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Abstract: In the present study, the extraction technology and preparative separation of  

1-deoxynojirimycin from mulberry leaves were systematically investigated. Four extraction 

parameters (ethanol concentration, extraction temperature, extraction time and ratio of 

solvent to sample) were explored by response surface methodology (RSM). The results 

indicated that the maximal yield of 1-deoxynojirimycin was achieved with an ethanol 

concentration of 55%, extraction temperature of 80 °C, extraction time of 1.2 h and ratio of 

solvent to sample of 12:1. The extraction yield under these optimum conditions was found 

to be 256 mg/100 g dry mulberry leaves. A column packed with a selected resin was used 

to perform dynamic adsorption and desorption tests to optimize the separation process. The 

results show that the preparative separation of 1-deoxynojirimycin from mulberry leaves 

can be easily and effectively done by adopting 732 resin. In conclusion, 732 resin is the most 

appropriate for the separation of 1-deoxynojirimycin from other components in mulberry 

leaves extracts, and its adsorption behavior can be described with Langmuir isotherms and 

a two-step adsorption kinetics model. The recovery and purity of 1-deoxynojirimycin in the 

final product were 90.51% and 15.3%, respectively. 
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1. Introduction 

Mulberry leaves (Morus alba L.), cultivated mainly in Asian countries, have drawn the interest of 

many researchers because they were found to have antihyperglycemic, antioxidant and antimicrobial 

activities [1–3]. Mulberry leaves are rich in flavonoid, alkaloid and polysaccharide components which 

are known to be the major bioactive compounds from chemical constituent investigations. Among 

those, 1-deoxynojirimycin (1-DNJ), which is known as a potent α-glycosidase inhibitor, has gained 

considerable attention for use as a functional or medical additive to control blood glucose [4,5]. These 

pharmaceutical discoveries led to interest in the exploration of effective extraction and preparative 

separations of 1-DNJ from mulberry leaves. 

In order to prepare bioactive compounds, solvent extraction was often used and the extraction yield 

is significantly influenced by many factors, such as solvent concentration, extraction temperature, 

extraction time, and ratio of solvent to sample, etc. [6–8]. The traditional optimization method was 

single-factor experiments, in which only one factor is varied at a time while others are fixed at constant 

values. However, this method is time-consuming and cannot evaluate the interaction effects among the 

various factors. Response surface methodology (RSM) is an effective technique to overcome these 

problems [9]. It can explore the relationships between the response values and the independent 

variables and optimize the processes where multiple variables may influence the outputs [10]. Up to 

now, RSM has been successfully used to model and optimize the biochemical and biotechnological 

processes related to food systems [11–13]. 

The future use of 1-DNJ is bright, but the amount of the key constituent in mulberry leaves is as 

low as only 0.1% [14,15], hence, a more efficient and simple purification method for 1-DNJ is 

required. The purification method with resin is a new promising technology, and has been successfully 

applied in the preparative separation of natural products [16]. Similarly, such a method is extremely 

useful for the extraction and separation of the 1-DNJ from mulberry leaves. 

The objective of the present study was to investigate the influence of ethanol concentration, 

extraction temperature, extraction time and ratio of solvent to sample on the yield of 1-DNJ using 

RSM. Furthermore, the adsorption and desorption properties of 1-DNJ from mulberry leaves with 

different resins were investigated and an efficient method for the preparative separation of 1-DNJ from 

mulberry leaves with 732 resin has been developed. 

2. Results and Discussion 

2.1. Optimization of Extraction Parameters of 1-DNJ 

2.1.1. Fitting the Response Surface Model 

The effect of four independent variables (ethanol concentration (X1), extraction temperature (X2), 

extraction time (X3) and ratio of solvent to sample (X4)) on the yield of extraction (Y) was investigated 

using a four-factor and three levels Box-Behnken design (Table 1). 



Molecules 2014, 19 7042 

 

Table 1. Experimental design using Box-Behnken and the extraction yields of 1-DNJ. 

