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ABSTRACT Until fairly recently, genome-wide evolutionary dynamics and within-
host diversity were more commonly examined in the context of small viruses than in
the context of large double-stranded DNA viruses such as herpesviruses. The high
mutation rates and more compact genomes of RNA viruses have inspired the inves-
tigation of population dynamics for these species, and recent data now suggest that
herpesviruses might also be considered candidates for population modeling. High-
throughput sequencing (HTS) and bioinformatics have expanded our understanding
of herpesviruses through genome-wide comparisons of sequence diversity, recombi-
nation, allele frequency, and selective pressures. Here we discuss recent data on the
mechanisms that generate herpesvirus genomic diversity and underlie the evolution
of these virus families. We focus on human herpesviruses, with key insights drawn
from veterinary herpesviruses and other large DNA virus families. We consider the
impacts of cell culture on herpesvirus genomes and how to accurately describe the
viral populations under study. The need for a strong foundation of high-quality ge-
nomes is also discussed, since it underlies all secondary genomic analyses such as
RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling.
Areas where we foresee future progress, such as the linking of viral genetic differ-
ences to phenotypic or clinical outcomes, are highlighted as well.
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erpesviruses infect and affect every human on the planet, with a universally

penetrant global public health impact (1-4). Most adult humans carry one or more
members of the nine herpesvirus families that infect our species. These include the
alpha-subfamily members herpes simplex virus 1 and 2 (HSV-1/2 or human herpesvirus
1 and 2 [HHV-1/2]) and varicella-zoster virus (VZV or HHV-3); the beta-subfamily of
human cytomegalovirus (HCMV or HHV-5) and human herpesviruses 6A, 6B, and 7
(HHV-6A/6B/7); and the gamma-subfamily of Epstein-Barr virus (EBV or HHV-4) and
Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8) (5). Advances in our under-
standing of the molecular biology and evolution of these herpesviruses have been
informed and advanced by work on other large DNA viruses such as poxviruses of
humans and animals; multiple families of bacteriophage, baculoviruses, and other
insect viruses; and amoebal giant viruses such as mimivirus (6).

Here we review recent studies that have used high-throughput sequencing (HTS)
and genome-wide analyses to explore the diversity and evolution of herpesviruses. In
the first half of this review, we examine data suggesting that the diversity and evolution
of herpesviruses are impacted by mechanisms extending beyond the usual consider-
ation of polymerase fidelity. These include the influence of minority alleles and stand-
ing variation in the virus population, recombination between viral genomes, horizontal
gene transfer, and nontemplated mechanisms such as ribosome frameshifting and RNA
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FIG 1 Opportunities for change in a given viral population arise both in vivo and in vitro. (A) The viral
population in an infected individual (represented by red or red-shaded virion) may change over time due
to immune selection or the accumulation of genetic drift. Bottlenecks at transmission to a new host or
during introduction to tissue culture may allow a new genotype to become prevalent, akin to a genetic
shift. (B) A viral stock grown in culture is also a viral population, which may undergo changes during
introduction to an animal model or through plaque purification. See Fig. 2 for an expanded view of the
genomes contained in the viral population.

editing (Fig. 1 and 2). We also consider how these mechanisms of variation impact our
ability to manipulate herpesviruses in culture. In the second half of this review, we
summarize the tremendous gains in identifying the genetic diversity found among the
members of each species of human herpesvirus. We explore how to accurately describe
the viral populations that researchers handle experimentally. The necessity for a strong
foundation of high-quality genomes—and the bioinformatics tools that enable their
production—are also discussed. Many new insights have been enabled by the appli-
cation of HTS and bioinformatics to herpesvirus genomes, and we end with the
challenges that lie ahead.

(IN)STABILITY OF LARGE DNA VIRUSES

The perception of most virologists is that RNA viruses are inherently variable and
that DNA viruses are inherently stable (7, 8). At the molecular level, this view stems from
the lack of error correction by most RNA-dependent RNA polymerases. In contrast to
RNA viruses, most DNA viruses display high polymerase fidelity and error correction. For
herpesviruses such as HSV-1, early studies of mutation rates focused on single genes
and detected mutation rates in the range of ~1 X 1077 or ~1 X 10~8 mutations per
base per infectious cycle (9, 10). These rates are often quoted in comparisons of RNA
viruses to DNA viruses (7, 8, 11) and are matched by restriction-fragment length
polymorphism (RFLP) analyses comparing herpesviruses from disparate geographic
locations (12). However, these data fail to explain the surprising ease with which
herpesvirus variants can be selected or revealed (Fig. 1). For instance, drug-resistant
mutations can be selected from drug-sensitive HSV-1 and HSV-2 populations at a rate
of 1in 10% or 1 in 103 PFU (13). This suggests that the rate of standing variation in the
population in herpesviruses may be higher than previously appreciated (14) and/or that
the different time scales of experimental settings versus evolutionary comparisons are
at odds (15).

