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Abstract

Objective:Mismatch between a depleted intrauterine environment and a substrate‐
rich postnatal environment confers an increased risk of offspring obesity and

metabolic syndrome. Maternal diet‐induced obesity (MATOB) is associated with the

same outcomes. These experiments tested the hypothesis that a mismatch between

a nutrient‐rich intrauterine environment and a low‐fat postnatal environment would
ameliorate offspring metabolic morbidity.

Methods: C57BL6/J female mice were fed either a 60% high‐fat diet (HFD) or a
10% fat control diet (CD) for 14‐week pre‐breeding and during pregnancy/lactation.
Offspring were weaned to CD. Weight was evaluated weekly; body composition was

determined using EchoMRI. Serum fasting lipids and glucose and insulin tolerance

tests were performed. Metabolic rate, locomotor, and sleep behavior were evalu-

ated with indirect calorimetry.

Results: MATOB‐exposed/CD‐weaned offspring of both sexes had improved

glucose tolerance and insulin sensitivity compared to controls. Males had improved

fasting lipids. Females had significantly increased weight and body fat percentage in

adulthood compared to sex‐matched controls. Females also had significantly

increased sleep duration and reduced locomotor activity compared to males.

Conclusions: Reduced‐fat dietary switch following intrauterine and lactational

exposure to MATOB was associated with improved glucose handling and lipid

profiles in adult offspring, more pronounced in males. A mismatch between a high‐
fat prenatal and low‐fat postnatal environment may confer a metabolic advantage.
The amelioration of deleterious metabolic programming by strict offspring adher-

ence to a low‐fat diet may have translational potential.
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1 | INTRODUCTION

Rates of obesity are dramatically increasing worldwide, including

among pregnant women.1

One in three US women has a body mass index consistent with

obesity at the time of conception.1,2 Maternal obesity not only in-

creases the risk of complications during pregnancy and at delivery,

but is also associated with increased offspring risk of obesity and

early‐onset metabolic syndrome described in observational human

studies.3 Animal model studies have some advantages in studying

underlying mechanisms, in that maternal and offspring diet can be

precisely manipulated, isolating offspring exposure to maternal

obesity and/or high‐fat diet to desired developmental windows.

Animal studies have demonstrated that exposure to maternal

obesity and high‐fat diet is associated with an increased risk of obesity
and metabolic syndrome in offspring.4–9 Yet, many of these studies

have been conducted by weaning the obesity‐exposed offspring to the
same diet as that of the dam.4–6,10 This experimental paradigm makes

it challenging to understand the relative contributions of the intra-

uterine/lactational versus the postnatal environment to offspring

metabolic morbidity. In addition, many these studies have been limited

by their lack of consideration of sex‐specific effects.5,6,10

The literature also indicates that a mismatch between the in

utero and postnatal environments is known to predispose offspring

to obesity and metabolic syndrome.11–13 However, most of these

studies have focused on a depleted or substrate‐poor intrauterine

environment and a nutrient/substrate‐rich postnatal environ-

ment.11,12,14 Studies of pregnancy during famine have shown that a

relatively nutrient‐poor intrauterine environment compared to a

more nutrient‐rich postnatal environment predisposes offspring to

obesity and cardiovascular disease.12,15,16 Animal studies have also

demonstrated that maternal protein malnutrition and other models

of intrauterine growth restriction coupled with a nutrient‐rich post-

natal environment increase offspring risk for cardiometabolic

morbidity, although such programming may be amenable to inter-

vention during key windows of developmental plasticity.12,17

Few studies have evaluated offspring metabolic effects of an

obese/high‐fat intrauterine environment mismatched with a relative

reduction in nutrient availability during the postnatal period.18–19

Thus, these experiments sought to evaluate offspring metabolic

programming in the setting of maternal obesity and high‐fat diet,

followed by a switch to 10% fat control diet immediately post‐
weaning and for the remainder of the lifespan. The following

hypothesis was tested: a mismatch between the substrate‐rich in-

trauterine/lactational environment of maternal obesity, and a relative

reduction in nutrient availability in the post‐weaning period, might

ameliorate deleterious effects of offspring metabolic programming.