Number X1 X2 X3 X4 Y (mg/100g dry powder) 
1 0 0 −1 −1 224 
2 0 0 −1 1 240.8 
3 0 −1 0 −1 174.8 
4 0 0 1 −1 248.8 
5 0 1 1 0 160.4 
6 1 1 0 0 125.2 
7 −1 −1 0 0 105.2 
8 −1 1 0 0 154 
9 0 0 0 0 249.2 

10 1 0 0 1 110.8 
11 1 0 1 0 175.2 
12 0 0 0 0 244.4 
13 0 0 0 0 246 
14 −1 0 0 1 250.8 
15 1 0 0 −1 149.2 
16 0 1 0 −1 128.8 
17 0 1 −1 0 127.2 
18 −1 0 0 −1 114.8 
19 1 −1 0 0 168.8 
20 0 0 0 0 245.6 
21 −1 0 −1 0 172.8 
22 0 1 0 1 164.4 
23 1 0 −1 0 114.4 
24 0 −1 −1 0 212.8 
25 0 0 1 1 246.4 
26 −1 0 1 0 104.4 
27 0 −1 1 0 158.8 
28 0 −1 0 1 148.8 
29 0 0 0 0 249.2 

Multiple linear regression analysis was performed based on the results in Table 1 using the 

following second-order polynomial Equation (1): 

3 3 2 3
2

0
1 1 1 1

i i ii i ij i j
i i i j i

Y a X a X a X Xγ
= = = = +

= + + +     (1)

where Y  is the predicted response, 
0

γ  is a constant, 
i
a , 

ii
a  and 

ij
a  are respectively the linear, 

quadratic and interactive coefficients of the model. Accordingly, 
i

X  and 
j

X   represent the levels of 

the independent variables, respectively. The response variable and the independent variables are 

related by the following second-order polynomial equation [Equation (2)]: 

Y = 246.88 − 4.86X1 − 9.1X2 + 0.17X3 + 10.13X4 − 23.11X1X2 + 32.3X1X3 − 43.6X1X4 + 

21.8X2X3 + 15.4X2X4 − 4.8X3X4 − 71.14X1
2 − 60.69X2

2 − 16.09X3
2 − 14.04X4

2 
(2)
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The statistics test of the model was performed by “analysis of variance” (ANOVA) and the results 

are shown in Table 2. The value of the determination coefficient (R2) of the regression model was 

0.8432, which indicated that 84.32% of the variations could be explained by the fitted model, 

suggesting that a closely correlation was achieved as the R2 value was higher than 0.8 [17].  

The “Adequate Precision” measures the signal to noise ratio and a ratio greater than 4 is desirable.  

In this study, the ratio was found to be 7.835, indicating that this model can be used to navigate the 

design space [18]. 

The significance of the regression model was checked using the P-value and the model would be 

more significant with a smaller P-value. The ANOVA of the quadratic regression model demonstrated 

that the model was highly significant, as was evident from a very low probability value (p = 0.001). 

Furthermore, the significance of the model was also determined by “Lack of Fit” test, the F-value of 

the “Lack of Fit” was 259.88, which suggested that it was not significant and only a 0.01% chance 

could occur due to noise [19]. 

Additionally, the p-value was also used to evaluate the significance of each coefficient, which might 

indicate the pattern of the interactions between the variables. In this case, the cross product coefficients 

(X1X3, X1X4) and the quadratic term coefficients (X1
2, X2

2) were significant with a very small p-value  

(p < 0.05), while the other term coefficients were not significant (p > 0.05). 

Table 2. The regression coefficients and ANOVA results. 

Source DF Sum of Square Mean Square F-value p-value 

Model 14 67,638.64 4831.33 5.3781 0.0017 
X1 1 284.21 284.21 0.3163 0.5827 
X2 1 993.72 993.72 1.1061 0.3107 
X3 1 0.33 0.333 0.0004 0.9849 
X4 1 1232.21 1232.21 1.3716 0.2611 

X1X2 1 2134.44 2134.44 2.3760 0.1455 
X1X3 1 4173.16 4173.16 4.6455 0.0490 
X1X4 1 7603.84 7603.84 8.4645 0.0114 
X2X3 1 1900.96 1900.96 2.1161 0.1678 
X2X4 1 948.64 948.64 1.0560 0.3216 
X3X4 1 92.16 92.16 0.1026 0.7535 
X1

