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Abstract: In recent years, Generative Adversarial Networks (GANs)-based illumination processing of
facial images has made favorable achievements. However, some GANs-based illumination-processing
methods only pay attention to the image quality and neglect the recognition accuracy, whereas others
only crop partial face area and ignore the challenges to synthesize photographic face, background and
hair when the original face image is under extreme illumination (Image under extreme illumination
(extreme illumination conditions) means that we cannot see the texture and structure information
clearly and most pixel values tend to 0 or 255.). Moreover, the recognition accuracy is low
when the faces are under extreme illumination conditions. For these reasons, we present an
elaborately designed architecture based on convolutional neural network and GANs for processing
the illumination of facial image. We use ResBlock at the down-sampling stage in our encoder and
adopt skip connections in our generator. This special design together with our loss can enhance
the ability to preserve identity and generate high-quality images. Moreover, we use different
convolutional layers of a pre-trained feature network to extract varisized feature maps, and then
use these feature maps to compute loss, which is named multi-stage feature maps (MSFM) loss.
For the sake of fairly evaluating our method against state-of-the-art models, we use four metrics
to estimate the performance of illumination-processing algorithms. A variety of experimental data
indicate that our method is superior to the previous models under various illumination challenges
in illumination processing. We conduct qualitative and quantitative experiments on two datasets,
and the experimental data indicate that our scheme obviously surpasses the state-of-the-art algorithms
in image quality and identification accuracy.

Keywords: face illumination; face preprocessing; illumination processing; shadow removal;
deep learning

1. Introduction

As is known to all, the performance of computer vision tasks will degrade when the image sensor
is under poor light conditions. As shown in Figure 1, many reasons, such as the excessive exposure
and the lack of exposure of the image sensor, the intensity and direction of the light, could make
the lighting conditions complicated. Face appearances can change dramatically due to illumination
variations [1]. Therefore, illumination processing of facial image under various illumination conditions
is highly desired especially in face recognition, expression recognition and so on, due to its wide
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application in security, health-care, marketing and so on, more and more people are doing research in
this field.

Figure 1. Some poor-lighted faces under various illumination conditions.

In recent decades, in order to solve the illumination problem, experts around the world have come
up with various solutions. Most works concentrate on the illumination processing of gray image [2–7].
In contrast, research on illumination processing of color image has developed slowly in this field.
The data distribution of color image is more complex than that of the gray image is the primary
reason to hinder the development of relevant research. As a pioneering work, Faisal et al. [8] combine
Phong’s lighting model and a 3D face model to process illumination of color face. Unfortunately, due to
the requirement for 3D point clouds and a large amount of computation, this method has limited
practical application.

With the developments of hardware and deep learning, illumination processing is gradually
evolved from traditional ways to deep learning-based techniques. Ma et al. [9] first use Generative
Adversarial Networks (GANs) to process illumination of facial images. Then Ma et al. [10] deal with
face illumination by combining triplet loss and GANs. Han et al. [11] put forward asymmetric joint
GANs to process facial illumination. Zhang et al. present IL-GAN [12] model based on variational
auto-encoder and GANs for processing face illumination.

However, some GANs-based illumination-processing methods only pay attention to the image
quality and neglect the recognition accuracy, whereas others only crop partial face area and ignore the
challenges to synthesize photographic face, background and hair when the original face image is under
extreme illumination conditions. Moreover, the recognition accuracy is low when the face image under
extreme illumination conditions. We can use image-to-image translation technique to accomplish the
illumination processing of face images. The poor-lighted face images belong to a domain, whereas the
standard illumination face images belong to another domain. For these reasons, and inspired by the
success of GANs on image-to-image translation, we consider the illumination-processing problem
similar to the way of image translation. Our purpose is not only to synthesize photographic face,
background and hair when the original face image is under extreme illumination conditions but also
preserve identity effectively. The following items are our primary contributions:

1. First, we present a multi-stage feature maps (MSFM) loss that uses different convolutional layers
of pre-trained feature network to extract varisized feature maps, and then use these feature maps
to compute loss. MSFM loss and our elaborately designed generator are conducive to generating
high-quality images and preserving identity effectively.

2. Secondly, our method can effectively synthesize photographic face, background, hair and preserve
identity when the original face image is under extreme illumination conditions.

3. Finally, we conduct qualitative and quantitative experiments on two databases and a variety of
experimental data indicate that our method significantly surpasses the state-of-the-art methods
in image quality and identification accuracy.

We organize our paper as follows. We describe the related work on illumination processing
in Section 2. In Section 3, we introduce the proposed method in detail. In Section 4, we show the
qualitative and quantitative experimental data. Finally, we draw conclusions in Section 5.
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2. Related Work

At the beginning of this section, the traditional illumination-processing algorithms are briefly
introduced first, and the state-of-the-art GANs such as CycleGAN [13], DMIT [14], EDIT [15],
and Pix2Pix [16] that are relevant to our method are in the second part. In the end, we present
deep-learning-based illumination-processing methods.

2.1. Traditional Illumination-Processing Methods

Over recent decades, numerous works have been put forward for solving the illumination
problem. In 1987, Pizer et al. [2] proposed adaptive histogram equalization to enhance image contrast.
Afterward, many researchers extend the histogram equalization algorithm. For instance, Shan et al. [17]
propose region-based histogram equalization to deal with illumination. Xie et al. [18] put forward
block-based histogram equalization for illumination processing. To encode rich information on the edge
orientations, Lee et al. [19] present orientated local histogram equalization to compensate illumination.

