be over represented because of the faster re-
naturation kinetics of repeated sequences, or it could be
underrepresented if reads from repeated elements were re-
moved by the algorithm used to map the reads (in our case
Repeat Masker). Using the read density information, we

Genomic DNA 
  from tumor

Heat denaturation
  with formamide

Rapid re-naturation 
         with salt

S1 digestion

High-throughput next-generation  sequencing

DNA fragmentation

Adaptor ligation

GAPF-based
palindrome
enrichment

Library 
construction

M
                   read# =6       4           1                           10                 6   
  Base read ratio (B)=6     2.5          1                           5.2               4.6

A B
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Figure 1 High-throughput next generation sequencing of fast annealing DNA treated by S1 nuclease. (A) Sequencing library
construction. We prepared samples for sequencing based on efficient intrastrand base pairing of palindromes. Briefly, the genomic DNA was
denatured and rapidly reannealed. After single-strand specific S1 nuclease digestion, DNA was extracted by phenol-chloroform and libraries were
prepared for 454 and Illumina sequencing. (B) Data analysis. 1: Mapping of unique reads to human reference genome (NCBI36/hg18). Black lines
represent mapped unique reads. Hatched rectangles represent regions masked by RepeatMasker (M). 2: Assembly of uniquely mapped reads to
identify contiguous regions (contigs, black rectangles), and calculation of base read ratio (B) of each contig. For a contig region “c” with n mapped

reads, Bc¼
Xn cð Þ

r¼1
ReadLength r;cð Þ=ContigLength cð Þ. 3: Clustering two or more contigs with a base read ratio >1.5 that are within 7.5 kb of each

other to make a joined contig. 4: Determining Rank “R” that is the sum of all read lengths in the joined contig divided by the length of the joined

contig minus the masked regions Ra¼
Xn cð Þ

r¼1
ReadLength r;cð Þ= JoinedContigLength cð Þ‐M að Þð Þ.
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examined our 35 MCF-7 palindrome candidates (Additional
file 3: Figure S1) for the signature pattern. One candidate
that exhibited this pattern in both the 454 and Illumina data
corresponded to a palindrome previously (Chr8:128,202,
704-128,210,979) identified [12]. We chose five additional
candidates with this pattern and further characterized them
by identifying the novel junctions associated with their for-
mation and determining the spacer between the inverted
repeats. The methods used for this analysis are illustrated
for one of the candidates below.

Mapping of the palindrome spacer and novel junction
The novel DNA junction created by palindrome forma-
tion may provide clues to the mechanism(s) by which
they were formed. Since the S1 nuclease treatment in
our protocol removes the hairpins and/or spacers of the
palindromes, we have established new approaches to iso-
late the novel palindrome junctions.

Predicting the location of palindrome center
The read density signature described above predicts the
center of a candidate palindrome as closest to the re-
gion with the highest number of reads. For example, the
enriched central region of the chromosome 15q21.1

palindrome is about 21 kb (47,529,204-47,550,373).
When plotting the read numbers for the 21 kb region
of Chr15q21.1 plus 10 kb upstream and downstream,
we found a gradient of reads in both the 454 and Illu-
mina data, suggesting that the center of the palin-
drome is towards the centromere (Figure 2A).
The enrichment of the central region of the palindrome

can also be detected by quantitative PCR. We used Taqman
qPCR to compare the MCF-7 DNA palindrome candidates
as compared to the same sequences from IMR90 DNA, or
non-enriched unique sequences from MCF-7 DNA. Com-
parison of the Ct values (threshold cycles, the number of
cycles at which the fluorescence detected exceeds the
threshold, a relative measure of the amount of target
DNA) before and after snap-back plus S1 digestion were
used to calculate the amount of DNA protected in each
sample. For example, we used a non-palindromic single
copy gene, RAD52, as a control and found that the Ct
value increased ~ 10–12 cycles for the primer set for
RAD52 in all DNA samples tested (Figure 2B and C).
This corresponds to more than 1000-fold depletion of
the DNA. In contrast, the primer pair P2 from the
chromosome 15q21.1 palindrome candidate only had a
3 Ct cycle increase in MCF-7. This 7-cycle difference
suggests a relative enrichment of P2 to RAD52 of over
100-fold for this region in MCF-7. This enrichment for
the P2 target was not seen in the control cell line IMR-
90, suggesting a de novo palindrome arose in the MCF-
7. The P1 target, only ~1 kb centromere-proximal to P2,
was not enriched indicating it was located outside of the
palindrome region. We have also done qPCR using primer
pairs P3 and P4, which are located on the palindrome but