2 1 32,827.46 32,827.45 36.5431 <0.0001 
X2

2 1 23,891.52 23,891.5 26.5957 0.0001 
X3

2 1 1679.27 1679.27 1.8693 0.1931 
X4

2 1 1278.62 1278.62 1.4233 0.2527 
Lack of Fit  - - 259.88 0.0001 
Pure Error 4 19.28 4.83   

Total 28 80,215.13    

R2 = 0.8432, Adequate Precision = 7.835. 

2.1.2. Analysis of the Response Surface 

3D response surface plots provide a method to visualize the relationship between responses and 

experimental levels of each variable and the type of interactions between two test variables. Different 
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shapes of the contour plots indicated different interactions between the variables. Circular contour plot 

indicated that the interactions between the corresponding variables were negligible, while elliptical 

contour plot indicated that the interactions between the corresponding variables were significant [20,21]. 

As shown in Figure 1a, when extraction time (X3) and ratio of solvent to sample (X4) were kept at zero 

level, ethanol concentration (X1) and extraction temperature (X2) were showed reciprocal interaction on 

the extraction yield. When extraction temperature (X2) kept at lower level, the yield of  

1-DNJ increased at first, and then decreased with the increase of ethanol concentration (X1). The 

circular contour plot indicated that the interactions between ethanol concentration (X1) and extraction 

temperature (X2) were insignificant. Likewise, the interaction of the extraction time (X3) and ratio of 

solvent to sample (X4) were demonstrated insignificantly on the extraction yield of 1-DNJ from Figure 1f. 

Figure 1b shows the influence of ethanol concentration (X1) and extraction time (X3) demonstrating 

quadratic effects on the yield of 1-DNJ when the other two variables were fixed at zero level. The mutual 

interaction between ethanol concentration (X1) and extraction time (X3) was significant which may be 

concluded by the type of the contour plot. 

Figure 1c shows the response surface at varying ethanol concentration (X1) and ratio of solvent to 

sample (X4) with the fixed extraction temperature (zero level) and extraction time (zero level). It can be 

concluded that the extraction yield of 1-DNJ was affected significantly by ethanol concentration (X1) 

and ratio of solvent to sample (X4). The extraction yield increased with the increase of ratio of solvent 

to sample (X4) when ethanol concentration (X1) was kept at lower level, while decreased with the 

increase of ratio of solvent to sample (X4) when ethanol concentration (X1) was kept at higher level. 

Figure 1d shows the interactive influences of the extraction temperature (X2) and extraction time 

(X3) while the other two variables were kept at zero level. The yield of 1-DNJ was slightly decreased 

with the increase of extraction time (X3) when extraction temperature (X2) was kept the lower level. 

Furthermore, it can be concluded that the interactive influence between extraction temperature (X2) and 

extraction time (X3) was insignificant. Likewise, Figure 1e showed that the interaction of extraction 

temperature (X2) and ratio of solvent to sample (X4) were demonstrated insignificantly on the 

extraction yield of 1-DNJ. The extraction yield of 1-DNJ increased slightly with the increase of ratio of 

solvent to sample (X4) when extraction temperature (X2) was kept at lower level. 

2.1.3. Validation of the Model Equation 

The suitability of the model for predicting the optimum response values was tested by using the 

optimal conditions with small modifications. The maximum predicted yield and experimental yield of 

1-DNJ were presented in Table 3. The experiments by using the predicted optimum extraction conditions 

for 1-DNJ were as follows: ethanol concentration of 55.2%, extraction temperature of 80.4 °C, extraction 

time of 1.2 h, ratio of solvent to sample of 12:1, and the model predicted a maximum yield of  

256 mg/100 g dry powder. In order to ensure the predicted result, validation experiment was performed 

by using the modified conditions: the concentration of ethanol of 55%, extraction temperature of  

80 °C, extraction time of 1.2 h, ratio of solvent to sample of 12:1. A mean value of 255 ± 2.54 mg/100 g 

dry powder was obtained from validation experiments. The good correlation among these results 

confirmed that the response model was adequate for reflecting the expected optimization. The results 
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of analysis indicated that the experimental values were in agreement with the predicted one, and also 

suggested that the model was satisfactory and accurate. 