2 | METHODS

2.1 | Animal model and experimental design

Four‐week‐old C57Bl/6J mouse dams (Jackson Laboratory) were

fed ad libitum either a lard‐based high‐fat diet (60% calories from

fat; N = 19 dams, Research Diets D12492) or matched control

diet (10% fat, matched for sucrose, fiber, and micronutrient con-

tent; N = 15 dams, Research Diets D12450J) for 14 weeks prior

to breeding, to ensure obesity in the dams fed the high‐fat diet

(Table 1). Maternal obesity was defined as at least a 30% increase

in weight compared to age‐matched controls.20 Males were fed

the control diet. Obese and lean dams were bred with control

males. Dams remained on their assigned diet throughout preg-

nancy and lactation. All offspring were weaned to the control diet

at P24. Figure 1 depicts the experimental timeline. Throughout

the manuscript, offspring of obese dams are referred to as

MATOB; offspring of control diet‐fed dams are referred to as CD.

Offspring were housed 2–4/cage with same‐sex littermates, with

ad libitum access to the control diet and water. The colony was

maintained on a standard 12:12 light‐dark cycle, with lights on at

07:00. The Massachusetts General Hospital Institutional Animal

Care and Use Committee (IACUC) approved this protocol

(#2017N00266), all guidelines for animal care and use were fol-

lowed. All evaluations were performed in male and female

offspring.

2.2 | Body composition

Adult offspring body composition was determined using nuclear

magnetic resonance technology with EchoMRI™ (Echo MRI LLC). 18–

24 offspring/sex/diet group were evaluated, reflecting 9 obese and 8

control litters.

2.3 | Glucose and insulin tolerance tests

Glucose tolerance tests (GTTs) and insulin tolerance tests (ITTs)

were performed on adult offspring (12–16 weeks old, N = 25–35

offspring/sex/diet group, 19 obese and 15 control litters). For the

GTT, after an overnight fast, offspring were injected intraperito-

neally with D‐glucose (50% dextrose; Hospira, NDC) at 2 mg/g

body weight, a standard dose and mode of delivery for rodent

GTTs.21 For the ITTs, Novalin‐R human insulin (Novo Nordisk;

0.4 mU/g body weight) was administered intraperitoneally after a

4‐h fast.22 For both tests, 1 µl blood was collected in conscious

animals via tail prick immediately before glucose or insulin injec-

tion (time = 0) and at 15, 30, 60, and 120 min after injection.

Glucose levels were determined using a glucometer (Abbott,

AlphaTrak2).

2.4 | Fasting cholesterol and triglyceride levels

Cholesterol and triglyceride levels were evaluated in adult

offspring (16–20 weeks old, N = 14–18 offspring/sex/diet group, 9

obese and 9 control litters). After an overnight fast, facial vein

draws were performed at 9 AM. Serum total triglyceride and

cholesterol levels were determined using a Dri‐Chem 7000 in-

strument (HESKA).
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2.5 | Metabolic cage analyses

Metabolic rate, locomotor activity, and sleep behavior were

measured by indirect calorimetry in metabolic cages using a com-

puter‐controlled system (Promethion Metabolic Screening, Sable

Systems International) in adult offspring (16–20 weeks, N = 12–21/

sex/diet group, 12 obese and 11 control litters). Animals were indi-

vidually housed and habituated to the apparatus for 48 h, followed by

a 72‐h data acquisition period. A standard 12:12 light–dark cycle,

with lights on at 07:00 was utilized. All mice had ad libitum access to

usual diet and water. Energy expenditure was calculated from O2 and

CO2 continuous sampling. Body weight as a covariate on energy

expenditure was analyzed by ANCOVA (α = 0.05). Physical activity

was detected with XYZ beam arrays. Data acquisition and system

control was coordinated using MetaScreen v. 2.2.8, and raw data

were processed using ExpeData v. 1.8.2 (Sable Systems

International).