Table 1 Summary of Roche 454 data
aReference genome (hg18) (%) MCF7 (%) IMR90 (%)

Mapped to unique locus 40 28 22
bRepeat masked 46 48 43

SINEs 13 13 9

LINEs 20 18 15

LTRs 0.02 0.03 0.02

Simple repeats 0.85 0.91 0.98

Low complexity 0.55 0.37 0.34

Satellites 3 8 10.6

Other 8.58 4.7 7.1

Mitochondrial DNA 1.6 12 25

Low copy repeats 5.2 11 7

Human but not mapped 7.2 0.6 0.6

Non-human DNA 1 2

Total # reads 934,174 1,136,611
aThe reference genome statistics were adapted from UCSC Genome Browser (NCBI Build 36.1, Mar. 2006 Assembly, hg18). Low copy repeats (segmental
duplications) were adapted from [31,33]. We used an average of 3000 copies of mtDNA in calculating the ratio in the human genome [32].
bAnalysis of repeat masked elements are based on RepeatMasker.

Table 2 Summary of palindrome candidate data

Rank MCF7 IMR90 Random

0.05-0.75 130 (79%) 55 (86%) 46 (100%)

0.75-7.5 34 (21%) 8 (12.5%) 0

>7.5 1 (0.006%) 1 (1.5%) 0

Total 165 64 46
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further away from the center. Those two primer pairs
showed a similar, but somewhat lesser, relative enrichment
as the P2 target, indicating that our Taqman qPCR ap-
proach can detect enrichment as distant as 10 kb from the
palindrome center.

Analysis of palindrome structure
To further analyze the 15q21.1 palindrome structure in
the genome, we used Southern blot analyses to monitor
rearrangement associated with the palindrome. We chose
restriction enzymes BamHI, BglII and NcoI to digest the

A

Ct valueGAPF
P1 P2 P3 P4 RAD52

IMR90 - 23.6 23.7 23.2 21.9 22.5
+ 35.2 32.8 35.6 31.6 34

MCF7 - 23.8 22.7 20.5 19.2 22.2
+ 34.2 25.6 27.2 26.4 33.7
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Figure 2 Palindrome mapping strategy. (A) Read density distribution in Chr15q21.1: 47,529,204-47,550,373 region shown as 1 kb bins. (B)
qPCR analysis to monitor for palindrome enrichment and determine the directionality of the Chr15q21.1 palindrome. We calculated the amount
of depletion of a specific TaqMan primer set region based on Ct value before and after GAPF protocol in both IMR-90 and MCF-7 samples. The
fold enrichment is based on comparing the fold depletion among different primer sets (P1, P2, P3 and P4) relative to a single copy sequence in
the genome (RAD52). The location of TaqMan primer sets P1, P2, P3 and P4 is indicated in Figure 2C. (C) Map of genomic region Chr15:
47,520,000-47,550,000 with restriction sites and primer locations. (D) Southern blot analysis. Genomic DNA IMR-90 and MCF-7 cells was digested
with BamHI, BglII or NcoI. Asterisks (*) mark the rearranged bands from MCF-7 genomic DNA. (E) Snap-back (SB) southern blots of BamHI digested
IMR-90 and MCF-7 DNA. Arrowhead indicates the half sized fragments after snap-back in MCF-7. (F) Inversion-PCR. Three primers all from the
same strand in normal genomic DNA were used for PCR (Primers 1–3). Since primers 1 and 2 are located in the palindromic region, they can also
be used as reverse primers. Because primer 3 is in the spacer, it is able to produce a PCR product with primer 1 or 3 containing the novel junction
“J” as indicated in the figure.
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genomic DNA because we expected to see novel bands
with these enzymes in MCF-7 DNA (sites noted on
Figure 2C). As predicted from the map in Figure 2C, we
found rearranged bands (*) corresponding to the palin-
drome in MCF-7 that were not found in IMR-90 with the
increasing size as expected (Figure 2D). Next we further
analyzed BamHI-digested DNA by comparing untreated
genomic DNA to melted and self-annealed (snap-back)
treated DNA in MCF-7 and IMR-90. We found a half-
sized fragment after snap-back treatment of MCF-7 DNA
(Figure 2E, arrowhead, SB) indicating intra-strand rean-
nealing, thus confirming the palindromic structure of the
Chr15q21.1 candidate.