In 1999, Shashua et al. propose the quotient image method [20] that provides an invariant
approach to deal with the illumination. Afterward, many researchers extend the quotient image
algorithm. For instance, Shan et al. [17] develop gamma intensity correction by introducing an
intensity mapping and quotient image relighting. Wang et al. [21] put forward self-quotient
image. Chen et al. [22] produce the TV-based quotient image model for illumination processing.
Srisuk et al. [23] propose Gabor quotient image by extending the self-quotient image. An et al. [24]
propose a decomposed image under L1 and L2 norm constraint, then obtain illumination invariant
large-scale part by region-based histogram equalization and get illumination invariant small-scale part
by self-quotient image.

Adini et al. [1] propose logarithmic transformation, directional gray-scale derivation,
and Laplacian of Gaussian for illumination processing. Single-scale retinex [25] is put forward
by Jobson et al. for processing illumination. W et al. [26] propose Gaussian high pass to process
illumination. Local processing technology [4] proposed by Xie et al. can improve the uneven
illumination effectively. Chen et al. [27] propose a lighting processing method based on the generic
intrinsic illumination subspace. Du et al. [28] present wavelet-based illumination-processing method.
Chen et al. [5] propose logarithmic total variation for processing illumination. Chen et al. [3]
put forward a new method named logarithmic discrete cosine transformation for illumination
compensation and processing. Tan and Triggs [7] process illumination by combining some existing
methods such as gamma correction, difference of Gaussian filtering, contrast equalization and masking,
which is called TT in the literature [29]. Fan et al. [30] propose a method named homomorphic
filtering-based illumination processing. The filter’s key component is a difference of Gaussian.

Wang et al. [31] propose illumination processing based on Weber’s Law. Zhao et al. [32] process
illumination by using self-lighting ratio to suppress illumination differences in the frequency domain.
A linear representation-based face illumination-processing method is put forward by Li et al. [33].
BimaSenaBayu et al. [34] propose an adaptive contrast ratio based on appearance estimation model
and shadow coefficient model. Goel et al. [35] put forward an illumination-processing method based
on discrete wavelet transformation and discrete cosine transformation. Vishwakarma [36] proposes
a fuzzy filter applied over the low-frequency discrete cosine transformation coefficients method for
illumination processing. Zhao et al. [37] use ambient, diffuse, and specular lighting maps to decompose
lighting effect and estimate the face albedo. Tu et al. [38] use an energy minimization framework to
process illumination. Ahmad et al. [39] use independent component analysis and filtering to process
illumination. Zhang et al. [40] use patch-based dictionary learning (DL) to process face illumination.
Zheng et al. [41] combine difference of Gaussian filters and difference of bilateral filters for illumination
processing. Zhang et al. [42] generate the chromaticity intrinsic image (CII) in a log chromaticity
space that is robust to illumination variations by combining Phong’s Model and Lambertian Model.
Liu et al. [43]. use fusion-based descattering and color tone correction to enhance the illumination of
underwater image.
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2.2. Illumination-Processing Methods Based on Deep Learning

The developments of machine learning and deep learning accelerate the rapid progress of GANs.
The development of GANs [44] brings extraordinary vitality to the image generation. With the help
of the combination of GANs and CNN, DCGAN [45] makes a great leap in the ability of image
generation. By specifying the input conditions, conditional GAN [46] can generate the specific target
photos. With the development of GANs, image translation has also achieved impressive development.
Isola et al. [16] propose Pix2Pix for a wide range of supervised domain translation tasks. Since obtaining
a mass of paired data is not easy and impractical for many domain translation tasks, DualGAN [47],
DiscoGAN [48], CycleGAN [13], DMIT [14] and EDIT [15] are proposed to learn two cross-domain
translation models that obey the cycle consistent rule from unpaired data.

Recently, illumination-processing of image based on deep learning has made favorable
achievements. Ma et al. [49] use deep convolutional neural network and HSI color space to enhance
low-light image. Ma et al. [9] first use Generative Adversarial Nets to process illumination of facial
image. Then Ma et al. [10] process face illumination by combining triplet loss and GANs. Han et al. [11]
put forward asymmetric joint GANs to process facial illumination. Their method contains two GANs,
one of which is employed to process illumination, the other is to maintain personalized facial structures.
Zhang et al. put forward IL-GAN [12] based on variational auto-encoder and GANs for processing
face illumination. AJGAN [11] shows that it is difficult to obtain a favorable illumination-processing
result by unsupervised illumination-processing methods. Therefore, we still use weakly supervised
method to process illumination of color and gray faces in this paper.