2.6 | Statistical analyses

Statistical analyses were performed using GraphPad Prism (v8,

GraphPad Software). The Shapiro–Wilk and D'Agostino–Pearson

tests were used to evaluate normal distribution of data. Comparisons

between groups were made using two‐tailed student's t test for

normally distributed data, or Mann–Whitney test for non‐normally
distributed data. Male and female offspring data were analyzed in a

pre‐planned, sex‐stratified fashion. Statistical significance was

defined as p < 0.05. Only 1–2 offspring/sex/litter were analyzed, to

avoid litter effects.

3 | RESULTS

3.1 | Offspring weight gain and adiposity

There were no significant differences between litters from obese

and lean dams with respect to litter size or sex distribution by

litter (Table 2). Male and female MATOB‐exposed post‐weaning
juveniles had significantly higher body weight compared to sex‐
matched controls; however, only the obesity‐exposed females

weighed significantly more as adults, as depicted in growth tra-

jectories by sex (Figure 2A,B). Female MATOB‐exposed adult

offspring had significantly increased body fat percentage

compared to their sex‐matched controls, while MATOB‐exposed
male differences did not achieve statistical significance (MATOB

F vs. CD F, p < 0.01; MATOB M vs. CD M p = 0.06; Figure 2C).

MATOB‐exposed male offspring had significantly lower percent

lean body mass compared to their sex‐matched controls (MATOB

F vs. CD F, p = 0.50; MATOB M vs. CD M p = 0.04;

Figure 2D).

3.2 | Glucose and insulin tolerance tests

MATOB‐exposed adult offspring demonstrated significantly

improved glucose tolerance compared to their sex‐matched con-

trols. Both males and females demonstrated significantly lower

blood glucose 30 and 60 min after IP glucose injection (Figure 3A).

The glucose AUC over 120 min after glucose IP injection was

significantly reduced in MATOB‐exposed offspring of both sexes

(Figure 3B). MATOB‐exposed adult offspring of both sexes also

F I GUR E 1 Experimental timeline. GTT, glucose tolerance test; ITT, insulin tolerance test

TAB L E 1 Maternal diet composition

Contents

High‐fat diet
D12492

Control diet
D12450J

g (%) kcal (%) g (%) kcal (%)

Protein 26.2 20 19.2 20

Carbohydrate 26.3 20 67.3 70

Fat 34.9 60 4.3 10

Kcal/gram 5.24 3.85

g Kcal g Kcal

Sucrose 68.8 275.2 68.8 275.2

Casein (30 mesh) 200 800 200 800

Lard 245 2205 20 180
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demonstrated significantly increased insulin sensitivity compared to

sex‐matched controls. Both males and females had significantly

reduced blood glucose levels at 15 and 30 min after IP insulin in-

jection (Figure 4A). The glucose AUC in response to insulin was

significantly reduced in MATOB‐exposed offspring of both sexes

(Figure 4B).

3.3 | Cholesterol and triglyceride levels

MATOB‐exposed adult males had significantly lower fasting choles-

terol than sex matched controls (MATOB M 120.5 ± 22.50 mg/dl vs.

CD M 143 ± 10.22 mg/dl, p = 0.04; Figure 5) and reduced tri-

glycerides compared to sex‐matched controls, although this finding

did not achieve statistical significance (MATOBM132. 6±29.32mg/dl

vs. CDM 161.9 ± 16.11 mg/dl, p = 0.08; Figure 5). In female offspring,

there were no significant differences in lipids between MATOB‐
exposed and lean‐exposed groups (Figure 5).

3.4 | Indirect calorimetry analyses

There were no significant differences in metabolic rate between

the MATOB‐exposed and lean‐exposed offspring of either sex

TAB L E 2 Litter size and sex
distribution by litter

Characteristic

Diet group

Sex MATOB CD p‐Value

Litter size, n (mean ± SEM) Combined 6.1 ± 0.28 6.68 ± 0.25 0.43

Offspring per sex/litter/group, n (mean ± SEM) Male 3.25 ± 0.37 3.15 ± 0.36 0.87

Female 2.85 ± 0.39 3.52 ± 0.36 0.21

Abbreviations: CD: control diet; MATOB: maternal diet‐induced obesity.