Figure 1. Response surface plots showing the effect of ethanol concentration (X1), 

extraction temperature (X2), extraction time (X3) and ratio of solvent to sample (X4) on the 

yield of 1-DNJ. 
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Table 3. Predicted and experimental values of the response under the optimal extraction conditions. 

Extraction variables 
Predicted yield  

(mg/100 g dry powder)

Experimental yield  

(mg/100 g dry powder) 

X1 (%) X2 (°C) X3 (h) X4 (g/mL) 
256 255 ± 2.54 a 

55 80 1.2 12 
a Mean ± standard deviation (n = 5). 

2.2. Static Adsorption Capacity, Adsorption Ratio, Desorption Ratio and Recovery 

The selectivity of resins was based on the capacities of adsorption and desorption, and radio of 

desorption. The adsorption capacity, adsorption ratio, desorption ratio and recovery of 1-DNJ with 

different resins were shown in Figure 2. It can be seen that the adsorption capacities of 732, 201 and 

AB-8 resins were obviously higher than those of other resins. However, the desorption ratio and 

recovery of 201 resin was the lowest in all resins. While the desorption ratio and recovery of 152 resin 

was fairly prominent, the adsorption capacity was barely satisfactory. Therefore, 732 and AB-8 resins 

were selected for the further investigation of adsorption behavior of 1-DNJ from mulberry leaves. 

Figure 2. Adsorption capacity, adsorption ratio, desorption ratio and recovery of 1-DNJ 

with different resins. 

 

2.3. Static Adsorption Isotherms of 1-DNJ with 732 and AB-8 Resins 

The most suitable initial concentration was achieved by plot between the adsorption ration and the 

initial concentration of 1-DNJ as shown in Figure 3. It can be seen that the adsorption capacity of 732 

and AB-8 resins increased with the initial concentration of 1-DNJ and reached the saturation plateau 

when the initial concentrations of 1-DNJ were 9.84 and 8.68 mg/mL. 

In research on adsorption processes, the Langmuir, Freundlich and Toth isotherms are often used to 

illustrate the adsorption behavior of solutes in the separation. Adsorption isotherms of 732 and AB-8 

resins were conducted at the temperatures of 20, 30 and 40 °C. 

The isotherms and parameters were obtained from the Langmuir, Freundlich and Toth equations as 

shown in Figure 4. It can be seen that the correction coefficients of then Langmuir, Freundlich and 

Toth equations with 732 resin were obviously higher than AB-8 resin. In the comprehensive consideration 
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of the adsorption capacity and desorption ration, 732 resin was selected for the separation of 1-DNJ 

from mulberry leaves. 

Figure 3. The relationship between the adsorption ratio and the initial concentration of 1-DNJ. 

 

Figure 4. The adsorption isotherms of 1-DNJ with 732 and AB-8 resins at different temperatures. 
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Furthermore, the equilibrium adsorption isotherms with 732 resin were highly fitted to the Langmuir 

models. The Langmuir model assumes monomolecular layer adsorption with the homogeneous distribution 

of adsorption energies while there is no mutual interaction between adsorbed molecules. The Freundlich 

model can be used to describe the adsorption behavior of monomolecular layer as well as that of the 

multimolecular layer [22]. All the adsorption sites on the surface of resin were equivalent and independent, 

the adsorbates rapidly cover the surface of 732 resin and form one monolayer, the rate during the 

adsorption process depends on the concentration of the adsorbate in the solution. 

2.4. Static Adsorption Kinetic of 1-DNJ with 732 Resin 

In order to reveal the adsorption behavior of 1-DNJ with 732 resin further, the kinetic curve was 

calculated as shown in Figure 5. It can be seen that the adsorption capacity of 732 resin increased with 

the increasing adsorption time. In the first two hours, the adsorption capacity increased rapidly and 

reached the equilibrium at about 4 h. 