Although the above illumination-processing methods can deal with illumination effectively and
preserve identity well, there are some problems. For example, Ma et al. [9,10] only pay attention
to image quality and neglect recognition accuracy. AJGAN [11] and IL-GAN [12] not only conduct
face recognition experiments but also illustrate preferable image quality, but their methods only crop
partial face area and ignore the challenges to synthesize photographic face, background and hair
when the original face image is under extreme illumination conditions. Moreover, the face recognition
methods in their paper are outmoded. The main problem is that the recognition accuracy is low when
the faces under extreme illumination conditions. For these reasons, we put a new scheme to process
the illumination of color and gray faces. We use advanced ResNet-50 [50] pre-trained on VGGFace2
dataset [51], Light-CNN-9 and Light-CNN-29 [52] pre-trained on CASIA-WebFace and MS-Celeb-1M
dataset for face identification and the structural similarity (SSIM) [53] index, the visual information
fidelity (VIF) [54] and the feature similarity (FSIM) [55] to evaluate our method comprehensively.

3. Proposed Method

We define X as poor-lighted faces and Y as standard illumination faces. Given sets xij ∈ X, yi ∈ Y,
i denotes identity and j means light type. We expect H(G(xij)) = H(yi), which means that after
translating various light into a standard one, the synthesized face images G(xij) and the corresponding
standard illumination yi have the same identity i. Identity preservation is very important in various
image-to-image translation about face images [56]. In this paper, H means feature extractor such as
ResNet-50, Light-CNN-9 and Light-CNN-29. Next, we denote xij and yi with x, y for short.

3.1. Overall Framework

At the beginning of this section, we first present our illumination-processing method of face image
in detail. Figure 2 shows the block diagram of the proposed method, which takes a set of poor-lighted
face images as input and outputs a set of well-lighted face images in an end-to-end way. From the
Figure 2, we can learn that the core of our approach is made up of a generator, a loss network for
extracting varisized feature maps and using these feature maps to compute multi-stage feature maps
(MSFM) loss. An encoder and a decoder make up our generator together. In the testing phase, we just
use the generator to transform poor-lighted face images into well-lighted images. We use 3 loss items:
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adversarial loss, multi-stage feature maps (MSFM) loss and L1 distance loss. F is introduced in detail
when we narrate multi-stage feature maps (MSFM) loss in Section 3.3.

Figure 2. Our overall network framework. The core of our method mainly contains 3 parts:
an elaborately designed generator, a discriminator and a loss network.

3.2. Generator and Discriminator Architecture

The generator of our method is inspired by the components of residual network [50] and
U-net [57]. Our generator consists of 9 convolutional layers, 6 residual blocks and 3 up-sample
layers, each of which is equipped with a ReLU as activation. Details of the generator are illustrated
in Figure 3. From the Figure 3, we can know that the input size of the generator is designed to
be a 128 × 128 color image. The output resolution of our generator is 128 × 128 pixels in size.
The dotted lines in Figure 3 are skip connections that are conducive to feature retention. In the
middle 6 convolutional layers, we use dropout to avoid over-fitting and special up-sample blocks
in the decoder of our generator for enhancing the synthetic ability of our model. For this special
design, which further enhances the ability of feature retention. Because InstanceNorm [58] has the
characteristics of preventing instance-specific mean and covariance shift simplifying the learning
process, we use InstanceNorm after each convolutional layers. InstanceNorm can be computed by:

ytijk =
xtijk − µti√

σ2
ti + ε

, (1)

µti =
1

HW

W

∑
l=1

H

∑
m=1

xtilm, (2)

σ2
ti =

1
HW

W

∑
l=1

H

∑
m=1

(xtilm − µti)
2, (3)

where x ∈ RT×C×W×H is a tensor including T images. xtijk mean its tijk-th element, k and j are spatial
dimensions, i denotes color channel, t is the index of the image in the batch.

The discriminator of our method is inspired by the components of Pix2Pix [16]. The detailed
structure of our discriminator is shown in Figure 4. The ReLU is used as activation after the left
four convolutional layers and we replace BatchNorm with InstanceNorm. The input size of the
discriminator is designed to be a 128× 128 paired color images such as (x, y) and (x, G(x)). We use
InstanceNorm after the left four convolutional layers.
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Figure 3. The detailed structure of our generator. 7, 128×128× 64 means kernel_size = 7, feature maps
with 128 values in width, 128 values in height and 64 channels.

Figure 4. The detailed structure of our discriminator. The input images are a 128× 128 paired color
images such as (x, y) and (x, G(x)). 4, 64 ×64× 64 means kernel_size = 4, feature maps with 64 values
in width, 64 values in height and 64 channels.

3.3. Objective Function

Three terms make up our objective function together: a multi-stage feature maps loss for making
the ground truth and the generative results more similar, an adversarial loss for making the real
distribution and the distribution of synthesized images more similar. A L1 distance loss for improving
the performance of our method further.

Adversarial Loss: The adversarial process is made up of the generator G and the discriminator D.
D attempts to discriminate the generated fake image G(x) and the ground truth image y whereas G
strives to generate fake image G(x) to fool discriminator D. The objective function is as follows:

LGAN(G, D, x, y) = Ey∼PY [logD(y)]

+ Ex∼PX [log(1− D(G(x)))], (4)

where x denotes input image (poor-lighted face), whereas y is target image (standard illumination).
Multi-Stage Feature Maps Loss: Experimental data indicate that early layers of loss network F

(VGG-16) pre-trained on the ImageNet dataset [59] tend to produce smooth facial images, whereas the
content and the overall spatial structure can be preserved by the higher layers of F, but the color,
the texture and the exact shape are not preserved effectively. Therefore, we choose middle layers of F
as our loss network for synthesizing high-quality facial images.

