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The cold deserts of the McMurdo Dry Valleys (MDV), Antarctica, host a high level of
microbial diversity. Microbial composition and biomass in arid vs. ephemerally wetted
regions are distinctly different, with wetted communities representing hot spots of
microbial activity that are important zones for biogeochemical cycling. While climatic
change is likely to cause wetting in areas not historically subject to wetting events, the
responses of microorganisms inhabiting arid soils to water addition is unknown. The
purpose of this study was to observe how an associated, yet non-wetted microbial
community responds to an extended addition of water. Water from a stream was
diverted to an adjacent area of arid soil with changes in microbial composition
and activities monitored via molecular and biochemical methods over 7 weeks. The
frequency of genetic signatures related to both prokaryotic and eukaryotic organisms
adapted to MDV aquatic conditions increased during the limited 7 week period,
indicating that the soil community was transitioning into a typical “high-productivity”
MDV community. This work is consistent with current predictions that MDV microbial
communities in arid regions are highly sensitive to climate change, and further supports
the notion that changes in community structure and associated biogeochemical cycling
may occur much more rapidly than predicted.

Keywords: Dry Valleys, climate change, cyanobacteria, DNA fingerprinting, wetting

INTRODUCTION

The McMurdo Dry Valley (MDV) system of Antarctica represents the largest ice-free region of the
Antarctic continent (Levy, 2013). The combination of extensive glacial scouring, intense katabatic
winds and extremely low precipitation rates (Keys, 1980; Doran et al., 2002) make them arguably the
oldest, coldest and driest deserts on Earth. The soils within the MDV typically contain low organic
matter, high salt and pH levels, and water content below 2% (reviewed by Cary et al., 2010). These
soils support a very simple biological trophic structure that is dominated by microorganisms and is
characterized by a lack of vascular plants and limited invertebrate taxa (Franzmann, 1996; Wynn-
Williams, 1996; Moorhead et al., 2003; Adams et al., 2006). Early culture-based microbial studies
(Cameron et al., 1968) suggested that the soil bacterial diversity and abundance in these cold desert
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areas was extremely low, yet the application of molecular-based
techniques (Smith et al., 2006; Niederberger et al., 2008; Babalola
et al., 2009; Pointing et al., 2009; Lee et al., 2012) has now revealed
a higher than expected level of microbial diversity (Cary et al.,
2010; Bottos et al., 2014b), especially considering the extreme
nature of the system.

The bulk mineral soils of the MDV are considered extremely
arid, however, warm summer temperatures and increased solar
radiation promote the melting of exposed surfaces of glaciers
resulting in the formation of ephemeral melt-water streams
that flow periodically for 4–12 weeks (McKnight et al., 1999,
2007). Through summer-melt, the wetted soils adjacent to the
glacial melt-water streams, defined as the “wetted zone,” and
the wetted moat soils surrounding lake systems can extend
up to several meters on either side of the water source and
constitute hotspots for microbial life. These areas are rapidly
transformed into important zones for biogeochemical cycling
(McKnight et al., 1999, 2007; Gooseff et al., 2003; Niederberger
et al., 2012). Biological crust communities (thin microbial
mats) form in these annually wetted zones, surviving the
winter months in a desiccated state before re-activation through
summer melt-water hydration. As a result, these communities
can form large concentrations of responsive biomass even under
extreme in situ environmental conditions (Hawes et al., 1992;
McKnight et al., 1999, 2007).

Oases of high microbial productivity may represent the
keystone of ecosystem function for the entire MDV system.
Products from these microbial activities feed more complex food
webs and through aeolian-based transportation, mat material
may represent an important carbon source to an otherwise
highly oligotrophic soil system (Hopkins et al., 2006a,b; Barrett
et al., 2007; Zeglin et al., 2011). Although several studies have
consequently focused on these ephemerally wetted communities
and accompanying nutrient cycling (McKnight and Tate, 1997;
Runkel et al., 1998; Maurice et al., 2002; Gooseff et al., 2004;
Zeglin et al., 2011; Niederberger et al., 2012), there has been only
a single study describing events during the rewetting of a relic
stream bed (McKnight et al., 2007).

Microbial communities in the MDV soils are highly sensitive
to climate change (Nielsen and Wall, 2013) and it is predicted
that the continent will continue to become warmer and wetter
(Bracegirdle et al., 2008). As a consequence of recent warming
trends, most MDV lakes have risen more than 1 m since
records began in 1986 (McKnight et al., 1999) with recent
rapid topographic changes observed in the valleys due to
wetting events (Fountain et al., 2014). While the microbial
mats in wetted zones appear to have formed over many
wet/dry cycles, these recent climatic changes are likely to
cause wetting in areas that have not historically been subject
to wetting events. Although studies have examined changes
in microbial community composition upon addition of water
(e.g., Van Horn et al., 2014; Buelow et al., 2016), little
is known about community response within archetypal arid
MDV soils to a “natural” wetting event from rising lakes or
changes in topography, or how these responses lead to the
development of microbial-mat communities that possibly drive
increased biodiversity.

The purpose of this study was to observe how an arid
microbial community responds, in both its composition and
structure, to the addition of water. While the addition of
filtered water would demonstrate a response within the resident
community, a more realistic approach requires the diversion of
water with its resident biological community intact. Changes
in the community composition and structure should reflect the
interactions between the resident “arid-adapted” community,
cryptobiotic species which are reactivated upon addition of water
(McKnight et al., 2007), and “wet-adapted” members of the
biological community recruited from the diverted water source.
In order to achieve this, we diverted a portion of the water
from a small MDV stream to an adjacent area of arid soil
and monitored microbial community dynamics and activities
via molecular- and biochemical-based methods over an entire
summer season. This experiment provides essential detail about
the time course of response of MDV microbial communities
to natural wetting events, without permanently altering stream
flow. This investigation greatly adds to the few comprehensive
investigations of microbial community dynamics and metabolic
activities in relation to the physicochemical environment in polar
ecosystems (e.g., McKnight et al., 2007; Pointing et al., 2009; Tiao
et al., 2012; Sokol et al., 2013; Stanish et al., 2013; Van Horn et al.,
2013, 2016; Geyer et al., 2014). Moreover, results from this work
will contribute to our understanding of future climate-change
impacts on MDV ecosystems. Our results demonstrate significant
changes in community structure in arid MDV soils due to the
sudden availability of water and recruitment of wet-adapted
microbial species, and confirm that MDV soil communities
respond rapidly to these events. This information adds to the
recent reports in the literature (Tiao et al., 2012; Van Horn
et al., 2014, 2016; Buelow et al., 2016) that indigenous MDV soil
communities have the potential to undergo surprisingly rapid
changes due to changing environmental conditions.

MATERIALS AND METHODS

The Adams and Miers Glaciers are located at the upper
(Western) part of Miers Valley and have glacial run-off streams
that converge and flow into the central Miers Lake. For this
experiment, a portion of the Adams Glacial run-off stream
was diverted to dry soil (moisture content typically < 5%;
Niederberger et al., 2015). The diversion (Figure 1) was
constructed using alluvium found in or next to the stream
itself and sandbags filled with stream derived mineral gravel
and the dam “water proofed” using black plastic sheeting. The
stream flow was diverted through a V-notch weir (located at
S78◦05.947, E163◦46.275) into a small tank, then through a
110 mm diameter black plastic tubing and into deep plastic
open guttering that directed the water to a nearby dry area
of mineral soil (S78◦05.960, E163◦46.400). See Figure 1 for
images of the dam, weir and tubing. The length of the pipe and
channeling restricted the wetted area to∼100 m. The experiment
commenced on the 4th of December, 2009 and ran for 7 weeks
(Table 1). The flow of water was irregular due to multiple
silting and freezing events. An initial composite sample (T0) was
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FIGURE 1 | Images of the dam, weir, and tubing.

collected by combining samples from 1, 4, and 12 m downstream
from the outflow and before the start of the experiment. Samples
were then taken from soils at 1, 6, 12, 24, and 72 h from 1 m
downstream from the diverted water flow, and at 24 and 72 h
from 4 m downstream after the start of the manipulation. Weekly
samples were also collected from 4 and 12 m downstream from
the outflow. Composite soil samples, in which several individual
samples were mixed from each site to reduce patchiness, were
collected using a sterile spatula in Whirl-Pak R© bags. In some
instances, samples were not collected due to logistical constraints.
To aid recovery, after the experiment the area was returned to its
natural state as best as possible with the aid of photographs taken
prior to the diversion experiment.