Inversion PCR to recover palindrome junctions
Defining the sequence at the novel junction of palin-
dromes might provide mechanistic insights regarding
how the palindromes are formed. To recover the novel
junction, we developed a technique based on finding a
spacer between the inverted repeats of the two palin-
drome arms (Figure 2F). By designing several oligonucle-
otides from the same strand we tested for PCR products
with each other. If one oligonucleotide maps to the spa-
cer and another to the inverted repeat, a PCR product
will be formed due to the inverted repeat nature of a
palindrome. The PCR product was cloned and the novel
junction at the center of palindrome sequenced. By this
approach, we identified a novel rearrangement that did
not exist in the control IMR90 (Figure 2F). The spacer
was a 467 bp and included a 185 bp insertion from Chr16
(Figure 3). We do not know if the original creation of the
palindrome involved interactions with Chromosome 16,
or whether this was a secondary event to stabilize a palin-
drome with a much shorter initial spacer. The 15q21.1
palindrome center is located in an intron of FGF7 gene
such that the palindrome contains duplications of exons 3
and 4 include the FGF signature motif and alpha 1,4 glyco-
syltranferase, respectively. It is possible that this rearrange-
ment might have contributed to the tumorgenesis of
MCF-7 breast cancer.
Using similar strategies, we confirmed four other palin-

dromes in MCF-7 and determined their spacer and junc-
tion sequences derived from Chr15q21.3, Chr8q21.2,
Chr1q31.3 and Chr20q13.2 (Table 3). An increase in spacer
size correlated with a decrease in Rank Score, indicating
that intra-strand annealing is more efficient when the spa-
cer is smaller. A total of seven novel breakpoints were
mapped and the junction sequences are shown in Figure 3.
The microhomologies present at the junctions ranged from
0-7 bp, indicating that most of the junctions were probably
made by non-homologous end joining (NHEJ). We also de-
termined whether the seven novel junctions were present
in five different sublines of MCF-7 cells (MCF-7-neo,
MCF-7-BK, MCF-7-B, MCF-7-C and MCF-7-NCI60) [25]

by using the same PCR primers used to identify the junc-
tions in MCF-7 cell line we obtained from ATCC for this
study. We confirmed that all seven novel junctions were
present in MCF-7-neo, MCF-7-C, MCF-7-NCI60 and MCF-
7 from ATCC; the six novel junctions from Chr15q21.1,
Chr15q21.3, Chr8q21.2 and Chr20q13.2 were present in
MCF-7-BK; the three junctions from Chr15q21.1 and
Chr15q21.3 were present in MCF-7-B. Loss or gain of junc-
tions in different cell lines could reflect continuing instability.

Comparison between GAP-Seq and microarray based
GAPF method
The microarray-based GAPF approach has been used for
detecting palindromes in cancer cells, and >80 GAPF posi-
tive cytogenetic bands were identified in MCF-7 [9,28].
Subsequently, Diede et al. modified the GAPF approach by
introducing 50% formamide in DNA denaturation step to
remove false positive signals from non-palindromic regions
that were found to correlate with regions of high DNA
methylation [28]. Guenthoer et al. next re-examined GAPF
profiles in MCF-7 breast cancer cell line as well as the con-
trol cell line IMR90. They found total 52 GAPF positive re-
gions in MCF-7 and physically mapped one region on Chr8
(128,201,619-128,208,246) [12]. 39 of their GAPF positive
regions were less than 1 kb and 7 were less than 100 bp.
The authors recognized that identifying true palindromes
remains elusive and pointed out two possibilities for false
GAPF positives: 1) Repeat sequences in the genome, such
as Alus, LINEs, or short tandem repeats, can obfuscate the
identification of palindromes; 2) The limitations in the sen-
sitivity of their approach cannot detect palindromes in a
subpopulation of cells in heterogeneous tumor samples
[12]. Their use of restriction enzyme digested DNA might
limit the ability of palindrome detection.
The GAP-Seq approach significantly improves on the

