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   Abstract: Introduction: Neddylation is a highly dynamic and reversible post-translational modifica-
tion. The abnormality of neddylation has previously been shown to be closely related to some human 
diseases. The detection of neddylation sites is essential for elucidating the regulation mechanisms of 
protein neddylation.  
Objective: As the detection of the lysine neddylation sites by the traditional experimental method is 
often expensive and time-consuming, it is imperative to design computational methods to identify 
neddylation sites.  
Methods: In this study, a bioinformatics tool named NeddPred is developed to identify underlying 
protein neddylation sites. A bi-profile bayes feature extraction is used to encode neddylation sites and 
a fuzzy support vector machine model is utilized to overcome the problem of noise and class imbal-
ance in the prediction.  
Results: Matthew's correlation coefficient of NeddPred achieved 0.7082 and an area under the receiv-
er operating characteristic curve of 0.9769. Independent tests show that NeddPred significantly outper-
forms existing lysine neddylation sites predictor NeddyPreddy.  
Conclusion: Therefore, NeddPred can be a complement to the existing tools for the prediction of ned-
dylation sites. A user-friendly webserver for NeddPred is accessible at 123.206.31.171/NeddPred/. 
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1. INTRODUCTION 

 NEDD8 is an 81 amino acid polypeptide, which is 60% 
identical and 80% similar to ubiquitin. The process of ubiq-
uitin-like protein NEDD8 attaching substrate lysine via iso-
peptide bonds is known as neddylation [1]. Neddylation is a 
highly dynamic and reversible protein post-translational 
modification (PTM), which occurs similarly to ubiquitina-
tion and needs enzyme cascades involving E1, E2 and E3 
[2]. Although neddylation relies on its own E1 and E2 en-
zymes, no NEDD8-specific E3 has yet been identified and it 
is possible that the neddylation system relies on E3 ligases 
with dual specificity [3]. Neddylation has been demonstrated 
to be essential to maintain the ubiquitin ligase activity of 
Cullin-Roc based E3 ligases, and affects cell-cycle regula-
tion, transcriptional regulation and signal transduction indi-
rectly [4]. Previous studies have shown that abnor-
mal neddylation is strongly linked to some human diseases, 
such as cancer, Parkinson’s disease and Alzheimer’s disease 
[5-7]. Therefore, exploring the biological functions of ned-
dylation will help to reveal the pathogenesis of the above-
mentioned diseases. However, compared with the ubiquitina-
tion that has been widely studied in the past two decades, the 
molecular mechanism and physiological functions of ned-
dylation still not well characterized.  
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 Accurate detection of neddylation sites is the biggest 
challenge to decipher the molecular mechanisms of neddyla-
tion. However, the experimental approaches are often time-
consuming and expensive, it is crucial to develop computa-
tional methods to identify neddylation sites. The computa-
tional identification and analysis of PTM sites are gaining 
more attention in recent years [8-12]. Yavuz et al. [13] de-
veloped a predictor named NeddyPreddy to predict neddyla-
tion sites using a support vector machine based on various 
sequence properties, position-specific scoring matrices, and 
disorder. However, the prediction sensitivity of NeddyPred-
dy (75%) is not satisfactory. 
 In order to develop an accurate predictor for the identifi-
cation of neddylation sites, the key is to seek an efficient 
feature extraction method to encode neddylation sites. Based 
on many aspects of assessments, we found bi-profile bayes 
(BPB) was more suitable for distinguishing between the 
neddylation sites and non-neddylation sites than split amino 
acid composition (SplitAAC), amino acid factors (AAF) 
amino acid composition (AAC) and binary encoding (BE) 
which are the widely used feature extraction techniques in 
PTM sites prediction. Therefore, the BPB was used to en-
code neddylation sites. Moreover, a fuzzy SVM algorithm is 
used to handle the class imbalance and noise problem in the 
neddylation sites training dataset. A novel predictor named 
NeddPred was constructed by combining the BPB with the 
fuzzy SVM. Feature analysis indicated that the residues in 
some positions around neddylation sites play a key role in 
predicting neddylation sites. 
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2. MATERIALS AND METHODS 

 As demonstrated by a series of recent publications [14-
25] and summarized in a comprehensive review [26], to de-
velop a really useful predictor for PTMs site, one needs to 
follow Chou’s 5-step rule: (a) collect valid PTMs sites to 
train the predictor; (b) encode the PTMs sites by effective 
feature extraction that can reflect their sequential pattern; (c) 
develop a robust algorithm to conduct the prediction; (d) 
properly perform cross-validation tests to objectively evalu-
ate the effectiveness of the predictor; (e) establish a user-
friendly and publicly accessible web-server for the predictor. 
Below, let us elaborate on how to deal with these five steps. 