Soil characteristics: Soil temperature was recorded using
Maxim Integrated, Inc., Thermochron iButtons as previously
utilized in Antarctic soils (Zawar-Reza et al., 2013). iButton
temperature loggers were positioned in soil at a distance of 1,
4, and 12 m from the point of water outflow from the diversion
at a depth of ∼3–5 cm. Commencing on the 11th of December
2009, the iButtons were set to record temperature every 4 h.
The unit located at the 4 m site malfunctioned in the field
and data was therefore not available. NOX (NO3-+NO2-), pH,
silicate (SiOH4) and orthophosphate (PO4), were determined
as previously described in Niederberger et al. (2012). Samples
for dissolved inorganic carbon (DIC) concentration were gently
poured into 20 ml borosilicate scintillation vials, preserved with

200 µl 5% (wt:vol) mercuric chloride and stored in the dark
at 4◦C until analysis (Sharp et al., 2009). Prior to analysis,
samples were brought to room temperature and analyzed using
a Monterey Bay Research Institute-clone DIC analyzer with
acid-sparging and non-dispersive infrared analysis (LI-COR CO2
Analyzer, Model LI-6252) as described previously in Friederich
et al. (2002). DIC determinations were made from a single
point calibration using certified reference material (A. Dickson
at the Oceanic Carbon Dioxide Quality Control, Marine Physical
Laboratory at Scripps Institution of Oceanography, UCSD) and
were based on triplicate 1.5 ml injections for each determination.
NH4 was analyzed on 25 ml samples that were filtered through
a 25 mm GF/F filter and collected into a 50 ml polypropylene
tube. Samples were stored frozen until analysis according to
Solorzano (1969) using a 10 cm path-length cell. All results were
graphed and any noticeable trends tested via analysis of variance
(ANOVA) in Excel (single factor, α = 0.02) at each time period
(ignoring location) with two data points.

Biological characteristics and activity: Cell counts, chlorophyll
a and nitrogenase activity were determined as previously
described in Niederberger et al. (2012). Briefly, cell counts were
determined using sediments fixed in 2% formalin and stained
with DAPI. Chlorophyll a was measured via the acidification
method of Holm-Hansen et al. (1965). Nitrogenase activity
was measured in the field in triplicate using the acetylene
(C2H2) reduction method (Capone, 1993; McKnight et al., 2007).
Incorporation of thymidine using primary stocks of [methyl-3H]
thymidine (60–90.0 Ci/mmol, Perkin-Elmer) were performed
in 7 ml plastic scintillation vials according to the protocols
of Bell (1993) and Findlay (1993). Small plugs of ∼2 cm2 of
soil sampled with a sterile 5 ml cut-off syringe were extruded
into the vials and slurried with 2 ml of water. Assays used
∼3.8 µCi of [3H-methyl] thymidine injections of high specific
activity thymidine (73 Ci/mmol, added to 20 nM of final volume)
made in 200 µl volumes. Controls included zero time harvested
(i.e., injected with radioisotope and immediately fixed with
trichloroacetic acid [TCA]) and 3 samples amended with TCA
at initiation and incubated over the time course. Following a
30 min incubation period under in situ conditions of temperature
and light, reactions were terminated and samples filtered onto
a 25 mm cellulose acetate filter (0.45 µm) in a Hoefer unit
(capturing, collecting and disposing of all filtrate appropriately)
rinsing with three washes of cold thymidine. Filters were stored
in 15 ml centrifuge vials and frozen for subsequent extraction at
the Crary Laboratory, McMurdo Station. Samples were extracted
for macromolecules in 5% trichloroacetic acid, centrifuged and
the supernatant filtered onto cellulose acetate filters and placed
in a scintillation vial overnight to dry and the filter then
dissolved with ethyl acetate. Scintillation fluid was added and the
samples counted.

DNA extraction, molecular-based analysis and associated
statistics: DNA was isolated from soil samples using the
PowerSoilTM DNA Isolation Kit (MO BIO) as previously
described for MDV soils (Niederberger et al., 2012). Molecular
fingerprinting of bacterial and cyanobacteria communities was
performed via tRFLP (Niederberger et al., 2012) and ARISA
(Wood et al., 2008), respectively, as previously described for
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Antarctic soils. The eukaryotic tRFLP analyses were undertaken
as described by Casamayor et al. (2002) with the exception of
using a single restriction endonuclease (MspI; New England
BioLabs Inc.) as previously used for Eukaryotic communities
in Antarctic soils (Pointing et al., 2009). The archaeal specific
primer pair, A751 and UA1406R and thermocycling conditions
were used as described by Baker et al. (2003), however, the
forward primer was FAM-labeled and MspI used for amplicon
digestion. Reactions were of a 25 µl volume containing
14.5 µl PCR Grade Water (MO BIO), 1.5 µl MgCl2 (50 mM,
Invitrogen), 2.5 µl 10X buffer with MgCl2 (Invitrogen),
2.5 µl dNTPs (2 mM, Invitrogen), 1.25 µl each primer
(10 µM), 0.5 µl Platinum R© Taq DNA polymerase (5 U/µl,
Invitrogen) and 1 µl of template DNA. For all tRFLP and
ARISA assays the terminal-fragments were sized using the
MegaBACE system (Amersham) at the Waikato DNA Sequencing
Facility (University of Waikato, Hamilton, New Zealand) and
fluorescent peak data aligned by the T-REX online platform
(Culman et al., 2009) and the resulting presence/absence data
matrix imported into PRIMER6 (Primer-E Ltd., Plymouth,
United Kingdom) for statistical analyses. Principle component
analyses (PCA) were undertaken with overlaid percentage
similarities (cluster resemblance levels) as detailed in the Primer
v6: User Manual/Tutorial (Clarke and Gorley, 2006).

Based on the PCA results, representative samples from T = 0,
6 h, 72 h (1 m), 3 weeks (12 m), and 7 week (12 m) were subjected
to tag-encoded FLX (Roche) amplicon pyrosequencing of the
V1–V3 regions of the 16S and 18S rRNA genes by Research
and Testing Laboratories (Lubbock, TX)1. Resulting data were
then processed using the Quantitative Insights Into Microbial
Ecology (QIIME 1) toolkit (Caporaso et al., 2010). In brief, rRNA
sequences were quality trimmed (QIIME defaults; >200 bp),
split according to barcoded tags and sequences binned into
operational taxonomic units (OTU) at 95% similarity. Bacterial
taxonomic assignment was undertaken on all quality trimmed
16S rRNA gene sequences using the online RDP classifier tool
(at 80% confidence level) and associated RDP release 10.3
database (Cole et al., 2009). Eukaryotic taxonomic assignment
was undertaken on a representative sequence from each OTU
using the Basic Local Alignment Search Tool (BLAST) within
the QIIME toolkit against the SILVA 18S rRNA gene database
release 9.1 (Pruesse et al., 2007) as obtained from mothur (Schloss
et al., 2009). Library comparisons were performed using the tools
within the online RDP pyrosequencing pipeline (RDP release
10.3; Cole et al., 2009). Multidimensional scaling (MDS) plots of
pyrosequencing abundance data were performed in PRIMER6.
Essentially, the OTU taxonomy abundance table from QIIME
was imported in PRIMER6, abundance data transformed (fourth
root and presence/absence) and a resemblance matrix (S17 Bray
Curtis similarity) constructed for each transformation. CLUSTER
and MDS analyses were performed on the matrices and with
cluster resemblance levels overlaid. The DIVERSE analysis within
PRIMER6 was used to obtain univariate diversity indices: “S”
(total OTUs), the number of OTUs in each sample, i.e., OTUs
with nonzero counts; “N” (total individuals), the number of

1www.researchandtesting.com

individuals in each sample (i.e., number of sequences) and “d”
[Margalef ’s species richness = (S-1)/Log(N)] which is a measure
of the number of OTUs present, making some allowance for
the number of individuals. Null hypotheses for community
analysis were tested using the Analysis of Similarity (ANOSIM)
function in PRIMER6. ANOSIM analysis compares similarities
between samples within each group to similarities between
groups and generates a value of R between −1 and +1, such
that a value of 0 supports the null hypothesis that there were
no differences between within-group comparisons and between-
group comparisons. Here, we tested the null hypotheses that
bacteria, eukaryotic, cyanobacteria and archaeal communities
were not different between sampling sites (1, 4, and 12 m) and
between sampling times (<1 day, 3 days, 1 week, 2–4 weeks,
and 6–7 weeks).