F I GUR E 2 Offspring growth trajectories and body composition by sex. (A) Female offspring weight trajectory. (B) Male offspring weight
trajectory. (C) Adult offspring percent fat mass by sex. (D) Adult offspring percent lean mass by sex. MATOB‐exposed female offspring

weighed significantly more and had significantly increased adiposity compared to sex‐matched controls as adults. These changes were not
observed in male offspring. CD, control diet; MATOB:,maternal diet‐induced obesity. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. All
data are depicted as mean ± SEM
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F I GUR E 3 Obesity‐exposed offspring

weaned to control diet have improved glucose
tolerance. Male and female offspring exposed to
MATOB followed by 10% CD demonstrated

improved glucose tolerance compared to their
sex‐matched controls (evidenced by reduced
blood glucose after 2 mg/g IP glucose injection).

This was true for both analyses by time (3A) and
AUC analyses (3B). AUC, area under the curve;
CD, control diet; GTT, glucose tolerance test; IP,
intraperitoneal injection; MATOB, maternal

diet‐induced obesity. *p < 0.05; **p < 0.01;
***p < 0.001. All data are depicted as
mean ± SEM
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during adulthood (Figure 6A). MATOB‐exposed females demon-

strated significantly increased sleep duration during the dark cy-

cle, the usual active period, compared to sex‐matched controls

(p = 0.02, Figure 6B). MATOB‐exposed females also had

significantly reduced locomotor activity in the dark cycle

compared to sex‐matched controls, with significantly reduced lo-

comotor speed (p = 0.04) and total distance traveled (p < 0.01)

(Figure 6C).

F I GUR E 4 Obesity‐exposed offspring
weaned to control diet have improved insulin

sensitivity. Male and female offspring exposed to
MATOB followed by 10% CD showed improved
insulin sensitivity compared to their sex‐matched
controls (evidenced by reduced blood glucose
after 0.4 mu/g IP injection). This was true for
both analyses by time (4A) and AUC analyses
(4B). AUC, area under the curve; CD, control

diet; ITT, insulin tolerance test (glucose is the
measured value); IP, intraperitoneal injection;
MATOB, maternal diet‐induced obesity.

*p < 0.05; **p < 0.01. All data are depicted as
mean ± SEM
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4 | DISCUSSION

Adult offspring exposed to maternal obesity and a high‐fat diet in
utero and during lactation, followed by switch to a 10% fat control

diet in the immediate post‐weaning period and continued across the

lifespan, have improved metabolic parameters compared to lean‐
exposed offspring that remained on the control diet postnatally.

These include improved glucose tolerance and insulin sensitivity in

offspring of both sexes, and improved fasting cholesterol in male

offspring. Female obesity‐exposed offspring gained more weight and

had increased adiposity in adult life compared to sex‐matched con-

trols, and demonstrated reduced locomotor activity and increased

sleep duration compared to sex‐matched controls. Maternal obesity

was not associated with significant differences in adult offspring

metabolic rate in either sex.

To place these results in the context of the existing literature,

exposure to maternal obesity and high‐fat diet has been demon-

strated to result in metabolic dysfunction in offspring,6,9,23,24

including glucose intolerance,9,23,25 insulin insensitivity,25,26 hyper-

lipidemia,6,10,24 fatty liver disease,24 and increased body weight and

adiposity.9 The results presented here demonstrate improved

glucose tolerance, insulin sensitivity, and fasting lipids robust across

multiple litters. The results thus differ from some of the aforemen-

tioned studies, with several possible explanations for the differences.

First, many prior studies are limited by their design of weaning

offspring to the mother's diet.4–6,10 In this study, offspring were

weaned to the 10% fat control diet for the remainder of the lifespan.