2.1. Dataset 

 Yavuz’s training dataset, validation dataset and inde-
pendent test dataset [13] were used to train and assess 
NeddPred. The training dataset consisted of 34 experimental-
ly verified neddyllysine sites and 687 non-neddyllysine sites; 
the validation dataset consisted of 6 neddyllysine sites and 
115 non-neddyllysine sites; and the independent test dataset 
consisted of 11 neddyllysine sites and 229 non-neddyllysine 
sites. According to Yavuz’s work and our trials (section 3.1), 
the window size was selected as 21. The neddylated peptides 
were used as positive samples, while the non-neddylated 
peptides were used as negative samples. The training dataset 
and the independent test dataset are provided in Supplemen-
tary material S1. 

2.2. Feature Extraction 

 It is well-known that how to express a biological se-
quence with a discrete model or a vector is one of the most 
difficult problems in computational biology. This is because 
the machine learning algorithms (such as “Optimization” 
algorithm [27], “Covariance Discriminant” algorithm [28, 
29], “Nearest Neighbor” algorithm [30], and “Support Vec-
tor Machine” algorithm [31] can only handle vectors [32]. 
To avoid completely losing the sequence-pattern information 
for proteins, the pseudo amino acid composition (PseAAC) 
[26, 33] was proposed. The PseAAC has been widely used in 
the areas of bioinformatics [34-44]. As PseAAC has been 
widely and increasingly used, four powerful open-access 
software, called ‘PseAAC’ [45], ‘PseAAC-Builder’ [46], 
‘Propy’ [47], and ‘PseAAC-General’ [48], were established 
to generate pseudo amino acid composition features. The 
former three are for generating various modes of Chou’s 
special PseAAC [49]; while PseAAC-General is for those of 
Chou’s general PseAAC such as “Functional Domain” 
mode, “Gene Ontology” mode, and “Sequential Evolution” 
or “PSSM” mode [26]. Encouraged by the successes of using 
PseAAC to deal with protein/peptide sequences, the concept 
of PseKNC (Pseudo K-tuple Nucleotide Composition) [50] 
was developed for generating various feature vectors for 
DNA/RNA sequences [51-53]. Particularly, recently a very 
powerful web-server called ‘Pse-in-One’ [54] and its updated 
version ‘Pse-in-One2.0’ [55] have been established that can 
be used to generate any desired feature vectors for pro-
tein/peptide and DNA/RNA sequences according to the need 
of users’ studies. 

 Bi-profile bayes (BPB) is an effective feature coding 
method which can be covered by the general PseAAC. The 

BPB coding has been applied to many bioinformatics prob-
lems [56-60]. Here, BPB was used to encode neddylation 
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Based on the results of the literature [56], formula (5) can be 
rewritten as: 
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sent the posterior probability of each amino acid at each po-
sition in the category C1 (C2). In this study, the posterior 
probability p was given by the frequency of each amino acid 
in the training peptides. Therefore, every training peptide 
was encoded by BPB encoding as 42-dimensional vectors. 

2.3. Fuzzy Support Vector Machine 

 As one of the effective machine learning algorithms, 
SVM has been used in the detection of protein PTMs sites, 
such as succinylation sites [61], glycation sites [62], cro-
tonylation sites [63], propionylation sites [38] and citrullina-
tion sites [9]. In the standard SVM model, each training 
sample was assigned to the same weight. However, there 
may be some noisy samples in the training dataset. There-
fore, it is more reasonable to assign different weight values 
to different samples based on their importance and imbal-
ance than to assign the same weight value. Here, the fuzzy 
SVM model was used to construct the classifier. 
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is a very small positive value guaranteeing the value of fuzzy 
membership always higher than zero. The observation was 
treated more important and assigned higher fuzzy member-
ship values when they were closer to their class center; 
whereas the observation was treated as less important (such 
as noises or outliers) and assigned lower fuzzy membership 
values when they were farther away from their class center. 