RESULTS

During the experiment, soil temperatures displayed diurnal
cycles between −1◦C and +9◦C (∼99% of the data points)
with extreme highs and lows of 10.5◦C and −2.5◦C, respectively
(Supplementary Figure S1). Samples collected throughout the
experiment and associated geochemical and activity data are
listed in Table 1. No noticeable trends were observed for pH,
NOx (NO3

−
+ NO2

−), or chlorophyll a during the wetting
progression. Orthophosphate and silicate concentrations were
not significantly different over time but showed a trend toward
increasing concentrations. Similarly an increase in DIC was
observed but significance could not be tested due to insufficient
data. Ammonium was the only factor that showed significant
(F = 12.95, df = 4, P = 0.007544) increase during the first
6 weeks of the experiment (7 week values outliers, due to a
larger variance between readings). Microbial activities were also
monitored; however, rates were below detection limits (nitrogen
fixation ∼ < 0.01–0.03 nmol N/cc/h) or remained stable during
the wetting experiment, i.e., thymidine incorporation (Table 1).
Similarly, DNA concentrations and cell counts remained stable
over the wetting experiment (Table 1).

Bacterial, eukaryotic and archaeal communities were first
examined during the course of the wetting experiment using
tRFLP-based analyses and the cyanobacteria component using
ARISA DNA fingerprinting for a provisional assessment of
relative diversity. These data are presented as PCA graphs in
Figure 2. It should be noted that 1 m samples were collected
only at <1 day and 3 day time points, and the samples from
12 m were collected at 2–4 and 6–7 weeks only. However, the
4 m samples, collected at each time point shown in Figure 2,
demonstrate a trend in changing bacterial community structure
that is consistent with samples collected at other distances over
time. A change in bacterial community structure was evident
in <1 day compared to the initial time point, and was likely
due to importation from the diverted water source. Continued
changes to the community were observed, yielding a final cluster
of 40% similarity which contained the majority of the 6 and 7
week samples from 4 and 12 m distances. ANOSIM analysis also
indicated that bacterial communities at <1 day were significantly
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FIGURE 2 | Principle component analyses (PCA) of microbial community fingerprints with overlaid cluster percentage resemblance: (A) bacterial tRFLP; (B)
eukaryotic tRFLP; (C) cyanobacterial ARISA, and (D) archaeal tRFLP. Numbers signify the location of the sampling site, i.e., 1, 4, or 12 m from the source point of
the water outflow.

different from those at later time points (p < 0.05), and those at
6–7 weeks from 4 and 12 m distances were significantly different
from bacterial communities at 2–4 weeks from these same sites
(Supplementary Table S1).

Eukaryotic profiling demonstrated the presence of two
major groups (at 40% similarity levels) encompassing soil
communities collected <1 day from the commencement of
wetting with the remainder of the samples forming a separate
isolated cluster. Statistical analysis using ANOSIM supported
these results, showing that the eukaryotic community in
samples collected <1 day were significantly different from
those collected at later time points (p < 0.05; Supplementary
Table S1). Eukaryotic communities collected at the 1 m sampling
site were also significantly different from those at 4 and
12 m (p < 0.05).

The cyanobacteria communities showed a transition
during the wetting experiment from a distinct time zero

profile to a cluster (at 40% similarity levels) which included
the bulk of samples from weeks 2–7. ANOSIM analysis
indicated that the cyanobacterial community in samples
collected at < 1 day after initiation of the experiment was
significantly different (p < 0.05) from those collected at 2–4
and 6–7 weeks (Supplementary Table S1). In contrast to
the bacterial and eukaryotic communities, however, there
were no significant differences in cyanobacteria communities
between sampling sites.

Trends were not as apparent for the archaeal communities.
However, ANOSIM analysis showed that the archaeal community
at 1 m was significantly different from the community at
12 m (p < 0.05) and that the samples collected at < 1 day
were significantly different from samples collected at 6–7 weeks
(p < 0.05) (Supplementary Table S1).

Representative samples were chosen based on the PCA profiles
(Figure 2) and both bacterial and eukaryotic rRNA genes were
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pyrosequenced to provide an in-depth analysis of changes in the
community composition and structure. Supplementary Table S2
lists the OTU totals, the number of OTUs and species richness for
each sample. Bacterial communities displayed a steady increase in
the total observed OTUs over the course of the experiment, from
60 to 132 with a corresponding increase in species richness. These
trends were not mirrored in the eukaryotic data. Rarefaction
analysis (Supplementary Figure S2) suggests that bacterial
communities may have been under-sampled, however, analysis of
eukaryotic OTUs indicated that the majority of the community
was captured in the pyrosequencing effort.

Percentage distribution of bacterial phylogenetic groups from
pyrosequenced 16S rRNA genes is presented in Figure 3. A large
proportion of sequences were unclassified, ranging from 11 to
32% (RDP release 10.3). Obvious trends over the time-course of
wetting included universally high percentages of Acidobacteria
and Actinobacteria at all sites, making up 12–32% and 18–52%,
respectively, in all samples. With the exception of the final sample
at 7 weeks, the Acidobacteria and Actinobacteria combined
made up over 50% of each community from all time points.
Acidobacteria were dominated by the Gp4 phylogenetic group
while members of the Rubrobacterineae were the most dominant
type of Actinobacteria for all sites, but decreased during the
wetting experiment from 38% at 0 h to 9% at 7 weeks. In contrast,
Cyanobacterial signatures were below 1% of the library at time
zero and remained at < 5% of the total sequences until week 7,
where it made up 19% of the library and was the dominant group.
Bacteroidetes comprised less than 1% of the total community at
time zero but increased to ∼ 11% at 7 weeks. These sequences
consisted almost exclusively of members of the Flavobacteria and
the Sphingobacteria. Notably, Flavobacteria were not detected
in the time zero sample but were present in all other samples.
The Deinococcus–Thermus phylogenetic group were absent at
time zero and remained low (<1%) throughout the experiment
consisting almost exclusively of the genera Deinococcus and
Truepera. Members of the Firmicutes (dominated by members
of the Clostridiales), Gemmatimonadetes and Planctomycetes
constituted minor members (<2%) of the communities. The
proteobacteria increased from <2.5% of total community to
∼13%, primarily due to substantial increases in the alpha-
and beta-proteobacteria population. The gamma-proteobacteria,
dominated by members of the Xanthomoadaceae, remained
consistently below 2.5% for all sites. Verrucomicrobia sequences
steadily increased from ∼0.2 to 1.5% throughout the wetting
period. MDS and cluster analyses of the phylogenetic abundance
data from the pyrosequencing effort (Supplementary Figure S3)
reflected the results of PCA using the ARISA and tRFLP data,
whereby the time zero sample was the most divergent sample
between all sites. Moreover, results were identical when the
data were treated as presence/absence (results not shown).
Time zero community assemblages were then compared to
those from all other time points to identify signatures that
contributed most to the dissimilarity. The most significant
differences in sequence abundance between time zero and all
other time points are listed in Supplementary Table S3. The
major differences (significance ≤ 1.77E-26) included an increase
in sequences from higher levels of Cyanobacteria (Family
I, GpI), Comamonadaceae, Flavobacteria (Flavobacterium),

Chloroplast sequences, Polaromonas and Xanthomonadales in
the T 6= 0 soils.