As narrated before, we hope the synthesized image G(x) and its ground truth y to be similar in
illumination and to have same identity features. Meanwhile, the generator is not only to generate a
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well-lighted face image but also to fool the discriminator as soon as possible. We use different layers of
pre-trained feature network for extracting varisized feature maps, and then use these feature maps to
compute feature loss, named multi-stage feature maps (MSFM) loss. The multi-stage feature maps
(MSFM) loss can be computed by:

LMSFM(G, x, y) =
3

∑
i=1

λi × ||Fi(y)− Fi(G(x))||22

=
3

∑
i=1

λi × ||Fi(y)− Fi(ŷ)||22, (5)

F is the VGG-16 network that has 13 convolutional layers. F1 means 1 to 5 convolutional layers of
VGG-16 [60], F2 means 1 to 6 convolutional layers from of VGG-16, F3 means 1 to 7 convolutional layers
of VGG-16. λi is weight parameter, ŷ means the output result of our generator, whereas y is target
image (standard illumination). F1(y) means that we use the 1 to 5 convolutional layers of VGG-16 to
obtain the feature maps of y.

L1 Distance Loss: Although MSFM loss and adversarial loss make our method gain favorable
performance in image quality and recognition accuracy, for the sake of improving the performance
of our method further, we add L1 distance loss to our loss function. Because L2 result in blurry
synthesized image [16], we choose L1 instead of L2. In this paper, L1 is used to compute the sum of
absolute difference between the ground truth image y and the generated image ŷ. L1 distance can be
computed by:

LL1(G, x, y) = ||y− G(x)||1
= ||y− ŷ||1, (6)

where y is the ground truth, and ŷ is the synthesized result.
The final objective function is:

L(G, D, x, y) = LGAN(G, D, x, y)

+ LMSFM(G, x, y)

+ α× LL1(G, x, y), (7)

where α is weight parameter.

4. Experimental Results

In this section, the datasets, the implementation details and the qualitative and quantitative results
of our algorithm are illustrated in detail. Our experiments are conducted on two sets, one is color
set, the other is gray set. We compare with the state-of-the-art unsupervised and supervised deep
learning methods on the color set. On the gray set, we mainly make comparison between classical
illumination-processing methods and ours.

4.1. Datasets

In our paper, we first perform the experiments on the MultiPIE [61] database and then make
a comparison with some state-of-the-art methods such as CycleGAN [13], DMIT [14], EDIT [15],
Pix2Pix [16], and then compare with the classical methods such as LDCT [3], LN [4], LTV [5], SQI [6],
TT [7] and famous CycleGAN [13], Pix2Pix [16] and ours on the Extended YaleB datasets. Finally,
we randomly choose some face images from FRGC [62] dataset to verify the generalization performance
of our algorithm.

MultiPIE database: The MultiPIE [61] database has been extensively used in illumination
processing and face recognition. We choose frontal faces, 20 illumination conditions and natural
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expression, without glasses from session 1 of MultiPIE as our dataset. We detect and crop faces from
the dataset with single shot scale-invariant face detector (S3FD) [63] and resize to 128 × 128 as our
training and test set. The 07 illumination faces are chosen as standard faces (standard illumination) and
the rest are selected as poor-lighted facial images. In the training dataset, 99 individuals are chosen.
For making the experiments more challenging, we use gamma correction to make the image become
darker. When gamma = 2, we think it is not challenging enough. When gamma = 4, the mean value of
some faces is 0.47 and the max pixel value is 9. The zero values are more than three quarters. Due to
the lack of effective information, it is difficult to restore meaningful images. So, we set gamma = 3
and we use gamma correction to process all the images, which is not only challenging but also being
able to restore meaningful images. In actual application, we can set more gamma values such as
1.1, 1.2 ... and so on for obtaining more training data and improving the performance of the method.
Thus, the training set has 99 × 19 × 2 + 99 = 3861 images. The test set has 30 individuals and
30× 19× 2 = 1140 images. We use 30 individuals under 38 lighting conditions (19 original lighting
conditions and 19 analog lighting conditions obtained from the former’s images by conducting gamma
correction when gamma = 3) to test CycleGAN, DMIT, EDIT, Pix2Pix and our method.

Extended YaleB: The Extended YaleB that has 38 subjects under 64 illumination conditions is
widely used to evaluate different illumination-processing methods. We divide this dataset according
to the literature [64,65], 1 to 28 (1792 images) are used to train all the deep learning-based approaches,
29 to 38 (630 images) are used for test. Next, we call it YaleB for short.

FRGC v2 dataset: The Face Recognition Grand Challenge (FRGC) [62] dataset contains 3D
images and high resolution controlled and uncontrolled stills under various illumination conditions.
We randomly choose some 2D faces to verify the generalization performance of our algorithm.
Next, we call it FRGC for short.