detection of true palindromes in several aspects: 1) The
use of high-molecular weight DNA rather than enzyme
digested DNA results in the recovery of longer sequences
making identification more likely; 2) Read density distribu-
tion adds another feature characteristic of palindrome
candidates (Additional file 3: Figure S1); 3) The read dens-
ity distribution also provided us with important informa-
tion about the orientation of the center of the palindrome,
which was important in the isolation and sequencing of
the palindrome junction and spacer. Using GAP-Seq we
were able to identify and verify novel junctions that have
never been reported in the plethora of previous studies of
MCF-7 and provide an important extension to previous
attempts to characterize this cell line.

Examination of biological consequences associated with
identified palindromes
To further understand the biological significance of the
de novo palindromes in our analysis, we investigated the
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spatial association between palindromes and increased copy
number in the MCF-7. Palindrome formation is an under-
lying mechanism of gene amplification, as it increases the
copy-number from one to two [14]. We compared our data
with Affymetrix SNP6 array data, and analyzed the correl-
ation between our 35 palindrome candidates and copy
number variation breakpoints (CNVB) (Figure 4 and
Additional file 4: Table S3). We calculated the distance from
either side of a palindrome candidate to its nearest CNVB.
8 of 35 palindrome candidates are located less than 5 kb
from their nearest CNVB. These included the 6 confirmed

palindrome candidates and two additional candidates
(Chr7:113,925,138-113,935,162 and Chr13: 46,991,099-
46,999,671). The remaining 27 candidates are located
between several hundred Kb to several Mb away from
the nearest detectable CNVB. Because this distance is
dependent on the quality of both 454 and CGH data, it re-
mains unclear whether they should be eliminated as good
candidates for DNA palindromes. The association of pal-
indrome candidates with CNVB will be useful to validate
true palindromes. These data indicate a good correlation
between palindrome candidates and gene amplification.
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Breakpoint 2
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Breakpoint 5 
(Chr8:86418383 or Chr8:86477198)

        ----AAAGAATATCTTCTGccaggttcacgcca----
Chr1(+):5’----tgcaagctccgcctcccaggttcacgcca----3’
Chr1(-):3’----AAAGAATATCTTCTGCCATCAGTGATGAG----5’

Breakpoint 6 
(Chr1:196630725 or Chr1:196632284)

Ch20q13.2

Breakpoint 7

Cen

         ----ccatgccccagccagaacatgttttaaca----
Chr20(+):5’----accatgcccagccagaacatgttttaaca----3’
Chr20(-):3’----ccatgccccagccCACCAACCTTCTTCCT----5’

Breakpoint 7 
(Chr20:51615684 or Chr20:51616829)

Figure 3 Schematics and sequence of palindrome junctions. Sequence analysis of the palindromic junctions identified 7 novel junctions. In
each of the aligned breakpoint sequences, lowercase letters are Repeat-masker masked sequences. Uppercase letters represent unique sequences.
Microhomology at the breakpoints is shown as bold letters. Insertion of Chr16 fragment at Chr15q21.1 spacer is shown as a black rectangle and
deletion at Chr8q21.2 spacer is shown as a triangle in the schematics.
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Some of the identified palindrome candidates were as-
sociated with amplified genomic regions that contain
cancer genes. Cancer genes are defined as genes that
when mutated are causally implicated in oncogenesis [34].
The confirmed palindrome in 8q24.21 (Chr8:128,202,704-
128,210,979) was co-amplified with the MYC oncogene.
Two palindrome candidates, 17q23.2 (Chr17: 56,691,822-
56,700,625) and 20q13.2 (Chr20: 52,771,235-52,783,881),
contained the BCAS3 and ZNF217 genes that was amp-
lified and overexpressed in breast cancers and was often
associated with chromosomal alterations affecting the
locus [35-37].