Changes in the percent distribution of eukaryotic phylogenetic
groups from pyrosequenced 18S rRNA genes are presented
in Figure 4. Overall, with the exception of the final week 7
sampling time, communities were dominated by Fungi, which
decreased from ∼62% of the eukaryotic signatures at time
zero to ∼25% at 7 weeks. The composite sample collected
at time zero was dominated (42% of total community) by
Tilletiopsis-related fungal sequences, Sporobolomyces were the
second most dominant group in the time zero soils, comprising
∼13% of the total community, and were the dominant fungal
signature for the remainder of the time points. The final week
7 soil sample was dominated by members of the Alveolata
(42%) with the most dominant signature (∼30% of the total
eukaryotic signatures) related to the ciliate, Halteria (not
exceeding 8% in each of the remaining community profiles).
The algal division of the Haptophyceae encompassed a minor
presence (<0.15%) and were only detected in the time zero
and 12 h sampling points. Metazoa exhibited an increase over
the wetting period, being below detection levels at time zero,
0.03% at 6 h, 4% at 72 h, 35% at 3 weeks and 9% after
7 weeks. This phylogenetic group consisted almost solely of
nematode signatures related to Paracanthonchus. The abundance
of Stramenopiles over the wetting experiment varied and was
dominated by signatures related to the bacteriovorus protist
Paraphysomonas and the chrysophyte, Chrysosaccus. These two
signatures increased during the experiment from <1% at time
zero to 13% at 7 weeks. Diatoms belonging to the genus
Navicula were only detected in the final sampling time point
(comprising ∼4% the total community). The contribution from
Viridiplantae signatures varied during the wetting experiment
with a maximum of 35% after 72 h and a minimum at 7 weeks
(∼2%), and were almost completely dominated by the green algae
Coenocystis. Unidentified eukaryotic sequences for each sample
(no BLAST hits) ranged between approximately 0.5 and 6% of
the total signatures. MDS and cluster analyses of the phylogenetic
pyrosequence abundance data (Supplementary Figure S4) for all
sampling points reflected the PCA analyses, i.e., having a highly
distinct time zero sample, with earlier samples (6 and 72 h) and
later samples (3 and 7 weeks) forming distance clusters. Similar
MDS and cluster results were obtained when data were treated as
presence/absence (results not shown).

DISCUSSION

Our objectives were to simulate as natural a wetting event as
possible to allow the resident community to respond not only to
the new environmental conditions but also to the introduction
of any hydrobiology. Results of this manipulation demonstrated
rapid and significant changes in bacterial community structure
and soil parameters during a 7 weeks wetting experiment
of archetypal arid MDV soils. This work contributes to a
growing body of evidence that suggests MDV soil communities
may respond rapidly to changes in environmental conditions,
over a matter of weeks (Schwartz et al., 2014; Van Horn
et al., 2014; Buelow et al., 2016). Due to multiple silting, as
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FIGURE 3 | Percentage distribution of bacterial phylogenetic groups from pyrosequenced 16S rRNA genes.

FIGURE 4 | Percentage distribution of eukaryotic phylogenetic groups from pyrosequenced 18S rRNA genes.

well as freezing events inherent in this natural system, the
flow of water to soils was irregular. The flow also varied
over distance, with greater flow at sites closer to the input,
while more distant sites were only wetted. These changes may
therefore occur within shorter timeframes if a constant water
source was presented. Moreover, as these communities do not
inhabit areas where rapid responses might be expected (e.g.,
previously wetted stream/lake associated soils), this sensitivity
to environmental changes was even more unexpected. It could
be argued that changes were largely due to input of biomass

from the diverted water source. However, proxies for biomass
such as cell counts and chlorophyll a concentrations did
not increase significantly over the course of the experiment,
suggesting that addition of biomass alone from the diverted
water source was minimal (Table 1). Shifts in composition
toward more “wet-specific” signatures, on the other hand,
indicated recruitment of species that may have rapidly colonized
the arid soil community, and/or a reactivation of cryptobiotic
species within the arid sediments upon addition of water
(McKnight et al., 2007).
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Temperatures during the experiment followed solar radiance
cycles with minima dipping below 0◦C and maxima within
ranges expected for summer streams (8–10◦C; McKnight et al.,
2007). The time-zero, composite soil sample resembled a classic
arid MDV soil by having a near-neutral pH (Lee et al., 2012),
ammonium, chlorophyll a and orthophosphate concentrations
within, or below ranges previously reported for MDV soils and
stream waters (McKnight et al., 1998, 2007; Niederberger et al.,
2008; Zeglin et al., 2011; Bottos et al., 2014a) and a microbial
community dominated by Fungi and Actinobacteria (Lee et al.,
2012). Actinobacteria are commonly present as dominant
members of arid MDV soils (Smith et al., 2006; Niederberger
et al., 2008; Pointing et al., 2009; Lee et al., 2012; Bottos et al.,
2014b) and therefore their perceived decrease during the wetting
experiment was unsurprising. Although nitrogen fixation was
below detection levels and bacterial activity varied but did not
increase throughout the experiment (Table 1), changes in soil
water characteristics during the wetting experiment reflect the
acceleration of microbial activities either in situ or in the water
input over time. This included a doubling of DIC during the first
2 weeks of the experiment and a significant∼10–60-fold increase
in ammonium over the 6–7 week period. DIC accumulation
is typically associated with increased CO2 production due to
microbial respiration and mineralization of organic carbon
(Moyano et al., 2013). Ammonium is also an indicator of
biological activity in the MDV with high concentrations of
ammonium (Barrett et al., 2002) measured in sites of high
biodiversity and biological abundance. The natural deposition
of ammonium in the MDV is negligible and it is therefore
hypothesized to be derived from the biological mineralization of
organic N (Barrett et al., 2002).

As may have been predicted, the most significant bacterial
change in community structure during the experiment was the
enrichment of cyanobacteria. Additional signatures related to
organisms adapted to aquatic conditions also increased over the
experiment including members of the chloroflexi, the swimming
ciliate, Halteria, freshwater protists Paraphysomonas and
Chrysosaccus and the aquatic photosynthetic diatom Navicula.
Furthermore, signatures commonly found in wetted MDV
soils increased in frequency during the experiment including
Bacteroidetes (in particular members of the Flavobacteria)
and members of the alpha- beta- and delta-proteobacteria.
Bacteroidetes have previously been shown to be the most
abundant heterotrophic taxa in ephemerally wetted MDV
microbial mats and sediments (Zeglin et al., 2011; Stanish et al.,
2013; Van Horn et al., 2016), likely supported by their ability
to degrade various organic compounds. Flavobacteria have
also been identified in arid mineral soils (Smith et al., 2006),
suggesting that increases in Flavobacteria may be due in part
to growth of a resident population after water and nutrient
input. Our results further support the study by Stanish et al.
(2013) whereby the authors detected large concentrations of
both alpha- and beta-proteobacteria signatures in wetted MDV
soils. These signatures became increasingly common during
our experiment in the ephemerally wetted soils. In particular,
Polaromonas of the Comamonadaceae significantly increased
over the course of the experiment. This alphaproteobacteria is

common in wetted MDV soils but is also widely distributed as
dormant cells (Darcy et al., 2011) and, similar to Flavobacteria,
may represent a member of the resident community within
the arid sediments, reactivated upon addition of water. In
addition, the community now included taxa that are associated
with “high-productivity” MDV communities. The increase in
cyanobacteria, Verrucomicrobia, alpha- and beta-proteobacteria
and Xanthomonadales are consistent with results from an
earlier molecular clone-library based study comparing low
and high-productivity soil sites in the Luther Vale region of
Northern Victoria Land (Niederberger et al., 2008). In this study,
signatures of the Verrucomicrobia, Betaproteobacteria, and the
genus Xanthomonas of the Gammaproteobacteria were found
exclusively in wet “high-productivity” soils. In addition, live
nematodes were detected in both low and high productivity
sites (Niederberger et al., 2008) affirming that water does not
appear to be the primary limiting factor for the presence of
nematodes in MDV soil habitats (Virginia and Wall, 1999).
However, as witnessed during our experiment, an increase in
nematode signatures further suggests that a wetted environment
can select for, and may be preferred by these organisms (Adams
et al., 2014), while other factors likely shape nematode species
assemblages (Poage et al., 2008). Taken together, the results show
that within a 7 week time-period, arid MDV soil communities
have the potential to undertake dramatic shifts in community
structure thereby adapting to local environmental conditions.
Interestingly, some of most significant wet-specific signatures
such as Flavobacterium, Polaromonas, Oxalobacteraceae (in
particular Duganella), Chloroplast signatures, Chrysosaccus, and
Navicula, were not detected at time-zero suggesting that these
organisms likely colonized soils via transportation to the site by
the water source. However, at least for the bacterial signatures,
rarefaction curves did not reach saturation, suggesting this
observation potentially related to an inadequate sample size.