Figure 5. Adsorption kinetic curve of 1-DNJ in mulberry leaves with 732 resin. 

 

The adsorption process can be seen as the redistribution of the solute molecules between the 

adsorbents and the liquid phase. Figure 6 shows the adsorption kinetic model which was simulated by 

the experimental data of the adsorption of 1-DNJ with 732 resin. As can be seen from Figure 6, the 

adsorption process can be considered as a two-step process. For the two steps, the adsorption rate 

constants K1 > K2, which demonstrates the adsorption process of 1-DNJ with 732 resin may be 

explained by “an initial fast step followed by a slow step”. In the process of adsorption, the surface 

coverage by the adsorbed 1-DNJ molecules increases rapidly due to the formation of the first adlayer 

at the early stage and then trends to gentle by the formation of the second adlayer at the later stage [23]. 

2.5. Dynamic Adsorption Curve of 1-DNI with 732 Resin 

The flow rate of the sample solution is one of the factors influencing the dynamic adsorption.  

The dynamic adsorption curves of 1-DNJ with 732 resin under different flow rates were obtained 
based on the linear relationship between ln[C/(C0 − C)] and t , as shown in Figure 7. As can be seen 

from Figure 7, the dynamic leakage time and the adsorption capacity increased as the flow rate 

increased. In the comprehensive consideration of the dynamic leakage time, adsorption capacity and 
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regression coefficient of adsorption curve, the flow rate of 5 mL/min was selected for the dynamic 

adsorption of 1-DNJ with 732 resin. 

Figure 6. Adsorption rate constants in two-step adsorption kinetic model with 732 resin. 

 

Figure 7. Dynamic adsorption curves of 1-DNJ with 732 resins under different flow rates. 

 

2.6. Dynamic Desorption Curve of 1-DNJ with 732 Resin 

The dynamic desorption curves were obtained by plotting the amount of 1-DNJ desorbed and the 

desorption time. As can be seen from Figure 8, the flow rate is one of the important factors influencing 

the dynamic desorption curves, and the recovery of 1-DNJ is expected to decrease with increasing flow 

rate. Meanwhile, it shows that the dynamic desorption curves fitted to the Pearson IV equation as 

shown in Figure 8. In the comprehensive consideration of the desorption time, recovery and purity of 

1-DNJ, the flow rate of desorption solution of 1.0 mL/min was selected as the most suitable flow rate 

for the dynamic desorption process. 
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Figure 8. Dynamic desorption curves of 1-DNJ with 732 resins under different flow rates. 

 

2.7. The Results of 1-DNJ Separation with 732 Resin 

The preparative separation of 1-DNJ was performed with 732 resin under optimal conditions. 

Through one treatment with the separation process, a yellowish powder was obtained with a recovery 

and purity of 1-DNJ in the final product of 90.51% and 15.3%. The results show that separation with 

732 resin is a useful method in enriching 1-DNJ from mulberry leaves. 

3. Experimental 

3.1. Materials 

The 1-DNJ standard was purchased from Tauto Biotech Co., Ltd (Shanghai, China). All other reagents 

were of analytical grade and deionized water was purified by a Milli-Q water-purification system from 

Millipore (Bedford, MA, USA). Mulberry leaves were collected from the royal ancient mulberry fields 

(Daxing District, Beijing, China) in July 2012 and identified by Professor Zhangji of National Institute 

for Food and Drug Control. The materials were cleaned and dried at 60 °C, then powdered by a  

FW-100 herb disintegrator (Taisite Equipment Co., Ltd, Tianjin, China) and kept at 4 °C. 

Macroporous resins, including AB-8, 201, D101, D152, JK206, JK008, D113 and 732 were 

purchased from QiRui Petrochemical Company (Shandong, China). The adsorbent beads were pre-

treated to remove the monomersand porogenic agents trapped inside the pores during the synthesis 

process. Prior to use, the resins were soaked into ethanol (95%), shaken for 24 h in room temperature 

and washed by deionized water thoroughly. The resins were placed into HCl (5%) and the same 

quantity of NaOH (5%) to remove impurities. Finally, the resins were washed by deionized water until 

the effluent was chemically neutral [24]. 