4.2. Implementation Details

As to the encoder and decoder, we use ReLU for activation first. For gradient descent, we use
Adam [66] optimizer, and choose a learning rate of 0.0002 with momentum parameters β1 = 0.95,
β2 = 0.999. We set batchsize = 8 during training period. 100 epochs have completed within about
200 min on the MultiPIE dataset. Moreover, during the training period, we use random cropping
for data enhancement. In this work, we set α = 0.1. By setting different values for λ1, λ2 and λ3,
we get 4 combinations of loss items. We set λ1 = 1.0, λ2 = 0.0 and λ3 = 0.0 to train a model using 1 to 5
convolutional layers of VGG-16 for extracting feature maps and computing loss. We choose λ1 = 0.0,
λ2 = 1.0 and λ3 = 0.0 to train a model using 1 to 6 convolutional layers of VGG-16 for extracting
feature maps and computing loss. We set λ1 = 0.0, λ2 = 0.0 and λ3 = 1.0 to train a model using 1 to 7
convolutional layers of VGG-16 for extracting feature maps and computing loss. For balancing the
image quality and identity feature, we set λ1 = 0.91, λ2 = 0.08 and λ3 = 0.01 and train a model using
multi-stage feature maps loss.

4.3. Metrics

At present, most literature evaluates the performance of illumination-processing algorithms
from two aspects: one is to compare recognition accuracy, the other is to illustrate some face images
before and after processing by various methods. We make use of cosine similarity of feature vectors
for face recognition. For the purpose of more comprehensively estimating the performance of
various illumination-processing algorithms, except for comparing recognition accuracy and illustrating
examples, we also adopt the structural similarity (SSIM) [53] index, visual information fidelity (VIF) [54]
and the feature similarity (FSIM) [55] to evaluate the performance of various illumination-processing
methods. Cosine similarity, VIF, SSIM and FSIM are briefly introduced as follows:
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1. The cosine similarity is a metric to determine how similar the two vectors are. It computes
the cosine of the angle between two vectors. The smaller the angle is, the higher similarity is.
The cosine similarity is computed by:

cos(θ) =

n
∑

i=1
Ai × Bi√

n
∑

i=1
(Ai)2 ×

√
n
∑

i=1
(Bi)2

, (8)

where A and B are the feature vectors which are extracted by the ResNet-50 [50] pre-trained on
VGGFace2 [51], the Light-CNN-9 [52] and the Light-CNN-29 [52] pre-trained on CASIA-WebFace
and MS-Celeb-1M. Ai denotes i-th element of vector A, Bi denotes i-th element of vector B.

2. The visual information fidelity (VIF) [54] is a metric to measure the information fidelity between
the ground truth image and the generated image. VIF is defined as:

VIF =
∑j∈subbands I(~CN,j;~FN,j|SN,j)

∑j∈subbands I(~CN,j;~EN,j|SN,j)
, (9)

where I(~CN,j;~FN,j|SN,j) and I(~CN,j;~EN,j|SN,j) denote the information that can ideally be extracted
by the brain from a particular sub-band in the ground truth image and the generated
image respectively.

3. The structural similarity (SSIM) [53] is a widely used metric to measure the level of similarity in
structure between the ground truth and the synthesized image. The two images are exactly equal
when the SSIM values of two images is equal to 1. SSIM is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (10)

where x and y means two images, µx is the mean value of image x, µy is the mean value of image
y. σx and σy are standard variances of image x and y. C1 and C2 are two constants.

4. The feature similarity (FSIM) [55] is a widely used metric to measure the feature similarity
between the ground truth and the synthesized image. The closer the FSIM value is to 1, the more
similar feature the two images have. FSIM is defined as:

FSIM =
∑x∈Ω SL(x)PCm(x)

∑x∈Ω PCm(x)
, (11)

where Ω is the whole image spatial domain, PCm(x) is the phase congruency of image x, and SL(x)
is the overall similarity of two images.

In summary, the closer the values of SSIM, VIF and FSIM are to 1, the higher quality the image.

4.4. Qualitative Comparisons

In this section, we illustrate some poor-lighted faces processed by CycleGAN [13], DMIT [14],
EDIT [15], Pix2Pix [16] and our method. As can be observed from the Figure 5, in general, all these
methods can process various illumination conditions and obtain better visual effects, but some
methods have drawbacks. As illustrated in Figure 5, the first column is the original poor-lighted faces
under various illumination conditions. From the second to the sixth columns are faces processed
by CycleGAN, DMIT, EDIT, Pix2Pix and ours. From the second column, we can see that CycleGAN
obtains favorable face images, but the first and third faces are not photo-realistic enough, moreover,
the background of the first faces has some shadow and the hair of the third faces is translated into
background. From the third and the fourth columns of Figure 5, we can see clearly that DMIT and EDIT
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cannot discriminate background and hair well. Although Pix2Pix obtains preferable faces, its outputs
have some blemishes. For instance, the first face of the fifth column is not photo-realistic and natural
enough, moreover, from the third and fourth faces, we can know that some hair areas are not bright
enough. From the sixth column of Figure 5, we can learn that our method cannot only translate
poor-lighted faces under various illumination conditions into well-lighted and photo-realistic faces
but also discriminate background and hair well.

Figure 5. Comparisons between the CycleGAN [13], the DMIT [14], the EDIT [15], the Pix2Pix [16] and
ours on the MultiPIE database. The first column: original poor-lighted face images. The second to sixth
columns: synthesized results of the original poor-lighted face images.