Shifts in community composition for all three domains of
life were observed within the 7 week time period. Of particular
interest are the archaea. Often overlooked or undetected [which
may in-part be linked to historical PCR-based biases (Baker et al.,
2003)], archaea have been typically absent in ecological studies
of MDV soils (de la Torre et al., 2003; Niederberger et al., 2008;
Pointing et al., 2009; Lee et al., 2012). However, in addition
to our study, recent work indicates that archaea may be more
common in MDV soils than previously reported (Ayton et al.,
2010; Richter et al., 2014). Moreover, archaeal species richness
may be positively correlated with soil water content, hence water
may be a chief driver of archaeal community richness (Richter
et al., 2014). Nevertheless, more work is needed to ascertain the
ecological role of archaea in MDV soils.

Previous studies have observed increased microbial diversity
in both hot and cold desert soils with higher water content
(Pointing et al., 2007; Aislabie and Bowman, 2010), however it is
not yet fully clear if this trend holds true in ephemerally wetted
soils which experience cycles of wetting and drying. Previous
reports indicated that increases in bacterial community richness
are not correlated to sediment water content in the MDV (Zeglin
et al., 2011), but instead may be a response to carbon content
(Geyer et al., 2013). Here, a steady increase in both bacterial

Frontiers in Microbiology | www.frontiersin.org 9 April 2019 | Volume 10 | Article 621

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00621 April 2, 2019 Time: 17:29 # 10

Niederberger et al. Microbial Response to Wetting in Terrestrial Antarcica

species richness and DIC over the wetting period was witnessed
during our experiment, with an approximate two fold increase
in species richness in 7 weeks. This increase in species richness
may represent the early phase of transition to a high productivity
microbial mat, whereby the initial recruitment and colonization
of a range of wet-adapted species is followed by establishment of
a subset of the community.

The changes in community composition and species richness
observed in this study may also reflect the awakening of
cryptobiotic species. Van Horn et al. (2014) demonstrated
the effects of resource addition in the form of water and
organic matter to MDV soils, resulting in rapid (30 days) and
significant changes in activity and composition of microbial
communities. McKnight et al. (2007) also demonstrated a rapid
increase in cyanobacterial mat biomass and biological activity
after introduction of water to a relic stream, showing that
biological communities maintain the potential to respond quickly
to renewed flow (McKnight et al., 2007). While these experiments
differed substantially from the wetting experiment described
here, results of these and other studies (e.g., Schwartz et al., 2014;
Aanderud et al., 2018) demonstrate that endemic communities
in the MDV can respond within timeframes considerably shorter
than previously hypothesized, thereby challenging long-held
perceptions regarding the MDV of extremely slow response rates
(Burkins et al., 2001; Elberling et al., 2006; Barrett et al., 2007).

Due to the relative simplicity of MDV ecosystems, it is
postulated that these habitats may be particularly sensitive
to climate change (Hogg et al., 2006; Cary et al., 2010;
Nielsen and Wall, 2013). Changes to these unique and
threatened communities may represent important early-warning
indicators of ecological shifts (Bottos et al., 2014a). Therefore,
in situ manipulative field-based studies such as the one
conducted here have important implications for understanding
how microbial communities may respond to these future
predictions. Current predictions project that Antarctic soils
will become warmer and wetter (Bracegirdle et al., 2008)
leading to cascading changes in hydrology that will ultimately
affect the availability and distribution of liquid water in the
MDV (Fountain et al., 2014). Results of this manipulation
suggest that MDV soil communities are strikingly responsive
to changes in water availability. This work is consistent
with current predictions that these communities are highly
sensitive to climate change scenarios, and further support

the notion that changes in microbial community structure
and associated biochemical cycling may occur much more
rapidly than predicted.

AUTHOR CONTRIBUTIONS

The project was designed and implemented by SC. Fieldwork,
laboratory, and data analysis were conducted by TN, JS, TG, AP,
EB, DC, KC, and SC. EB remained in the field during the entire
season to service the experiments. The manuscript was written
and edited by TN, SC, KC, EB, DC, and EC.

FUNDING

This research was supported by National Science Foundation
(NSF) grants ANT 0739648 and 1246292 (to SC), ANT 0739633
and 1246102 (to DC), ANT 0739640 (to EC). The work was also
supported by a logistics grants from Antarctica New Zealand,
from the New Zealand Foundation for Research, Science and
Technology (UOWX0710), and the New Zealand Ministry of
Business, Innovation and Employment (UOWX1401) to SC in
support of the NZTABS program.

ACKNOWLEDGMENTS

We would like to thank the support staff of both the United States
Antarctic Program, and Antarctica New Zealand for exceptional
logistical support while in the field. We also thank Charles Lee
and Ian McDonald for critical review of the manuscript. We
are also indebted to Antarctica New Zealand and members of
the New Zealand Antarctic Biocomplexity Survey (NZTABS)
team for their assistance during the entire season that made
this work possible.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2019.00621/full#supplementary-material

REFERENCES
Aanderud, Z. T., Saurey, S., Ball, B. A., Wall, D. H., Barrett, J. E.,

Muscarella, M. E., et al. (2018). Stoichiometric shifts in soil C: N: P
promote bacterial taxa dominance, maintain biodiversity, and deconstruct
community assemblages. Front. Microbiol. 9:1401. doi: 10.3389/fmicb.2018.
01401

Adams, B. J., Bardgett, R. D., Ayres, E., Wall, D. H., Aislabie, J.,
Bamforth, S., et al. (2006). Diversity and distribution of Victoria Land
biota. Soil Biol. Biochem. 38, 3003–3018. doi: 10.1016/j.soilbio.2006.
04.030

Adams, B. J., Wall, D. H., Virginia, R. A., Broos, E., and Knox, M. A.
(2014). Ecological biogeography of the terrestrial nematodes of victoria land,
Antarctica. ZooKeys 419, 29–71. doi: 10.3897/zookeys.419.7180

Aislabie, J., and Bowman, J. P. (2010). “Archaeal diversity in Antarctic ecosystems,”
in Polar Microbiology, eds A. K. Bej, J. Aislabie, and R. M. Atlas (Boca Raton,
FL: CRC Press), 31–60.

Ayton, J., Aislabie, J., Barker, G. M., Saul, D., and Turner, S. (2010). Crenarchaeota
affiliated with group 1.1b are prevalent in coastal mineral soils of the Ross Sea
region of Antarctica. Environ. Microbiol. 12, 689–703. doi: 10.1111/j.1462-2920.
2009.02111.x

Babalola, O. O., Kirby, B. M., Le Roes-Hill, M., Cook, A. E., Cary, S. C.,
Burton, S. G., et al. (2009). Phylogenetic analysis of actinobacterial populations
associated with Antarctic Dry Valley mineral soils. Environ. Microbiol. 11,
566–576. doi: 10.1111/j.1462-2920.2008.01809.x

Baker, G. C., Smith, J. J., and Cowan, D. A. (2003). Review and re-analysis of
domain-specific 16S primers. J. Microbiol. Methods 55, 541–555. doi: 10.1016/j.
mimet.2003.08.009

Frontiers in Microbiology | www.frontiersin.org 10 April 2019 | Volume 10 | Article 621

https://www.frontiersin.org/articles/10.3389/fmicb.2019.00621/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2019.00621/full#supplementary-material
https://doi.org/10.3389/fmicb.2018.01401
https://doi.org/10.3389/fmicb.2018.01401
https://doi.org/10.1016/j.soilbio.2006.04.030
https://doi.org/10.1016/j.soilbio.2006.04.030
https://doi.org/10.3897/zookeys.419.7180
https://doi.org/10.1111/j.1462-2920.2009.02111.x
https://doi.org/10.1111/j.1462-2920.2009.02111.x
https://doi.org/10.1111/j.1462-2920.2008.01809.x
https://doi.org/10.1016/j.mimet.2003.08.009
https://doi.org/10.1016/j.mimet.2003.08.009
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00621 April 2, 2019 Time: 17:29 # 11

Niederberger et al. Microbial Response to Wetting in Terrestrial Antarcica

Barrett, J. E., Virginia, R. A., Lyons, W. B., Mcknight, D. M., Priscu, J. C., Doran,
P. T., et al. (2007). Biogeochemical stoichiometry of Antarctic Dry Valley
ecosystems. J. Geophys. Res. 112:G01010. doi: 10.1029/2005JG000141

Barrett, J. E., Virginia, R. A., and Wall, D. H. (2002). Trends in resin and KCl-
extractable soil N across landscape gradients in Taylor Valley, Antarctica.
Ecosystems 5, 289–299. doi: 10.1007/s10021-001-0072-6

Bell, R. T. (1993). “Estimating production of heterotrophic bacterioplankton via
incorporation of tritiated thymidine,” in Handbook of Methods in Aquatic
Microbial Ecology, eds P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole (Boca
Raton, FL: CRC Press), 495–504.