As mentioned, many of the above studies examined male offspring

only,4,5,10,27,28 and some studies differed from the present study in

the route of administration of the glucose tolerance test, using oral

administration.5 Although oral gavage is also a common technique for

GTT in rodents, it is known to increase animal stress, raising the

potential for confounding.29

Several studies have demonstrated results comparable to this

study's, where a maternal or offspring dietary or nutritional

intervention resulted in an improvement in offspring develop-

mental programming (both neurodevelopmental and car-

diometabolic) in the setting of maternal obesity.30–34 In a murine

model of maternal diet‐induced obesity, social deficits and neuro-

inflammation in offspring were improved by a maternal lactational

dietary switch, with female offspring demonstrating more plasticity

than males in this regard.30 Adverse neurodevelopmental pro-

gramming in male offspring of obese ewes was improved by

maternal pre‐gestational, gestational and lactational dietary in-

terventions.31 Amelioration of MATOB‐associated offspring meta-

bolic dysfunction by maternal or offspring dietary interventions has

also been described.33,34 Adverse metabolic phenotype in male

offspring of obese rats was partially reversed by switching obese

dams from a high‐fat diet to normal chow one month prior to

mating.34 Studies have also demonstrated improved offspring

metabolic profile in the setting of relative undernutrition/reduced

substrate availability during lactation, including improved insulin

sensitivity, reduced body fat and perigonadal adipocyte size, and

reduced total body weight.32,33

Few studies have directly examined the impact of maternal

high‐fat diet feeding and/or maternal obesity followed by weaning

to a control diet on metabolic programming of both male and fe-

male offspring.18,19,23,24,35,36 These studies have had conflicting re-

sults, with one demonstrating no significant impact of maternal

diet‐induced obesity and high‐fat diet during lactation on offspring

metabolic phenotype;35 two demonstrating protective effect of

maternal HFD on offspring weight gain and metabolic profile when

re‐challenged with either a high‐fat or palatable diet;18,19 two

demonstrating increased adiposity and body weight and adverse

impact on blood pressure, cholesterol or glucose homeostasis

among female but not male offspring exposed to high‐fat or high‐
fat/high‐sugar diet in pregnancy and lactation, even when weaned

to a chow diet;23,24 and one demonstrating increased fat preference

and food intake in offspring exposed to a junk food diet in utero

and during lactation, with hyperphagia corrected by weaning

F I GUR E 5 Obesity‐exposed adult males have improved fasting lipids. Obesity‐exposed adult males had significantly lower fasting
cholesterol and trended toward reduced triglycerides compared to sex‐matched controls. No significant difference was observed in female
offspring. CD, control diet; MATOB, maternal diet‐induced obesity. *p < 0.05; †p = 0.08. All data depicted are mean ± SEM
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offspring to standard chow.23,24,36 The aforementioned studies

differed from this study with respect to species or strain of rodent

used, macro‐ and micronutrient content of diets utilized, duration of

maternal high‐fat diet feeding/establishment of maternal obesity,

duration of offspring follow‐up, and key metabolic programming

endpoints examined.

F I GUR E 6 Obesity‐exposed females have increased sleep duration and reduced locomotor activity. (A) There was no significant difference
in metabolic rate between the MATOB‐exposed and control offspring of either sex. (B) MATOB‐exposed female offspring spent significantly
more time sleeping during the dark cycle, the usual active period. (C) MATOB‐exposed female offspring had significantly decreased locomotor
activity (both speed and total distance traveled). CD, control diet; MATOB, maternal diet‐induced obesity. *p < 0.05; **p < 0.01. Data are
depicted as mean ± SEM
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There are several biologically‐plausible explanations for the

improved metabolic profile of obesity‐exposed offspring reported

here. First, just as malnutrition in utero followed by abundance of

postnatal nutrition resources has been associated with increased risk

of cardiometabolic disease in human epidemiologic studies14,37 and

animal models,38,39 the opposite type of mismatch (between an obese

intrauterine/lactational environment and a postnatal diet with rela-

tively reduced fat availability) may confer a metabolic advantage.

Which factors might mediate this advantage is an important question

for future studies. Body fat distribution is one candidate mediator of

improved offspring glucose handling and insulin sensitivity. It is

known that increased subcutaneous fat depots can act in an insulin‐
sensitizing capacity.40 While the results demonstrated that obesity‐
exposed female offspring had increased body fat mass compared to

control offspring, EchoMRI does not determine the distribution of

body fat. Future experiments will therefore utilize DEXA to deter-

mine visceral versus subcutaneous deposition of adipose in offspring.