3.2. The Extraction and Determination of 1-DNJ 

3.2.1. The Extraction of 1-DNJ 

The mulberry powder was accurately weighed and refluxed under different extraction conditions 

(ethanol concentration, extraction temperature, extraction time and ratio of solvent to sample). After the 
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extraction, the extracting solution was filtered and then concentrated under vacuum at 50 °C. The 

residue was accurately weighted and subjected to HPLC system. The extraction yield was defined as 

the amount of 1-DNJ in the extracting solution from 100 g dry mulberry powder. 

3.2.2. Quantitative Determination of 1-DNJ 

The standard solutions of 1-DNJ or the extracted solutions were dissolved with appropriate amount 

of potassium borate buffer (0.4 M, pH 8.5), and then 40μL FMOC-Cl (5 mmol/L) in CH3CN was 

added. The reactant was mixed immediately and allowed to react at 25 °C for 20 min in a water bath. 

10 μL amino acid (0.1 M) was added to terminate the reaction by quenching the remaining FMOC-Cl. 

The mixture was diluted with 1 mL of 0.1% (v/v) aqueous acetic acid to stabilize the DNJ-FMOC,  

and filtered by a 0.45 μm nylon syringe filter [25,26]. A 10 μL aliquot of the filtrate was injected into 

the HPLC system. HPLC analysis was carried out on a 2695 Alliance separation module (Waters, 

Milford, MA, USA) equipped with a Waters temperature control module and a Waters 2475 fluorescence 

detector (excitation 254 nm, emission 322 nm). A Kromasil C18 column (4.6 mm × 250 mm, 5 μm) 

was used for the analysis. The analyte was eluted with a mobile phase of acetonitrile and 0.1% acetic 

acid (50:50, v/v) with flow rate 1.0 mL/min at 30 °C. 

3.2.3. Experimental Designs 

RSM was used to find out the optimal extraction conditions for 1-DNJ. The extraction experiments 

were carried out according to a Box-Behnken design (BBD) with four factors and three levels.  

The four independent variables selected were ethanol concentration, extraction temperature, extraction 

time and ratio of solvent to sample as shown in Table 4. For each factor, the experimental range was 

based on the results of preliminary single-factor experiments. The yield of 1-DNJ extracted from 

mulberry leaves was the dependent variable. A total of 29 experiments were conducted to optimize the 

extraction conditions for the extraction procedures [27–30]. 

Table 4. Levels of the variables of Box-Behnken design (BBD). 

Variables Symbol
Experimental Value 

Low, -1 Zero, 0 High, 1 

Ethanol concentration (%) X1 50 60 70 
Extraction temperature (°C) X2 70 80 90 

Extraction time (h) X3 1 1.5 2 
ratio of solvent to sample (mL/g) X4 8 10 12 

3.3. Static Adsorption and Desorption Tests 

The static adsorption tests of 1-DNJ with different resins were performed as follows: 5.0 g of 

hydrated test resins were placed in flasks and then 25 mL of sample solutions of mulberry leaves 

extracts (the concentration of 1-DNJ 6.95 mg/mL) were added. The flasks were shaken (100 rpm) for 

24 h at 25 °C. The solutions after adsorption were analyzed by chromatography. The desorption 

processes were performed as follows: after reaching adsorption equilibrium, the resins were first 
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washed by deionized water and then desorbed with 20 mL Ammonia (1.0 mol/mL). The flasks were 

shaken (100 rpm) for 24 h at 25 °C, then the desorption solutions were analyzed by chromatography. 

3.4. Static Adsorption Equilibrium Isotherms Tests 

The tests for equilibrium adsorption isotherms [31–34] with 732 and AB-8 resins were conducted 

by mixing 30 mL sample solutions of mulberry leaves extracts (the concentration of 1-DNJ 6.95 mg/mL) 

at different concentrations with 5 g (dry weight) resins, and then shaking for 24 h at the temperature of 

20 °C, 30 °C and 40 °C. The initial and equilibrium concentrations at different temperatures were 

determined by chromatography. 