Bottos, E. M., Scarrow, J. W., Archer, S. D. J., McDonald, I. R., and Cary,
S. C. (2014a). “Bacterial community structures of Antarctic Soils,” in Antarctic
Terrestrial Microbiology, ed. D. Cowan (Berlin: Springer), 9–33. doi: 10.1007/
978-3-642-45213-0_2

Bottos, E. M., Woo, A., Zawar-Reza, P., Pointing, S., and Cary, S. (2014b).
Airborne bacterial populations above desert soils of the McMurdo Dry Valleys,
Antarctica. Microb. Ecol. 67, 120–128.

Bracegirdle, T. J., Connolley, W. M., and Turner, J. (2008). Antarctic climate
change over the twenty first century. J. Geophys. Res. 113:D03103. doi: 10.1029/
2007JD008933

Buelow, H. N., Winter, A. S., Van Horn, D. J., Barrett, J. E., Gooseff, M. N.,
Schwartz, E., et al. (2016). Microbial community responses to increased water
and organic matter in the arid soils of the McMurdo Dry Valleys, Antarctica.
Front. Microbiol. 7:1040. doi: 10.3389/fmicb.2016.01040

Burkins, B. M., Virginia, A. R., and Wall, H. D. (2001). Organic carbon cycling in
Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Glob.
Change Biol. 7, 113–125. doi: 10.1046/j.1365-2486.2001.00393.x

Cameron, R., King, J., and David, C. (1968). Soil microbial and ecological studies
in Southern Victoria-Land Australia. Antarct. J. U. S. 3, 121–123.

Capone, D. G. (1993). “Determination of nitrogenase activity in aquatic samples
using the acetylene reduction procedure,” in Handbook of Methods in Aquatic
Microbial Ecology, eds P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole (Boca
Raton, FL: CRC Press), 621–631.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,
Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput
community sequencing data. Nat. Methods 7, 335–336. doi: 10.1038/nmeth.
f.303

Cary, S. C., Mcdonald, I. R., Barrett, J. E., and Cowan, D. A. (2010). On the rocks:
the microbiology of Antarctic Dry Valley soils. Nat. Rev. Microbiol. 8, 129–138.
doi: 10.1038/nrmicro2281

Casamayor, E. O., Massana, R., Benlloch, S., Øvreås, L., Díez, B., Goddard, V. J.,
et al. (2002). Changes in archaeal, bacterial and eukaryal assemblages along
a salinity gradient by comparison of genetic fingerprinting methods in a
multipond solar saltern. Environ. Microbiol. 4, 338–348. doi: 10.1046/j.1462-
2920.2002.00297.x

Clarke, K. R., and Gorley, R. N. (2006). Primer v6: User Manual/Tutorial.
Plymouth: PRIMER-E.

Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., et al. (2009).
The ribosomal database project: improved alignments and new tools for rRNA
analysis. Nucleic Acids Res. 37, 12. doi: 10.1093/nar/gkn879

Culman, S. W., Bukowsk, I. R., Gauch, H. G., Cadillo-Quiroz, H., and Buckley,
D. H. (2009). T-REX: software for the processing and analysis of T-RFLP data.
BMC Bioinformatics 10:171. doi: 10.1186/1471-2105-10-171

Darcy, J. L., Lynch, R. C., King, A. J., Robeson, M. S., and Schmidt, S. K.
(2011). Global Distribution of Polaromonas phylotypes - Evidence for a highly
successful dispersal capacity. PLoS One 6:e23742. doi: 10.1371/journal.pone.
0023742

de la Torre, J. R., Goebel, B. M., Friedmann, E. I, and Pace, N. R. (2003). Microbial
diversity of cryptoendolithic communities from the McMurdo Dry Valleys,
Antarctica. Appl. Environ. Microbiol. 69, 3858–3867. doi: 10.1128/AEM.69.7.
3858-3867.2003

Doran, P. T., McKay, C. P., Clow, G. D., Dana, G. L., Fountain, A. G., Nylen, T.,
et al. (2002). Valley floor climate observations from the McMurdo dry valleys,
Antarctica, 1986-2000. J. Geophysi. Res. Atmos. 107, ACL 13-1–ACL 13-12.
doi: 10.1029/2001JD002045

Elberling, B., Gregorich, E. G., Hopkins, D. W., Sparrow, A. D., Novis, P., and
Greenfield, L. G. (2006). Distribution and dynamics of soil organic matter in an

Antarctic Dry Valley. Soil Biol. Biochem. 38, 3095–3106. doi: 10.1016/j.soilbio.
2005.12.011

Findlay, S. (1993). “Thymidine incorporation into DNA as an estimate of sediment
bacterial production,” in Handbook ofMethods in AquaticMicrobial Ecology, eds
P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole (Boca Raton, FL: CRC Press),
505–508.

Fountain, A. G., Levy, J. S., Gooseff, M. N., and Van Horn, D. (2014). The McMurdo
Dry Valleys: a landscape on the threshold of change. Geomorphology 225, 25–35.
doi: 10.1016/j.geomorph.2014.03.044

Franzmann, P. D. (1996). Examination of Antarctic prokaryotic diversity through
molecular comparisons. Biodivers. Conserv. 5, 1295–1305. doi: 10.1007/
BF00051980

Friederich, G. E., Walz, P. M., Burczynski, M. G., and Chavez, F. P. (2002).
Inorganic carbon in the central California upwelling system during the 1997-
1999 El Nino - La Nina event. Prog. Oceanogr. 54, 185–203. doi: 10.1016/S0079-
6611(02)00049-6

Geyer, K. M., Altrichter, A. E., Takacs-Vesbach, C. D., Van Horn, D. J., Gooseff,
M. N., and Barrett, J. E. (2014). Bacterial community composition of divergent
soil habitats in a polar desert. FEMS Microbiol. Ecol. 89, 490–494. doi: 10.1111/
1574-6941.12306

Geyer, K. M., Altrichter, A. E., Van Horn, D. J., Takacs-Vesbach, C. D., Gooseff,
M. N., and Barrett, J. E. (2013). Environmental controls over bacterial
communities in polar desert soils. Ecosphere 4, 1–17. doi: 10.1890/ES13-00048.1

Gooseff, M. N., Mcknight, D. M., Runkel, R. L., and Duff, J. H. (2004).
Denitrification and hydrologic transient storage in a glacial meltwater stream,
McMurdo Dry Valleys, Antarctica. Limnol. Oceanogr. 49, 1884–1895. doi: 10.
4319/lo.2004.49.5.1884

Gooseff, M. N., Mcknight, D. M., Runkel, R. L., and Vaughn, B. H. (2003).
Determining long time-scale hyporheic zone flow paths in Antarctic streams.
Hydrol. Process. 17, 1691–1710. doi: 10.1002/hyp.1210

Hawes, I., Howard-Williams, C., and Vincent, W. (1992). Desiccation and recovery
of Antarctic cyanobacterial mats. Polar Biol. 12, 587–594. doi: 10.1007/
BF00236981

Hogg, I. D., Craig Cary, S., Convey, P., Newsham, K. K., O’donnell, A. G., Adams,
B. J., et al. (2006). Biotic interactions in Antarctic terrestrial ecosystems: are they
a factor? Soil Biol. Biochem. 38, 3035–3040. doi: 10.1016/j.soilbio.2006.04.026

Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., and Strickland, J. D. H. (1965).
Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 30, 3–15. doi:
10.1093/icesjms/30.1.3

Hopkins, D. W., Sparrow, A. D., Elberling, B., Gregorich, E. G., Novis, P. M.,
Greenfield, L. G., et al. (2006a). Carbon, nitrogen and temperature controls on
microbial activity in soils from an Antarctic Dry Valley. Soil Biol. Biochem. 38,
3130–3140. doi: 10.1016/j.soilbio.2006.01.012

Hopkins, D. W., Sparrow, A. D., Novis, P. M., Gregorich, E. G., Elberling, B.,
and Greenfield, L. G. (2006b). Controls on the distribution of productivity and
organic resources in Antarctic Dry Valley soils. Proc. R. Soc. B. 273, 2687–2695.