There are data to support both the hypothesis of standing variation and that of
differing time scales. Using HTS approaches, several studies have described the exis-
tence and expansion of standing variation in HCMV populations in nonimmunocom-
petent hosts, such as congenitally infected infants and immunosuppressed or trans-
plant patients (16-20). In a short-time-scale investigation of Muller’s ratchet—the
hypothesis that small asexual populations accumulate deleterious mutations—Jara-
millo et al. took 10 individual subclones of HSV-1 and subjected each to repeated
population bottlenecks through sequential plaque-to-plaque transfers (21). Two clonal
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lineages were completely lost during this process, and single-gene analysis of the
remaining clones revealed a mutation frequency of 3.6 X 10~# substitutions per base
per plaque transfer. The authors also found reduced mortality after intracerebral
inoculation into mice for these serially passaged clones (21). Even in the absence of
intentional selective pressure, genome-wide HTS comparisons of HSV-1 and HCMV
subclones have revealed nucleotide variations in up to 3% to 4% of the genome
(22-25). A higher-than-expected frequency of observed mutations in herpesvirus pop-
ulations was also found in a recent application of phylodynamic inference to DNA
viruses, which estimated the substitution rate of HSV-1 to be ~1 X 105 0or ~1 X 10~4
mutations per base per year (15). Many of the studies cited above have focused on
HSV-1 as a model herpesvirus, but there may well be subfamily- or species-specific
differences in the amount of standing variation in the population, the number of
replicative cycles per year, and/or the selection pressures faced during viral transmis-
sion in real-world settings. Innovative combinations of genome-wide HTS applications,
with models that account for positive selection and standing variation, will be needed
to bring these diverse data into synchrony.

RECOMBINATION AS A DRIVING FORCE IN DNA VIRUS EVOLUTION

Mutation and evolution in herpesviruses result not only from base substitutions but
also from recombination between strains and, to a lesser extent, between species.
Recombination in herpesviruses can provide a driving force for evolutionary shifts, akin
to that associated with reassortment in segmented RNA viruses (26). HTS studies of
laboratory-generated recombinants of HSV-1 have revealed a bias toward breakpoints
being detected in repetitive tracts, intergenic regions, and areas of higher G+C content
(27). However, most studies of recombination in human herpesviruses have focused on
naturally circulating variants and have inferred historical sites of recombination and
phylogenetic relationships from the comparison of disparate strains. For example,
increased genomic surveillance of VZV has expanded the number of known phyloge-
netic clades for this species in recent years; this has provided evidence for ancient,
interclade recombination as well as for modern recombination between individual
strains (28-32). For the beta-herpesvirus HCMV, multiple groups have confirmed the
finding of rampant genome-wide recombination among different HCMV strains (19, 33,
34). Lassalle et al. focused most deeply on this aspect of HCMV evolution and found
that particular sections or islands of the HCMV genome appeared to cosegregate,
whereas widespread recombination between strains was detected everywhere else in
the genome (34). The authors postulated that genes in these islands are codependent,
thus enabling higher fitness and a selective advantage for genomes that lack recom-
bination events inside these regions.

In the case of the alpha-herpesvirus HSV-1, there is evidence of rampant recombi-
nation between different isolates or strains, but not yet sufficient data to discern
whether the recombination events are ancient or extant (35, 36). Evidence for ancient
recombination between HSV-1 and the distantly related species HSV-2 has been found
by two separate groups (37, 38), who recently described several loci in the HSV-2
genome that contained HSV-1-like DNA. This inference is based on the high similarity
of these regions to extant HSV-1 genomes and on their divergence from a unique and
apparently historical HSV-2 genotype that has thus far been found only in Africa (39,
40). Additional evidence of modern recombination in natural settings stems from the
veterinary herpesvirus literature (41). In 2012, Lee and colleagues demonstrated that a
virulent avian herpesvirus that had created an outbreak in Australian poultry was in fact
a spontaneous recombinant resulting from two live-attenuated vaccines that were both
in use (42). This example is bolstered by multiple others among the veterinary herpes-
viruses which have been reviewed recently elsewhere (41). The next challenge for
understanding herpesvirus recombination events is to address where and how often
they occur in vivo, since recombination requires the co-occurrence of two distinct viral
genomes in a single cell of the same host—an event which may be rare and difficult to
detect in clinical or field settings.
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LOSING OR GAINING GENE FUNCTIONS IN CULTURE