Discussion
In this study, we developed a new strategy to detect DNA
palindromes by coupling fast annealing genomic DNA
treated by S1 nuclease (GAPF) with high-throughput se-
quencing (GAP-Seq) and recovery of novel palindrome
junctions. We chose to use the MCF-7 breast cancer cell
line for this initial proof-of-principle study because it has
been extensively analyzed at the genomic level, allowing
us to determine if our approach could generate novel data.
In fact, none of our palindrome junctions had been identi-
fied by either sequence analysis or novel breakpoint ana-
lyses of MCF-7 [22,25,26]. This difference may be a result
of either or both of two constraints presented by the char-
acteristics of palindromes: 1) the breakpoint analysis was
done from BAC clones, where palindromes are not stable
during E.coli propagation, and 2) most of novel break-
points identified here are located in or near to repeat-
masked regions and would not be recovered by mapping
of high-throughput sequencing data without knowing
more about the sequences surrounding palindrome center.
Therefore, palindromes are likely an underestimated struc-
ture of somatic rearrangements in cancer and other asso-
ciated human diseases.
Although the palindrome junctions sequenced here

have fairly large spacers and should theoretically be
stable in BAC clones, it is not clear whether very long
inverted repeats are well tolerated in E. coli. Some of the
inverted repeats associated with the palindromes are likely
to be megabases long, possible reflections of chromosomal

breakage-fusion-bridge (BFB) cycles [38]. Although the
palindrome would include the entire length of the CNV
fragment, only the central ~20-40 kb could be recovered
in our study due to DNA shearing. Furthermore, a study
of complex genomic rearrangements consisting of inter-
mixed duplications and triplications of genomic segments
at both the MECP2 and PLP1 loci demonstrates that long
inverted repeats with larger spacers can lead to genome
rearrangements and contribute to local instability in the
human genome [39].
We mapped 7 novel breakpoints that have a 0–7 bp

microhomology at the junctions (Figure 3), suggesting
that they were made by NHEJ. However, it is possible
that the junctions were made independent of NHEJ. Palin-
dromes can be created by template switching of replica-
tion forks through microhomology (FoSTeS- Fork-Stalling
and Template Switching) by Microhomology Mediated
Break Induced Replication (MMBIR) [40-43], or by fold-
back replication [13,44]. The microhomologies identified
at three of the sequenced junctions (Chr15q21.3 break-
point 3, Chr8q21.2 breakpoint 4, and Chr1q31.1 break-
point 6) could reflect a foldback priming mechanisms as
seen in our previous analysis of palindromes from yeast
[13]. However, it is difficult to determine if a similar mech-
anism is functioning with such a small data set. Two of
the palindromes contained complex junctions including
an insertion from another chromosome (Chr15q21.1) and
the deletion of local sequences (Chr8q21.2). Such events
could reflect more complicated pathways for their initial
formation or secondary events indicative of the instability
of the initial palindrome structure. The presence of two
contiguous palindrome breakpoints on Chr15 leads us to
speculate that there was an initial double strand break at
the more telomere proximal site. This could have led to
subsequent BFB cycles that may have generated further
amplification and the second more centromere-proximal
palindrome.
The palindrome candidates located in clusters on Chr17

and Chr20 all were contained within a large highly ampli-
fied region, indicating that secondary events might have
resulted in more complicated genomic rearrangements at
these loci. The complex genome amplification patterns

Table 3 Summary of characterized MCF7 palindrome spacers

Chromosome Assembled 454
palindrome contigs

454 palindrome
rank score

Spacer size (bp) Spacer location Insertion or deletion
in Spacer

Chr15 (q21.1) 47,528,609-47,550,373 2.41 467 47,528,051-47,528,326 Insertion: Chr16(−):185 bp