Keys, J. (1980). Air Temperature, Wind, Precipitation and Atmospheric Humidity in
the McMurdo region. Wellington: Victoria University, 57.

Lee, C. K., Barbier, B. A., Bottos, E. M., McDonald, I. R., and Cary, S. C. (2012).
The inter-valley soil comparative survey: the ecology of Dry Valley edaphic
microbial communities. ISME J. 6, 1046–1057. doi: 10.1038/ismej.2011.170

Levy, J. (2013). How big are the McMurdo Dry Valleys? Estimating ice-free
area using Landsat image data. Antarct. Sci. 25, 119–120. doi: 10.1017/
S0954102012000727

Maurice, P. A., Mcknight, D. M., Leff, L., Fulghum, J. E., and Gooseff, M. (2002).
Direct observations of aluminosilicate weathering in the hyporheic zone of
an Antarctic Dry Valley stream. Geochim. Cosmochim. Acta 66, 1335–1347.
doi: 10.1016/S0016-7037(01)00890-0

McKnight, D. M., Alger, A., Tate, C. M., Shupe, G., and Spaulding, S. (1998).
“Longitudinal patterns in algal abundance and species distribution in meltwater
streams in Taylor Valley, Southern Victoria Land, Antarctica,” in Ecosystem
Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, Vol.
72, ed. J. C. Priscu (Washington, DC: American Geophysical Union),
109–127.

McKnight, D. M., Niyogi, D. K., Alger, A. S., Bomblies, A., Conovitz, P. A., and
Tate, C. M. (1999). Dry Valley streams in Antarctica: ecosystems waiting for
water. Bioscience 49, 985–995. doi: 10.1525/bisi.1999.49.12.985

Frontiers in Microbiology | www.frontiersin.org 11 April 2019 | Volume 10 | Article 621

https://doi.org/10.1029/2005JG000141
https://doi.org/10.1007/s10021-001-0072-6
https://doi.org/10.1007/978-3-642-45213-0_2
https://doi.org/10.1007/978-3-642-45213-0_2
https://doi.org/10.1029/2007JD008933
https://doi.org/10.1029/2007JD008933
https://doi.org/10.3389/fmicb.2016.01040
https://doi.org/10.1046/j.1365-2486.2001.00393.x
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nrmicro2281
https://doi.org/10.1046/j.1462-2920.2002.00297.x
https://doi.org/10.1046/j.1462-2920.2002.00297.x
https://doi.org/10.1093/nar/gkn879
https://doi.org/10.1186/1471-2105-10-171
https://doi.org/10.1371/journal.pone.0023742
https://doi.org/10.1371/journal.pone.0023742
https://doi.org/10.1128/AEM.69.7.3858-3867.2003
https://doi.org/10.1128/AEM.69.7.3858-3867.2003
https://doi.org/10.1029/2001JD002045
https://doi.org/10.1016/j.soilbio.2005.12.011
https://doi.org/10.1016/j.soilbio.2005.12.011
https://doi.org/10.1016/j.geomorph.2014.03.044
https://doi.org/10.1007/BF00051980
https://doi.org/10.1007/BF00051980
https://doi.org/10.1016/S0079-6611(02)00049-6
https://doi.org/10.1016/S0079-6611(02)00049-6
https://doi.org/10.1111/1574-6941.12306
https://doi.org/10.1111/1574-6941.12306
https://doi.org/10.1890/ES13-00048.1
https://doi.org/10.4319/lo.2004.49.5.1884
https://doi.org/10.4319/lo.2004.49.5.1884
https://doi.org/10.1002/hyp.1210
https://doi.org/10.1007/BF00236981
https://doi.org/10.1007/BF00236981
https://doi.org/10.1016/j.soilbio.2006.04.026
https://doi.org/10.1093/icesjms/30.1.3
https://doi.org/10.1093/icesjms/30.1.3
https://doi.org/10.1016/j.soilbio.2006.01.012
https://doi.org/10.1038/ismej.2011.170
https://doi.org/10.1017/S0954102012000727
https://doi.org/10.1017/S0954102012000727
https://doi.org/10.1016/S0016-7037(01)00890-0
https://doi.org/10.1525/bisi.1999.49.12.985
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00621 April 2, 2019 Time: 17:29 # 12

Niederberger et al. Microbial Response to Wetting in Terrestrial Antarcica

McKnight, D. M., and Tate, C. M. (1997). Canada Stream: a glacial meltwater
stream in Taylor Valley, South Victoria Land, Antarctica. J. North Am. Benthol.
Soc. 16, 14–17. doi: 10.2307/1468224

McKnight, D. M., Tate, C. M., Andrews, E. D., Niyogi, D. K., Cozzetto, K.,
Welch, K., et al. (2007). Reactivation of a cryptobiotic stream ecosystem in the
McMurdo Dry Valleys, Antarctica: a long-term geomorphological experiment.
Geomorphology 89, 186–204. doi: 10.1016/j.geomorph.2006.07.025

Moorhead, D. L., Barrett, J. E., Virginia, R. A., Wall, D. H., and Porazinska, D.
(2003). Organic matter and soil biota of upland wetlands in Taylor Valley,
Antarctica. Polar Biol. 26, 567–576. doi: 10.1007/s00300-003-0524-x

Moyano, F. E., Manzoni, S., and Chenu, C. (2013). Responses of soil heterotrophic
respiration to moisture availability: an exploration of processes and models. Soil
Biol. Biochem. 59, 72–85. doi: 10.1016/j.soilbio.2013.01.002

Niederberger, T. D., Mcdonald, I. R., Hacker, A. L., Soo, R. M., Barrett, J. E., Wall,
D. H., et al. (2008). Microbial community composition in soils of Northern
Victoria Land, Antarctica. Environ. Microbiol. 10, 1713–1724. doi: 10.1111/j.
1462-2920.2008.01593.x

Niederberger, T. D., Sohm, J. A., Gunderson, T. E., Parker, A. E., Tirindelli, J.,
Capone, D. G., et al. (2015). Microbial community composition of transiently
wetted Antarctic Dry Valley soils. Front. Microbiol. 6:9. doi: 10.3389/fmicb.2015.
00009

Niederberger, T. D., Sohm, J. A., Tirindelli, J., Gunderson, T., Capone, D. G.,
Carpenter, E., et al. (2012). Diverse and highly active diazotrophic assemblages
inhabit ephermally wetted soils of the Antarctic Dry Valleys. FEMS Microbiol.
Ecol. 82, 376–390. doi: 10.1111/j.1574-6941.2012.01390.x

Nielsen, U. N., and Wall, D. H. (2013). The future of soil invertebrate communities
in polar regions: different climate change responses in the Arctic and Antarctic?
Ecol. Lett. 16, 409–419. doi: 10.1111/ele.12058

Poage, M. A., Barrettt, J. E., Virginia, R. A., and Wall, D. H. (2008). The influence of
soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica.
Arct. Antarct. Alp. Res. 40, 119–128. doi: 10.1657/1523-0430(06-051)

Pointing, S. B., Chan, Y., Lacap, D. C., Lau, M. C. Y., Jurgens, J. A., and Farrell, R. L.
(2009). Highly specialized microbial diversity in hyper-arid polar desert. Proc.
Natl. Acad. Sci. U.S.A. 106, 19964–19969. doi: 10.1073/pnas.0908274106