 Based on the results reported by Batuwita and Palade 
[65], to handle the problem of class imbalance in the pre-
diction, the penalty factors +C  and −C were set to 

p
Cpl )( −  and C, respectively. The Gaussian kernel function 
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SVM [38, 63] The kernel parameter γ  was selected from {2-10, 
2-9, …, 20}; penalty parameters C was selected from {20, 21, 
…, 212}; the Libsvm-weights-3.20 package [66] was used to 
implement the fuzzy SVM models. 

2.4. Cross-validation and Performance Assessment 

 K-fold cross-validation test, jackknife test and independ-
ent dataset test are often adopted to evaluate the performance 
of a predictor. As the jackknife test can always yield a 
unique result for a given training dataset, it is the most objec-
tive and least arbitrary among the above three test methods 
[26]. However, to reduce computational time, the 10-fold 
cross-validation was adopted to evaluate our model. Here, 
the 10-fold cross-validation is repeated 10 times. 

 Five widely-accepted measurements, including sensitivi-
ty (Sn), specificity (Sp), accuracy (ACC) and Matthew’s 
correlation coefficient (MCC) and area under the receiver 
operating characteristic curve (AUC), were used to evaluate 
prediction performances of NeddPred. In accordance with 
Eq. (14) [18], they are defined as: 
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Where +N  is the total number of the neddylation sites inves-
tigated, while +

−N  is the number of the sites incorrectly pre-

dicted as the non-neddylation sites, and −N  is the total num-
ber of the non-neddylation sites investigated, while −

+N  is 
the number of the non-neddylation sites incorrectly predicted 
as the neddylation sites. The AUC can measure the overall 
performance of a given prediction system. The closer the 
AUC is to 1, the better the prediction system is. 

 Either the set of conventional metrics copied from math 
books or the intuitive metrics derived from the Chou’s sym-
bols [67-69] are valid only for the single-label systems. For 
the multi-label systems, whose existence has become more 
frequent in system biology [70-75] system medicine [76, 77], 
and biomedicine [17], a completely different set of metrics, 
as previously defined [78] is needed. 

3. RESULTS AND DISCUSSION 

3.1. Performance of NeddPred 

 The optimal parameters (window size, penalty factor C 
and kernel parameter γ ) of the proposed model were deter-
mined by the highest AUC value in 10-fold cross-validation 
performances. The proposed model achieved the highest 
AUC value of 0.9769 when using the window size 21, 

52=C  and 5.0=γ . Therefore, the optimal window size 
was selected as 21. As shown in Table 1, the predicted Sn, 
Sp, ACC and MCC values were 79.41%, 97.96%, 97.09% 
and 0.7082, respectively. Moreover, NeddPred was also im-
plemented by the jackknife test with the optimal parameter 
obtained in the 10-fold cross-validation. NeddPred also 
achieved a satisfactory performance with a Se of 79.41%, an 
Sp of 97.09%, an ACC of 96.26%, an MCC of 0.6569 and an 
AUC of 0.9789. 

 To assess the performance of the fuzzy SVM, it was 
compared with the standard SVM and biased SVM [65]. The 
comparison results of the above SVM algorithms were 
shown in Table 2. The fuzzy SVM reached the highest Sn, 
ACC and MCC values of 79.41%, 97.09% and 0.7082, re-
spectively. Although the Sp value of the standard SVM 
(99.56%) was slightly higher than that of the fuzzy SVM 
(97.96%), the Sn value of the standard SVM (44.12%) was 
much lower than that of the standard SVM (79.41%). In 
short, the fuzzy SVM showed better results as compared 
with standard SVM and biased SVM. 
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Table 1. The 10-fold cross-validation results of NeddPred with different window sizes. 

Window Size Sn(%) Sp(%) ACC(%) MCC AUC 

11 76.47 93.01 92.23 0.4853 0.9331 

13 73.53 91.27 90.43 0.4259 0.9096 

15 67.65 93.89 92.65 0.4554 0.9329 

17 76.47 97.96 96.95 0.6893 0.9592 

19 73.53 96.80 95.70 0.6039 0.9592 

21 79.41 97.96 97.09 0.7082 0.9769 

23 76.47 97.82 96.81 0.6800 0.9756 

25 79.41 97.09 96.26 0.6569 0.9723 

27 82.35 95.78 95.15 0.6138 0.9721 

 
Table 2. Comparison of fuzzy SVM with standard SVM and biased SVM. 