44,946,106-44,945,921

Chr15 (q21.3) 52,336,749-52,346,086 2.53 657 52,346,284-52,346,941 None

Chr8 (q21.2) 86,478,506-86,486,590 2.01 2286 86,417,409-86,478,509 Deletion: Chr8(+): 58,813 bp

86,418,384-86,477,197

Chr1 (q31.3) 196,632,634-196,644,263 1.25 1555 196,630,725-196,632,280 None

Chr20 (q13.2) 51,618,339-51,633,176 0.83 430 51,615,731-51,616,160 None
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seen in some breast cancers are characterized by multiple
closely spaced amplicons, frequent high-level amplifi-
cations, and are highly correlated with aggressive disease
[45]. These patterns are suggestive of a palindromic
structure and associated genomic instability although
this correlation has not been examined. Based on our ob-
servations, we hypothesize that an initial event might be
the formation of a palindrome, which can then lead to gen-
ome instability and further amplification. This could pro-
vide a mechanism for amplifying cancer-associated genes,
which are then selected for during cancer development.

Conclusions
We have developed a new strategy to detect palindromes
and recover their junctions in the genome. Our GAP-Seq
approach improves upon previous microarray-based GAPF
technique by combining GAPF with high-throughput se-
quencing. Our bioinformatics analysis also provides us with
palindrome orientation information that is critical for junc-
tion recovery. Taken together, we show here that we can
overcome the previous barriers due to the large number of
false positives that obfuscate analysis of true palindromes.
Using MCF-7 breast cancer cell line as the proof-of-principle

Figure 4 Summary of Affymetrix SNP6 copy number gains and palindrome candidates from Roche 454 sequencing of MCF-7. Key:
red triangle-palindrome candidates from Roche 454 sequencing; green line-copy number gains based on Affymetrix SNP6 analysis; blue
rectangle-centromere region. The data used to generate this figure are shown in Additional file 4: Table S3.
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analysis, we have identified 35 palindrome candidates and
physically characterized the top 5 candidates and their
junctions, proving that our strategy can correctly predict
palindrome orientation and recovery of the novel DNA
junctions associated with palindromes. Despite extensive
analysis of MCF-7 at the molecular level, these data are
novel and are missing from previous analyses of this cell
line. Our approach underscores the importance of devel-
oping new tools for identifying and characterizing palin-
dromes, and provides a new strategy to systematically
identify palindromes in genomes.

Methods
Cell culture
The human breast cancer cell lines MCF-7 and IMR-90
(CCL-186) primary fibroblast were obtained from the
American Type Culture Collection (ATCC). Cell lines were
maintained under standard culture conditions (ATCC) and
harvested at log phase.

Roche 454 sequencing
The genomic DNA from cells was extracted by the
Blood & Cell Culture DNA Kits (Qiagen) according to
the manufacturer’s instructions. To prepare for a 454 se-
quencing library, the genomic DNA was denatured in
the presence of 50% formamide and reannealed briefly
in 100 mM NaCl on ice, then subsequently treated with
S1 nuclease as previously described [28] with the follow-
ing modifications: We started with ~100 μg of genomic
DNA. After snap-back and S1 nuclease treatment, we twice
extracted the DNA with UltraPure Phenol:Chloroform:Iso-
amyl Alcohol (25:24:1, v/v) (Invitrogen). The DNA was
then precipitated in 100% ethanol, washed with 70% etha-
nol and dissolved in 1xTE buffer. We prepared Roche 454
libraries sheared to approximately 500 bp fragments and se-
quenced with the Roche 454 GS FLX + system by the
standard method.

Illumina sequencing
Deep sequencing of the 36-mers was obtained using Illu-
mina Genome Analyzer IIx at the Ohio State University
James Cancer Hospital. High molecular weight genomic
DNA was obtained from MCF-7 and IMR-90. Cells were
harvested and were incubated in the lysis buffer (100 mM
NaCl/10 mM Tris⋅HCl, pH 8.0/25 mM EDTA/0.5% SDS/
Proteinase K) for 24 hours at 37°C, followed by phenol/
chloroform extraction and ethanol precipitation as de-
scribed previously [9]. Briefly, one mg of genomic DNA
was first digested with either restriction enzyme KpnI or
SbfI. After heat-inactivation of restriction enzymes, both
digests were pooled and denatured with formamide in boil-
ing water for 7 minutes followed by quick renaturation on
ice in 100 mM NaCl. Single-stranded DNA was digested by
S1 nuclease at 37°C for 1 hour. Processed DNA samples

were purified using the PCR-clean up kit (Promega). DNA
was fragmented by sonication using a Covaris S2 and
200 bp DNA fragments were used for the construction of a
sequencing library using the Illumina CHIP-SEQ kit.