Pointing, S. B., Warren-Rhodes, K. A., Lacap, D. C., Rhodes, K. L., and Mckay,
C. P. (2007). Hypolithic community shifts occur as a result of liquid water
availability along environmental gradients in China’s hot and cold hyperarid
deserts. Environ. Microbiol. 9, 414–424. doi: 10.1111/j.1462-2920.2006.
01153.x

Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., et al.
(2007). SILVA: a comprehensive online resource for quality checked and aligned
ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35,
7188–7196. doi: 10.1093/nar/gkm864

Richter, I., Herbold, C. W., Lee, C. K., Mcdonald, I. R., Barrett, J. E., and Cary,
S. C. (2014). Influence of soil properties on archaeal diversity and distribution
in the McMurdo Dry Valleys, Antarctica. FEMS Microbiol. Ecol. 89, 347–359.
doi: 10.1111/1574-6941.12322

Runkel, R. L., Mcknight, D. M., and Andrews, E. D. (1998). Analysis of transient
storage subject to unsteady flow: diel flow variation in an Antarctic Stream.
J. North Am. Benthol. Soc. 17, 143–154. doi: 10.2307/1467958

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister,
E. B., et al. (2009). Introducing mothur: open-source, platform-independent,
community-supported software for describing and comparing microbial
communities. Appl. Environ. Microbiol. 75, 7537–7541. doi: 10.1128/AEM.
01541-09

Schwartz, E., Van Horn, D. J., Buelow, H. N., Okie, J. G., Gooseff,
M. N., Barrett, J. E., et al. (2014). Characterization of growing bacterial
populations in McMurdo Dry Valley soils through table isotope probing
with 18O-water. FEMS Microbiol. Ecol. 89, 415–425. doi: 10.1111/1574-6941.
12349

Sharp, J., Yoshiyama, K., Parker, A., Schwartz, M., Curless, S., Beauregard, J., et al.
(2009). A biogeochemical view of estuarine eutrophication: seasonal and spatial
trends and correlations in the Delaware Estuary. Estuar. Coasts 32, 1023–1043.
doi: 10.1007/s12237-009-9210-8

Smith, J. J., Tow, L. A., Stafford, W., Cary, C., and Cowan, D. A. (2006). Bacterial
diversity in three different Antarctic Cold Desert mineral soils. Microb. Ecol. 51,
413–421. doi: 10.1007/s00248-006-9022-3

Sokol, E. R., Herbold, C. W., Lee, C. K., Cary, S. C., and Barrett, J. E. (2013).
Local and regional influences over soil microbial metacommunities in the
Transantarctic Mountains. Ecosphere 4, 1–24. doi: 10.1890/ES13-00136.1

Solorzano, L. (1969). Determination of ammonia in natural waters by the phenol
hypochlorite method. Limnol. Oceanogr. Methods 14, 799–810.

Stanish, L. F., O’neill, S. P., Gonzalez, A., Legg, T. M., Knelman, J., Mcknight, D. M.,
et al. (2013). Bacteria and diatom co-occurrence patterns in microbial mats
from polar desert streams. Environ. Microbiol. 15, 1115–1131. doi: 10.1111/j.
1462-2920.2012.02872.x

Tiao, G., Lee, C. K., Mcdonald, I. R., Cowan, D. A., and Cary, S. C. (2012). Rapid
microbial response to the presence of an ancient relic in the Antarctic Dry
Valleys. Nat. Commun. 3, 660–660. doi: 10.1038/ncomms1645

Van Horn, D. J., Okie, J. G., Buelow, H. N., Gooseff, M. N., Barrett, J. E., and
Takacs-Vesbach, C. D. (2014). Soil microbial responses to increased moisture
and organic resources along a salinity gradient in a polar desert. Appl. Environ.
Microbiol. 80, 3034–3043. doi: 10.1128/AEM.03414-13

Van Horn, D. J., Van Horn, M. L., Barrett, J. E., Gooseff, M. N., Altrichter, A. E.,
Geyer, K. M., et al. (2013). Factors controlling soil microbial biomass and
bacterial diversity and community composition in a cold desert ecosystem: role
of geographic scale. PLoS One 8:e66103. doi: 10.1371/journal.pone.0066103

Van Horn, D. J., Wolf, C. R., Colman, D. R., Jiang, X., Kohler, T. J., McKnight,
D. M., et al. (2016). Patterns of bacterial diversity in the glacial meltwater
streams of the McMurdo Dry Valleys, Antarctica. FEMSMicrob. Ecol. 92:fiw148.
doi: 10.1093/femsec/fiw148

Virginia, R. A., and Wall, D. H. (1999). How soils structure communities in the
Antarctic dry Valleys. Bioscience 49, 973–983. doi: 10.1525/bisi.1999.49.12.973

Wood, S. A., Rueckert, A., Cowan, D. A., and Cary, S. C. (2008). Sources of edaphic
cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J. 2,
308–320. doi: 10.1038/ismej.2007.104

Wynn-Williams, D. D. (1996). Antarctic microbial diversity: the basis of
polar ecosystem processes. Biodivers. Conserv. 5, 1271–1293. doi: 10.1007/
BF00051979

Zawar-Reza, P., Katurji, M., Soltanzadeh, I., Dallafior, T., Zhong, S., Steinhoff, D.,
et al. (2013). Pseudovertical temperature profiles give insight into winter
evolution of the atmospheric boundary layer over the McMurdo Dry Valleys
of Antarctica. J. Appl. Meteorol. Climatol. 52, 1664–1669. doi: 10.1175/JAMC-
D-13-034.1

Zeglin, L., Dahm, C., Barrett, J., Gooseff, M., Fitpatrick, S., and Takacs-
Vesbach, C. (2011). Bacterial community structure along moisture gradients
in the parafluvial sediments of two ephemeral desert streams. Microb. Ecol. 61,
543–556. doi: 10.1007/s00248-010-9782-7

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Niederberger, Bottos, Sohm, Gunderson, Parker, Coyne, Capone,
Carpenter and Cary. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 12 April 2019 | Volume 10 | Article 621

https://doi.org/10.2307/1468224
https://doi.org/10.1016/j.geomorph.2006.07.025
https://doi.org/10.1007/s00300-003-0524-x
https://doi.org/10.1016/j.soilbio.2013.01.002
https://doi.org/10.1111/j.1462-2920.2008.01593.x
https://doi.org/10.1111/j.1462-2920.2008.01593.x
https://doi.org/10.3389/fmicb.2015.00009
https://doi.org/10.3389/fmicb.2015.00009
https://doi.org/10.1111/j.1574-6941.2012.01390.x
https://doi.org/10.1111/ele.12058
https://doi.org/10.1657/1523-0430(06-051)
https://doi.org/10.1073/pnas.0908274106
https://doi.org/10.1111/j.1462-2920.2006.01153.x
https://doi.org/10.1111/j.1462-2920.2006.01153.x
https://doi.org/10.1093/nar/gkm864
https://doi.org/10.1111/1574-6941.12322
https://doi.org/10.2307/1467958
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1111/1574-6941.12349
https://doi.org/10.1111/1574-6941.12349
https://doi.org/10.1007/s12237-009-9210-8
https://doi.org/10.1007/s00248-006-9022-3
https://doi.org/10.1890/ES13-00136.1
https://doi.org/10.1111/j.1462-2920.2012.02872.x
https://doi.org/10.1111/j.1462-2920.2012.02872.x
https://doi.org/10.1038/ncomms1645
https://doi.org/10.1128/AEM.03414-13
https://doi.org/10.1371/journal.pone.0066103
https://doi.org/10.1093/femsec/fiw148
https://doi.org/10.1525/bisi.1999.49.12.973
https://doi.org/10.1038/ismej.2007.104
https://doi.org/10.1007/BF00051979
https://doi.org/10.1007/BF00051979
https://doi.org/10.1175/JAMC-D-13-034.1
https://doi.org/10.1175/JAMC-D-13-034.1
https://doi.org/10.1007/s00248-010-9782-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Rapid Microbial Dynamics in Response to an Induced Wetting Event in Antarctic Dry Valley Soils
	Introduction
	Materials and Methods
	Results
	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