Method Sn Sp ACC MCC AUC 

Standard SVM 44.12 99.56 96.95 0.5936 0.9747 

Biased SVM 79.41 97.38 96.53 0.6729 0.9716 

Fuzzy SVM 79.41 97.96 97.09 0.7082 0.9769 

 
3.2. Comparison of BPB with Other Feature Extraction 
Technologies 

 To demonstrate the effectiveness of BPB, it was com-
pared with the most widely used feature extraction technolo-
gies in computational biology, including amino acid compo-
sition (AAC) [79], split amino acid composition (SplitAAC) 
[80], amino acid factors (AAF) [81], binary encoding (BE) 
[82] and composition of k-space amino acid pairs 
(CKSAAP) [83]. For comparison, CKSAAP with k=0, 1, 2, 3 
and 4 was performed, and the peptide in SplitAAC was di-
vided into three parts: 7 amino acids of N termini, 7 amino 
acids of C termini, and the region between these two termini. 
The performance of 10-fold cross-validation with various 
features was shown in Table 3. The model with BPB reached 
the highest value of AUC. The results indicated that BPB 
encoding is more effective for extracting the sequence in-
formation around the neddylation sites than other encoding 
schemes. 

3.3. Comparison of NeddPred with Existing Predictor 

 At present, only one predictor named NeddyPreddy [13] 
was proposed for the prediction of neddylation sites. It is 
considered that NeddPred and NeddyPreddy were both 
trained on Yavuz’s dataset [13] which contained 34 neddyla-
tion sites and 687 non-neddylation sites. It is interesting to 
compare NeddPred with NeddyPreddy. As shown in Table 4, 
NeddPred outperforms NeddyPreddy significantly, wheth-
er on the training dataset, validation set and independent test 
set. For example, NeddPred revealed about 26% higher 
MCC than NeddyPreddy. These results showed that 

NeddPred can predict more reliable neddylation sites from 
protein sequences than NeddyPreddy. The ROC curves for 
NeddPred by 10-fold cross-validation, jackknife test, valida-
tion set test and independent test are shown in Fig. (1). The 
results indicated that NeddPred can be an effective predictor 
for the prediction of neddylation sites. There are two factors 
for the improvement of NeddPred. One is the fuzzy SVM 
that can effectively handle the problem of the noise in the 
prediction of neddylation sites. Another factor is that the 
BPB feature used in NeddPred outperforms sequence proper-
ties, position-specific scoring matrices, and disorder used in 
NeddyPreddy. 

3.4. Prediction Server of NeddPred 

 As pointed out previously [84], user-friendly and public-
ly accessible web-servers are the future direction for devel-
oping useful bioinformatics tools [85-89]. To provide con-
venience for the experimental scientists, NeddPred has been 
implemented as a web-server which was trained on all avail-
able data (training data, validation data and independent test-
ing data, i.e., 34+6+11=51 neddylation sites and 
687+115+229=1031 non-neddylation sites) using the optimal 
parameters (window size 21, 52=C  and 5.0=γ ). The 
web-server for NeddPred is now available at http:// 
123.206.31.171/NeddPred/. As shown in Fig. (2), users can 
enter query protein sequences (FASTA) or batch-upload the 
query protein sequences (FASTA) as a file for the prediction. 
The CKSAAP_NeddSite server will output a CSV-formatted 
file with prediction results. 
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Table 3. The predictive performance of 10-fold cross-validation using various training features. 

Feature Sn(%) Sp(%) ACC(%) MCC(%) AUC(%) 

AAC 77.73 38.24 75.87 0.0804 0.6319 

SplitAAC 44.12 88.21 86.13 0.2017 0.7096 

AAF 23.53 99.71 96.12 0.4212 0.6649 

BE 26.47 99.27 95.84 0.3955 0.6912 

CKSAAP 32.35 96.94 93.90 0.3015 0.7717 

BPB 79.41 97.96 97.09 0.7082 0.9769 

 
Table 4. Comparison of NeddPred with NeddyPreddy under different evaluation strategies. 