Affymetrix SNP6 copy number analysis
Genome-wide copy number analyses for MCF-7 and IMR-
90 were performed using SNP6.0 (Affymetrix) at the Case
Comprehensive Cancer Center (P30 CA43703). Two mg of
genomic DNA was processed for hybridization using the
SNP6 core reagent kit. The data were analyzed using Partek
Genomics Suite (Partek). Raw data were normalized using
the Robust Multi-Array Average (RMA) method. RMA
consists of three steps: a background adjustment, quantile
normalization [46] and final summarization. Normalized
data were used to calculate the relative copy number of
MCF-7 to IMR-90.

Roche 454 data analysis
Mapping and content analysis
The 454 reads were masked with RepeatMasker [30]. The
remainder of the sequences were mapped with BLAT [47]
to the Human genome sequence (Version hg18, repeats
masked) with condition of at least 75% identity of at least
40 bp. Sequences that were not mapped to the genome
with these conditions were subjected to the metagenomic
analysis pipeline (Smythers and Volfovsky; unpublished
observations). This analysis identified additional matches
to human DNA from GenBank, missing in previous hg18
analyses.

Random palindrome simulation analysis
The locations of mapped reads from MCF-7 were ran-
domly assigned in the genome based on the actual num-
ber of reads and projected read lengths observed. When a
repeat-masked region was encountered during simulation,
the procedure was repeated in a new random location.
The resulting null distribution data were clustered using
the same parameters as we used to identify palindromes
to generate a null simulation palindrome data set.

Illumina sequencing data analysis
Illumina data were mapped with Bowtie to human refer-
ence genome (hg18) with the default module (−k 1). 35
GAP-Seq positive regions in MCF7 and 9 GAP-Seq posi-
tive regions in IMR90 from Roche 454 data analysis (R >
0.75) were binned as 1000 bp (Additional file 3: Figure S1
and Additional file 5: Figure S2).

Real-time qPCR analysis of palindromes
Real-time qPCR was used to assess the enrichment of a
palindrome over a single copy non-palindrome region
(RAD52). We used TaqMan probes (Applied Biosystems)
to genomic regions within the 454 positive signal. Real-
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time qPCR reactions used the Master mix from Applied
Biosystems and were run according to manufacture’s in-
structions on a Bio-Rad multicolor Real-Time qPCR de-
tection machine (IcyclerIQ) and analyzed with Icycler3.1
IQ software. Primer sequences are listed in Additional
file 6: Table S4.

PCR analysis of palindrome junctions
All PCR reactions were performed under standard condi-
tions as recommended by the manufacturer (Clontech)
using Titanium Taq polymerase. MCF-7 subline genomic
DNAs (MCF-7-neo, MCF-7-BK, MCF-7-B, MCF-7-C) were
obtained from Dr. Adrian Lee’s lab. To get the palindrome
junctions, we designed PCR primers based on the unrear-
ranged chromosome using Primer-Blast program on NCBI
website [48]. The PCR products were cloned using TOPO
TA cloning kit (PCR 2.1-TOPO, Invitrogen) and the cloned
products were isolated and sequenced using Sanger se-
quencing (LMT, SAIC Frederick). Primer sequences are
listed in Additional file 6: Table S4.

Southern blotting
Southern blotting and snap-back southerns were per-
formed as previously described [9].

Availability of supporting data
The data sets supporting the results of this article are avail-
able in The Gene Expression Omnibus (GEO) with accession
number GSE43679 and The NCBI Sequence Read Archive
(SRA) with accession ID SRA064847 and SRA065361.
The data sets supporting the results of this article are

included within the article and its additional files.
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