Figure 6 illustrates the illumination-processing results of the eight methods on the YaleB database.
The synthesized faces of LDCT [3] are blurry. The output results of LN [4] are still dark and have
many shadows. The LTV [5] method obtains smooth synthesized face images. The SQI [6] and TT [7]
methods get noisy output results and cannot process cast shadows well. From the seventh column of
Figure 6, we can see the faces generated by CycleGAN [13] are not natural and some face area is too
bright. At the eighth column of Figure 6, we can see that some faces synthesized by Pix2Pix [16] have
3 eyes and some faces are distorted. Our method can not only process illumination effectively but
also obtain high-quality synthesized face images with good visual effects. In the next section, we will
evaluate all the aforementioned methods with four metrics objectively.

Figure 6. Comparisons between the LDCT [3], the LN [4], the LTV [5], the SQI [6], the TT [7],
the CycleGAN [13], the Pix2Pix [16] and ours on the YaleB database. The first column: original
poor-lighted face images. The second to ninth columns: synthesized results of the original poor-lighted
face images.
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4.5. Quantitative Evaluation

Next, we conduct face identification and full reference image quality assessment (FR-IQA) on the
MultiPIE database and the YaleB database separately.

4.5.1. Quantitative Evaluation on the MultiPIE Database

As to FR-IQA, we conduct experiments on the MultiPIE database. When we compute the
FR-IQA of the synthesized faces, the faces with standard illumination are chose as reference images.
We compute FR-IQA by three metrics: (1) the first is the structural similarity (SSIM) index [53];
(2) the second is the visual information fidelity (VIF) index [54]; (3) the third is the feature similarity
(FSIM) [55]. The FR-IQA values of the faces synthesized by CycleGAN, Pix2Pix, EDIT, DMIT and
our method are shown in Figure 7, which shows the higher FR-IQA values are, the higher percentage
of images on the horizontal axis is. It is obvious that our algorithm obtains higher FR-IQA values
than the other four approaches. In Table 1, we illustrate the average FR-IQA of various algorithms,
which demonstrates that our method is superior to the others.

Figure 7. FR-IQA values of the face images synthesized by various algorithms on the MultiPIE
dataset. (a) SSIM values of generated faces; (b) VIF values of synthesized faces; (c) FSIM values of
synthesized faces.

Table 1. Average FR-IQA values of the face images synthesized by various illumination-processing
methods on the MultiPIE dataset.

Methods
Metrics SSIM ↑ VIF ↑ FSIM ↑

Original 0.3289 0.1669 0.7165
CycleGAN [13] 0.7477 0.3340 0.8644
DMIT [14] 0.7032 0.2845 0.8446
EDIT [15] 0.7216 0.3132 0.8591
Pix2Pix [16] 0.7265 0.3221 0.8548
Ours 0.7899 0.3788 0.8865

As shown in Table 2, we use ResNet-50 [50] pre-trained on VGGFace2 [51], Light-CNN-9 [52]
and Light-CNN-29 [52] pre-trained on CASIA-WebFace and MS-Celeb-1M to evaluate the recognition
accuracy of original poor-lighted face images and faces processed by CycleGAN [13], DMIT [14],
EDIT [15], Pix2Pix [16] and our method. From the second column of Table 2, we can know
when we use ResNet-50 to recognize the original poor-lighted faces, the recognition accuracy is
only 93.86%. After processing by CycleGAN, the recognition accuracy is 98.51% and improved
by 4.65%. After processing by DMIT, the recognition accuracy is 93.77% and decreased by 0.09%.
After processing by EDIT, its recognition accuracy is 98.25% and improved by 4.39%. After processing
by Pix2Pix, the recognition accuracy is 97.89% and improved by 4.03%. After processing by our method,
the recognition accuracy is 99.91% and improved by 6.05%. From the third column of Table 2, we can
learn that the identification accuracy is improved by 5.26% when we use Light-CNN 9 to recognize
the faces processed by our method, whereas CycleGAN, DMIT, EDIT and Pix2Pix only improved
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by 3.69%, 3.16%, 4.12% and 3.33% separately. From the fourth column of Table 2, we can know that
the identification accuracy is improved by 3.33%, 2.72%, 3.51% and 3.16% separately when we use
Light-CNN 29 to recognize the faces processed by CycleGAN, DMIT, EDIT and Pix2Pix, whereas
our method improves the recognition accuracy by 3.95% and reaches to 100%. It is obvious that
recognition accuracy of original poor-lighted faces processed by these methods listed in the table has
been improved more less. When we use ResNet-50 to recognize, except for DMIT, all other algorithms
improve the recognition accuracy obviously. Compared to other method listed in Table 2, our approach
obtains the maximal recognition accuracy.

Table 2. Top-1 identification accuracy and verification accuracy at 0.1% FAR on the MultiPIE dataset
using ResNet-50, Light-CNN-9 and Light-CNN-29.

FR Top-1 VR@FAR = 0.1%

Methods
Verifiers

ResNet-50 [50] Light-CNN-9 [52] Light-CNN-29 [52] ResNet-50 [50] Light-CNN-9 [52] Light-CNN-29 [52]

Original 0.9386 0.9456 0.9605 0.9122 0.9184 0.9552
CycleGAN [13] 0.9851 0.9825 0.9938 0.9666 0.9736 0.9859

DMIT [14] 0.9377 0.9772 0.9877 0.9114 0.9649 0.9728
EDIT [15] 0.9825 0.9868 0.9956 0.9500 0.9701 0.9929

Pix2Pix [16] 0.9789 0.9789 0.9921 0.9587 0.9719 0.9754
Ours 0.9983 0.9991 100.000 0.9859 0.9938 0.9974

For the sake of further evaluating the performance of the above methods, we also draw ROC
curves. As shown in Figure 8, the figure illustrates the Verification Rate (VR) and False Acceptance
Rate (FAR). In Table 2, we show the results of top-1 and VR@FAR = 0.1%. From the Figure 8 and
Table 2, we can see that our method is better than the others in identity preservation.