Method Evaluation Strategie Sn Sp ACC MCC AUC 

NeddyPreddy1 
10-fold cross-validation 

0.76 0.91 0.91 0.45 0.95 

NeddPred 0.7941 0.9796 0.9709 0.7082 0.9769 

NeddyPreddy1 
Validation set 

0.67 0.91 0.90 0.39 0.83 

NeddPred 1.00 0.9913 0.9917 0.9218 1.00 

NeddyPreddy1 
Independent testing set 

0.64 0.91 0.90 0.35 0.80 

NeddPred 1.00 0.9520 0.9542 0.6899 1.00 
1 The corresponding results were obtained from the literature (Yavuz et al., 2015). 

 
 

 
 

Fig. (1). The ROC curves of NeddPred with different evaluation strategies. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 
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Fig. (2). The prediction interface of the web-server NeddPred. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 

 
Table 5. The 42 BPB features ranked by the F-score method. 

Order Amino Acid Position F-score Order Amino Acid Position F-score 

1 Pos_81 0.5889 22 Neg_-1 0.0995 

2 Pos_-4 0.3916 23 Pos_-9 0.0885 

3 Pos_-3 0.3843 24 Neg_1 0.0832 

4 Pos_1 0.3752 25 Pos_6 0.0744 

5 Pos_-2 0.3665 26 Neg_10 0.0521 

6 Pos_-7 0.3549 27 Neg_-5 0.0229 

7 Pos_-5 0.3474 28 Neg_3 0.0195 

8 Pos_-1 0.3353 29 Neg_-10 0.0124 

9 Pos_7 0.3276 30 Neg_-4 0.0092 

10 Pos_-10 0.2673 31 Neg_9 0.0063 

11 Pos_5 0.2653 32 Neg_2 0.0056 

12 Pos_10 0.2608 33 Neg_6 0.0023 

13 Pos_-6 0.2416 34 Neg_-6 0.0012 

14 Pos_4 0.2403 35 Neg_-8 0.0009 

15 Pos_2 0.2290 36 Neg_-2 0.0005 

16 Pos_3 0.2105 37 Neg_4 0.0005 

17 Pos_-8 0.2005 38 Neg_-7 0.0004 

18 Pos_9 0.1940 39 Neg_-9 0.0003 

19 Neg_-3 0.1856 40 Neg_5 0.0000 

20 Neg_7 0.1383 41 Pos_0 -1.0000 

21 Neg_8 0.1133 42 Neg_0 -1.0000 
1 Pos_i and Neg_j mean position i in neddylated peptides and position j in non-neddylated peptides, respectively. 
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Fig. (3). Two Sample Logo of the position-specific residue composition around the 34 neddylation and 687 non-neddylation sites (t-test, 
P<0.05). (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

3.5. The Significant Features 

 As previously described, every lysine site in neddylated 
proteins was encoded as a 42-dimensional vector through 
BPB encoding. To clarify the contribution of different fea-
tures for the prediction of neddylation sites, we used the F-
score feature selection method to rank the 42 BPB features 
[90] (Table 5). The higher the F-score of a feature is, the 
more important a feature will be. 
 Moreover, the position-specific residue composition of 
lysine-centric peptides was characterized by Two-Sample-
Logo [91] in Fig. (3). As shown in Table 5 and Fig. (3), the 
‘Pos_8’ feature was ranked at the top of the 42 BPB features, 
which imply that asparagine residue in position 8 around 
neddylation sites may play a key role in the identification of 
neddylation sites. The residues in positions (-4, -3, 1 and -2) 
around neddylation sites may play a relatively important 
role. The 42 BPB features ranked by the F-score may pro-
vide clues for deciphering the molecular mechanisms of 
neddylation. 

CONCLUSION 

 In this paper, a bioinformatics tool named NeddPred was 
developed to identify neddylation sites using BPB encoding 
and fuzzy SVM. Experimental results showed that NeddPred 
yielded better performance than the existing neddylation 
sites predictor. Therefore, NeddPred will be a useful predic-
tor for the accurate identification of neddylation sites. To 
provide convenience for researchers to study neddylation, a 
web-server for NeddPred was established. Feature analysis 
shows that BPB features at some positions may play a key 
role in the prediction of neddylation sites. 
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