Similarly, quantifying liver triglycerides in obese‐ and lean‐exposed
offspring is an important future direction, given that increased liver

triglyceride deposition is associated with insulin resistance.41 If liver

triglyceride deposition is reduced in obesity‐exposed offspring, this

could suggest an important mechanism underlying increased insulin

sensitivity and improved glucose tolerance.

The results demonstrate that after weaning, male and female

obesity‐exposed juveniles had increased body weight compared to

their sex‐matched controls; however, only obesity‐exposed females

weighed significantly more in adulthood. The literature is mixed

regarding which sex is more vulnerable to increased weight gain and

adiposity in the setting of maternal obesity. While some studies have

suggested increased female vulnerability,23,24,26 others have shown

greater impact on male offspring.42,43 In addition, it is unclear which

period—pregnancy, lactation, or weaning—is most critical to pro-

gramming weight gain, adiposity, and hyperphagia.23,26,36

With regard to the metabolic cage results, some studies suggest

that maternal obesity is associated with increased locomotor activity

in offspring, although data are conflicting regarding which sex is more

affected.30,44 In contrast, this study found increased sedentary

behavior in obesity‐exposed female offspring in the metabolic cage

assessment, without a change in metabolic rate. The reduced loco-

motor activity and increased sleep duration in female adult offspring

suggest that increased obesity liability in obesity‐exposed female

offspring may be mediated in part by increased sedentary behavior.

This will be an important direction for future research.

A key strength of the study is the separation of maternal preg-

nancy and lactational diet from the offspring post‐weaning diet, given
that many studies in the literature continued the offspring on the

dam's diet, failing to isolate perigestational exposure to maternal

obesity and high‐fat diet as the causative variable.4–6,10 The novel

finding that maternal obesity‐exposed offspring have improved

metabolic parameters after post‐weaning dietary switch suggests

that the deleterious effects of in utero and lactational exposure to

maternal obesity and high‐fat diet may be amenable to intervention,

with male offspring demonstrating the most benefit. Another key

strength of the study is the examination of offspring of both sexes,

given that many studies in the literature have focused on male

offspring only.4,5,10,27,28 A more mechanistic understanding of how

sex modifies the effects of maternal obesity on offspring metabolic

programming is critical to designing effective and targeted in-

terventions. The examination of maternal obesity is a strength, given

that many studies in the literature place dams on a high‐fat diet for 4‐
6 weeks pre‐breeding, failing to achieve maternal obesity.5,19,45 This

study's focus on obese dams provides more translational potential to

human maternal obesity.

Other strengths of the study include: (1) the use of a control diet

matched to the high‐fat diet, permitting the isolation of maternal

obesity and dietary fat content as the key variables. Recent work has

demonstrated the importance of selecting the correct control diet in

studies examining offspring developmental programming.46 (2) The

large number of offspring tested and significant litter diversity, with

metabolic results robust across numerous test cohorts. (3) All rodent

testing was performed by the same two experienced individuals,

minimizing animal stress that could confound the results.

Obesity‐exposed offspring were not weaned to a high‐fat diet in
this study as these experiments have already been performed

elegantly by other groups.8,10,19,35,47,48 While two studies by the

same research group demonstrated an unexpected protective benefit

of maternal high‐fat diet on rat offspring later challenged with a

palatable high‐sucrose or high‐fat diet,18,19 the majority of groups

have demonstrated a deleterious effect of post‐weaning high‐fat diet
on offspring glucose tolerance, insulin sensitivity, hyperlipidemia and

weight gain.8,10,36,47,48 Male offspring demonstrated increased

vulnerability to worsened metabolic parameters in the setting of

maternal obesity and weaning to a postnatal high‐fat diet.35,47 These
findings, taken together with the data presented here that male

offspring demonstrated the most metabolic benefit from a post‐
weaning dietary switch, suggests that male offspring may have both

increased vulnerability to adverse metabolic programming in the

setting of maternal obesity, and increased capacity for metabolic

improvement in the setting of intervention. To better understand the

sex‐specific differences in outcomes found in this study, future

research can evaluate possible underlying mechanisms including

malprogramming of hypothalamic satiety setpoints, central reward

circuitry, and hyperphagia, as well as pro‐inflammatory malprog-

ramming of skeletal muscle, liver, and pancreas of offspring of both

sexes.