Figure 8. The ROC curves of face verification using ResNet-50, Light-CNN-9 and Light-CNN-29 on
the MultiPIE dataset. (a) ROC curves of ResNet-50; (b) ROC curves of Light-CNN-9; (c) ROC curves
of Light-CNN-29.

4.5.2. Quantitative Evaluation on the YaleB Database

We choose the standard illumination faces as reference images when we conduct full reference
image quality assessment (FR-IQA) experiments on the YaleB database. We use three full
reference image quality assessment (FR-IQA) metrics to evaluate the performance of the classical
illumination-processing methods and ours: (1) the first is the structural similarity (SSIM) index [53];
(2) the second is the visual information fidelity (VIF) index [54]; (3) the third is the feature similarity
(FSIM) [55]. The FR-IQA values of the faces synthesized by LDCT [3], LN [4], LTV [5], SQI [6], TT [7]
and our algorithm are shown in Figure 9, which shows the higher FR-IQA values are, the higher
percentage of images on the horizontal axis is. Except for a few of our synthesized images are worse
than CycleGAN, Pix2Pix in image quality. It is obvious that our algorithm obtains higher average
FR-IQA values than the other seven approaches. In Table 3, we illustrate the average FR-IQA of various
algorithms, which demonstrates that our method is superior to the others on average FR-IQA values
on the YaleB database.
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Table 3. Average FR-IQA values of the face images synthesized by various illumination-processing
methods on the YaleB dataset.

Methods
Metrics SSIM ↑ VIF ↑ FSIM ↑

Original 0.3569 0.1413 0.7410
LDCT [3] 0.3623 0.0503 0.7370
LN [4] 0.3526 0.1435 0.7370
LTV [5] 0.3914 0.0409 0.6602
SQI [6] 0.3891 0.0775 0.7092
TT [7] 0.3036 0.0533 0.6365
CycleGAN [13] 0.5849 0.2033 0.8318
Pix2Pix [16] 0.6031 0.2128 0.8316
Ours 0.6946 0.2621 0.8660

Figure 9. FR-IQA values of the face images synthesized by various algorithms on the YaleB dataset.
(a) SSIM values of synthesized faces; (b) VIF values of synthesized faces; (c) FSIM values of
synthesized faces.

Table 4 shows the top-1 identification accuracy and verification accuracy at 0.1% FAR on the YaleB
database using various feature extractor. In the second column of Table 4, we can know that the top-1
identification accuracy of original poor-lighted face images is only 51.26%. The identification rates of
the 5 classical illumination-processing methods and Pix2Pix are lower than the original poor-lighted
face images. The foremost reason is that the illumination of the face images from the YaleB dataset is
too dire. The dire illumination causes the images generated by LDCT, LTV, TT to loss details and to
become smooth. As shown in the red box of Figure 6, the verification accuracy of Pix2Pix decreases
significantly due to the poor identity retention and distorted faces caused by the extreme illumination
conditions. However, our method obtains 89.52% identification rate. From the fourth column of Table 4,
we can see that the identification rate reaches 94.29% after illumination processing by our method then
using Light-CNN-29 to identify. However, the identification rates of state-of-the-art algorithms such as
IL-GAN [12] and AJGAN [11] are 89.61% and 87.20% separately.

Table 4. Top-1 identification accuracy and verification accuracy at 0.1% FAR on the YaleB dataset using
ResNet-50, Light-CNN-9 and Light-CNN-29.

FR Top-1 VR@FAR = 0.1%

Methods
Verifiers

ResNet-50 [50] Light-CNN-9 [52] Light-CNN-29 [52] ResNet-50 [50] Light-CNN-9 [52] Light-CNN-29 [52]

Original 0.5126 0.7302 0.8064 0.4285 0.4587 0.6492
SQI [6] 0.5032 0.8317 0.9000 0.3031 0.5063 0.6952

LDCT [3] 0.1523 0.5904 0.5889 0.0714 0.3047 0.3571
LN [4] 0.4968 0.7333 0.8206 0.4238 0.4539 0.6650
LTV [5] 0.1317 0.6667 0.5635 0.0317 0.3349 0.3253
TT [7] 0.1064 0.5873 0.6762 0.0301 0.2603 0.4269

CycleGAN [13] 0.6889 0.7762 0.8015 0.5968 0.6333 0.7285
Pix2Pix [16] 0.1889 0.2016 0.1048 0.0222 0.0492 0.0016

Ours 0.8952 0.9016 0.9429 0.8714 0.8746 0.9317
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For the sake of further evaluating the performance of the above methods, we also draw ROC
curves. As shown in Figure 10, the figure illustrates the Verification Rate (VR) and False Acceptance
Rate (FAR). In Table 4, we show the results of top-1 and VR@FAR = 0.1%. From the Figure 10
and Table 4, we can see that our algorithm precedes the others in identity preservation.