The Langmuir isotherm theory is based on the assumption of adsorption on a homogeneous surface. 

The equation can be described in the following form: 

1
l e

e m

l e

k c
q q

k c
=

+
 (3)

where 
e

q is the equilibrium amount of adsorbent (µg/g), 
e

c is the equilibrium concentration. The 

Freundlich equation is also used to describe the adsorption process. It can be written in the form: 

1
ln ln ln

e f e

f

q k c
n

 
= +  

 
 (4)

The Toth model is applied to adsorption on heterogenerous surfaces. This equation is written in the 

following form: 

1/

T e
e t

T
T e

k c
q

a c
=

 + 

 
(5)

3.5. Static Adsorption Kinetic Tests 

The tests for adsorption kinetic [35,36] with 732 resin were conducted by mixing 50 mL sample 

solutions of mulberry leaves extracts (the concentration of 1-DNJ 6.95 mg/mL) with 5.0 g (dry weight) 

resins, then shaken (100 rpm) for 10 h at a temperature of 25 °C. The solutions were analyzed by 

chromatography at certain time till equilibrium.  

The experimental data of adsorption rate constant were fitted to the two-step adsorption kinetics 

model to describe the adsorption kinetic property of solutions with the resin: 

1 2

1 2

k t k t

t e
q q Ae A e− −= − −  (6)

( )t
i e t i

q
d k q q c
dt

= − +  1,2i =  (7)

where 
1
A  and 

2
A  are frequency factors;

1
k  and 

2
k  are adsorption rate constants; 

t
q  is the adsorption 

quantity (mg/g) [37]. 
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3.6. Dynamic Adsorption and Desorption Tests 

The dynamic adsorption and desorption tests were performed on glass (25 × 500 mm) columns with 

a known dosage of 732 resins. Sample solution flowed through the glass columns at the rate of  

5 mL/min. The concentration of 1-DNJ in the effluent liquid was analyzed by chromatography at 

certain time. After reaching adsorption equilibrium, the adsorbed column was washed by deionized 

water firstly, and then eluted by ammonia (1 mol/mL) at 1 mL/min. The concentration of 1-DNJ in 

desorption solution was determined by chromatography. 

3.7. The Preparative Separation of 1-DNJ with 732 Resin under Optimal Conditions 

The preparative separation of 1-DNJ was performed with 732 resin under optimal conditions. 

Sample solution was flowed through the glass columns at the rate of 5 mL/min with the concentration 

of 9.84 mg/mL. After reaching adsorption equilibrium, the adsorbed column was washed with four 

column volumes of deionized water and four column volumes of 10% ethanol. Ammonia (1 mol/L) 

was selected to elute at the rate of 1 mL/min and the eluent was concentrated under vacuum. The 

concentrated solution was diluted to a certain volume with deionized water and then spray drying to 

give the finally product. The product was weighed and subjected to chromatography. 

4. Conclusions 

The extraction and separation method of 1-DNJ from mulberry leaves with resins was successfully 

demonstrated in this study. The maximal yield of 1-DNJ was obtained from mulberry leaves when they 

were extracted under conditions of 55% ethanol concentration, extraction temperature of 80 °C, 

extraction time of 1.2 h and ratio of solvent to sample of 12:1. Among the eight resins that were 

investigated, 732 resin offers the best separation capacity for 1-DNJ from other components in 

mulberry leaves extracts. Process parameters, including concentration and flow rate of sample solution, 

concentration and flow rate of desorption solution at different temperatures were optimized for the 

most effective separation of 1-DNJ from mulberry leaves with 732 resin. The equilibrium experimental 

data of adsorption of 1-DNJ from mulberry leaves with 732 resin at different temperatures fitted to 

Langmuir isotherms. The adsorption kinetics process for 1-DNJ in mulberry leaves with 732 resin fitted 

to two-step adsorption kinetics model. Through one run treatment on the column packed with 732 resin 

under optimal conditions, the recovery and purity of 1-DNJ in the final product was 90.51% and 15.3%. 
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