As the fat, protein, lactose, fatty acid and insulin composition of

human milk may impact infant growth and fat deposition in the first

12 months of age,49–51 the lactational period is also a critical period

to consider in initiation and maintenance of maternal dietary

changes. Evaluating the efficacy of lactational interventions in

altering metabolic programming of obesity‐exposed offspring poses a
challenge in rodent models, however. Cross‐fostering experiments

have been reported to increase pup stress, anxiety, and risk for

weight gain in adulthood.52 Such a design would raise the potential

for confounding given this study's outcomes of interest.

Other studies have examined lactational nutritional switches,
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demonstrating improved insulin sensitivity when male offspring of

obese dams are cross‐fostered to lean dams, and increased obesity

and insulin resistance in pups of lean dams exposed to high‐energy
diet.53,54

In addition to the question of lactational versus post‐weaning
dietary change, there are other relevant considerations relating to

breastmilk and offspring metabolic morbidity in the setting of

maternal obesity. Maternal breast milk reflects in part the maternal

diet, and maternal obesity and the Western diet may contribute to

higher overall fat content and increased long‐chain polyunsaturated

fatty acids (LC‐PUFAS) that may be obesity‐promoting in infants.49,55

Published data are conflicting regarding the impact of maternal

obesity on the omega‐6:omega‐3 (N6:N3) fatty acid composition of

human milk, with some studies reporting significantly increased total

saturated fatty acids with increased N6:N3 LC‐PUFA ratio, and

others finding no impact of maternal pre‐pregnancy weight on the

N6:N3 LC‐PUFA ratio.56,57 In addition, both animal and human

studies have suggested that maternal obesity is linked to impaired

lactogenesis.58–61 The impact of maternal obesity on the hormonal

and macronutrient composition of human milk has also been exam-

ined, with higher insulin, leptin, adiponectin, ghrelin, IL‐6, and TNF‐
alpha noted in the milk of women with obesity49,62,63

Previous work has demonstrated that maternal diet‐induced
obesity is associated with deficits in central catecholamine neuro-

transmitter synthesis and reduced mesolimbic dopamine release,

with female offspring more vulnerable across the lifespan.64 The

experiments described here clearly demonstrate that peripheral

metabolic programming is not a substantial driver of offspring

obesity risk in this model. The predisposition to weight gain observed

among female offspring in the model might therefore be driven by

central malprogramming, such as increased propensity for reward‐
driven eating, in combination with the increased sedentary behavior

and sleep noted in females during the usual active period. Thus,

future experiments will evaluate central mesolimbic dopamine mal-

programming as a targetable mechanism driving sex‐specific
offspring vulnerability to weight gain in the setting of maternal

obesity.

These data are presented to spur the investigation of underlying

mechanisms prior to translating this study's findings to humans. A

more mechanistic understanding of the sex differences demonstrated

here will be of importance in designing effective and targeted in-

terventions. Ultimately, careful dietary regulation in offspring of

women with obesity might hold promise as an intervention to

attenuate deleterious obesity‐associated metabolic programming.

5 | CONCLUSION

A low‐fat dietary switch following intrauterine and lactational

exposure to maternal diet‐induced obesity and high‐fat diet was

associated with improved glucose handling, insulin sensitivity, and

fasting lipids in adult offspring. These findings suggest that a

mismatch between the intrauterine and postnatal environments,

from increased to reduced substrate availability, may confer a

metabolic advantage. Male offspring may be more sensitive to

improvement of metabolic parameters in this setting. Reversal of

deleterious metabolic programming by maternal diet‐induced obesity
may be possible with strict offspring adherence to a low‐fat diet.
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