Figure 10. The ROC curves of face verification using ResNet-50, Light-CNN-9 and Light-CNN-29
on the YaleB dataset. (a) ROC curves of ResNet-50; (b) ROC curves of Light-CNN-9; (c) ROC curves
of Light-CNN-29.

4.6. Application to Unseen Dataset

For the sake of verifying the generalization performance of our method further, we perform
illumination-processing experiment on the facial images of FRGC dataset. As illustrated in Figure 11,
we can see that the faces in the first row are under various illumination conditions, the second row
is the synthesized face images of the first row by our algorithm. It is obvious that our algorithm
can not only improve the illumination of faces under various poor-lighted conditions but also keep
corresponding identities effectively.

Figure 11. Some poor-lighted faces of FRGC dataset before and after processing by our algorithm.
The first row is original facial images under various illumination conditions. The second row is the
illumination-processing results of our method.

4.7. Ablation Studies

Theoretically, different layer of deep convolution network can extract features of different
granularity. Inspired by this, we use different layers of VGG-16 for extracting varisized feature
maps, and then use these feature maps to compute multi-stage feature maps loss.

As shown in Table 5, we demonstrate the SSIM, VIF and FSIM score of face images processed
by our method trained under various loss items. In the first row, conv1-5 means we use 1 to 5
convolutional layers of VGG-16 for extracting feature and computing loss, conv1-6 means we use 1 to
6 convolutional layers of VGG-16 for extracting feature and computing loss, conv1-7 means we use 1
to 7 convolutional layers of VGG-16 for extracting feature and computing loss, combination means to
combine conv1-5, conv1-6 and conv1-7 for computing multi-stage feature maps loss. For convenience,
we use loss A, B, C, D to indicate the aforementioned 4 losses. Although our method trained under
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loss A, B and C can obtain high SSIM, VIF and FSIM separately, we increase them by combining loss A,
B and C further.

Table 5. Average FR-IQA values of poor-lighted face images processed by our methods trained by
various loss items on the MultiPIE dataset.

Metrics
VGG-16 Conv1-5 Conv1-6 Conv1-7 Combination

SSIM [53] 0.7762 0.7756 0.7715 0.7814
VIF [54] 0.3642 0.3651 0.3612 0.3685
FSIM [55] 0.8828 0.8830 0.8819 0.8837

As illustrated in Figure 12, we illustrate some facial images processed by our method trained
under various loss items. The first poor-lighted image is the original image. The second one is
obtained by our method trained under 1 to 5 convolutional layers of VGG-16 for extracting feature and
computing loss. The third one is generated by our method trained under 1 to 6 convolutional layers of
VGG-16 for extracting feature and computing loss. The fourth one is obtained by our method trained
under 1 to 7 convolutional layers of VGG-16 for extracting feature and computing loss. Although the
former 3 schemes can process illumination effectively and preserve identifies well, the combination
scheme can improve the image quality further.

Figure 12. The synthesized results of our method trained under various loss items. Conv1-5 means to
use 1 to 5 convolutional layers of VGG-16 for extracting feature and computing loss. Conv1-6 means to
use 1 to 6 convolutional layers of VGG-16 for extracting feature and computing loss. Conv1-7 means
to use 1 to 7 convolutional layers of VGG-16 for extracting feature and computing loss. Combination
denotes to combine the former three loss items for extracting multi-stage feature maps and computing
multi-stage feature maps loss.

5. Conclusions

In this work, we use multi-stage feature maps (MSFM) loss and an elaborately designed
architecture based on convolutional neural network and GANs for illumination processing of face
images. Our method can synthesize photographic face, background and hair when the original
face image is under extreme illumination conditions. Furthermore, our method can not only
process illumination of face image under extreme illumination conditions, but also preserve identity
information effectively. We discover that face images with favorable quality does not guarantee high
recognition accuracy, only the face images that preserve identity features and structure well can obtain
high recognition accuracy. Our method will fail when there is no clear boundaries between the clothes
and the background, specifically when the background and clothes have the same color, and when the
mean value is less than 1 and most pixel values are equal to zero. Although our illumination-processing
algorithm achieves preferable results, there is a lot of future work and potential applications here
worth continuing to study:

1. To improve our network structure for preserving more texture details.
2. To train a feature extractor and classifier for the facial images after illumination processing by

our method.
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3. Using our method to process the illumination of other images, such as landscape and
medical images.

4. Applying our method to the preprocessing stage of other visual analysis tasks, such as face
detection, head pose estimation, facial landmark detection and face alignment, to improve the
performance in these tasks.
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Abbreviations

The following abbreviations are used in this manuscript:

MSFM Multi-stage Feature Maps
GANs Generative Adversarial Networks
SSIM Structural Similarity
VIF Visual Information Fidelity
FSIM Feature Similarity
LAD Least Absolute Deviations
LAE Least Absolute Errors
FRGC Face Recognition Grand Challenge
FR-IQA Full Reference Image Quality Assessment
FAR False Acceptance Rate
LT Logarithmic Transform
HE Histogram Equalization
SQI Self-quotient Image
LDCT Logarithmic Discrete Cosine Transform
LTV Logarithmic Total Variation
LN Local Normalization
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