Our ability to conduct experimental studies of herpesviruses, and to develop
therapeutics and vaccines, depends vitally on cell culture techniques. However, cell
culture can induce unintentional selective pressure on viral populations, as has been
recognized most notably in the case of HCMV. Prior studies revealed that laboratory
strains of HCMV such as AD169 and Towne had not only accumulated minor changes
associated with genetic drift but also lost multiple genes during their adaptation to cell
culture (22, 24, 43). The regions lost in vitro had functions associated with cell tropism
and immune evasion in vivo. Although no similar link between frequent deletions and
loss of in vivo-specific functions has yet been discovered for other herpesviruses, a
tendency for loss of specific genomic regions has been observed. Frequent deletion of
the UL55-UL56 region has been observed in cultured HSV-1 strains, although the
phenotypic impact of this loss is unknown (36). The loss of genomic regions has also
been demonstrated in other large DNA viruses such as mimivirus, which undergoes
gene loss from its termini during repeated passage in amoebal culture (44). There is a
pressing need to document the nature of any changes that occur during herpesvirus
introduction to culture and subsequent passages thereafter, so that the accumulation
of genetic drift and/or the selective pressures of cell culture can be better understood.

Although viral propagation in cell culture can induce the loss of gene functions
required for in vivo growth, it can also facilitate experimental insights by revealing
transient genome intermediates in the process of viral adaptation. This was demon-
strated in a recent study using HTS and comparative genomics in the poxvirus vaccinia
virus (VACV), which relies on two viral antagonists to combat the host antiviral protein
kinase R (PKR) (45). After experimental deletion of one viral PKR inhibitor, the viral
genome population developed an accordion-like expansion of the other inhibitor (Fig.
2B). Variations then arose and were positively selected in the extra copies of this PKR
antagonist. These variants tended to remain in the progeny viral population even when
the accordion-like gene array collapsed. The examination of genome content after each
round of viral replication in culture revealed the existence of these intermediates in
viral evolution. These data raise the intriguing question of whether similar mechanisms
could occur in herpesviruses. Further investigation of herpesvirus adaptation to selec-
tive pressure, with analyses performed at frequent intervals throughout positive selec-
tion, will be required to test whether intermediates of viral evolution can be detected
for herpesviruses as well.

HOST-VIRUS HORIZONTAL GENE TRANSFER

Horizontal gene transfer (HGT), or the movement of genetic material between
unrelated organisms, provides another avenue for evolutionary adaptation. In the case
of herpesviruses, at least 20% of the core genes shared by all herpesvirus subfamilies
are surmised to have cellular origins, while others appear to have originated in another
viral species (46-50). The specific source, mechanism, and timing of these ancient HGT
events in herpesvirus evolutionary history are not known. Most herpesviruses do not
integrate into the host genome during replication. The gamma-herpesvirus EBV can be
found occasionally in an integrated state, although it is not a required aspect of its life
cycle (51, 52). However, human HHV-6A and HHV-6B and Marek’s disease virus, an
alpha-herpesvirus of poultry, do integrate into host telomeres as a regular part of their
life cycle (53-56). The germ line or chromosomal integration of human herpesviruses
(ciHHV), usually HHV6A, is detected in about 1% of the human population (51, 53-56).
Recent data from baculovirus-moth model systems indicate that HGT between host and
virus does not require viral integration and excision from the host genome (57, 58).
Instead, Gilbert et al. found that HGT can be mediated by transposable elements (TEs)
that move between host and viral genomes (57) and that recombination of host DNA
into viral progeny can occur at sites of microhomology between the host and viral
genomes (58). Baculovirus genomes with integrated host DNA constituted only about
5% of the viral progeny and did not remain in the population beyond a few cycles of
replication, suggesting that these are transient intermediates with deleterious fitness
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effects (58). Nonetheless, these data illustrate a potential avenue for evolutionary HGT
in nonintegrating viruses and suggest that it may be of interest to screen for signs of
host DNA integration into progeny herpesvirus genomes.

OTHER CONTRIBUTIONS TO FUNCTIONAL DIVERSITY

Mechanisms of genetic variation such as single-nucleotide changes, recombination,
and horizontal gene transfer are well accepted for their roles in the evolution of
herpesviruses. Limited but exciting data suggest that other mechanisms, including
several that are more often associated with RNA viruses, may also contribute to the
diversity of herpesvirus coding potential. These include ribosome slippage, RNA editing,
and novel transcripts revealed by RNA sequencing (RNA-Seq) and ribosome profiling or
footprinting. These mechanisms may not be revealed by examining populations of viral
genomes but may nonetheless influence phenotypes observed in vivo.

Ribosome frameshifting and RNA editing are two mechanisms by which herpesvi-
ruses can achieve a phenotypic outcome different from the outcome that would be
predicted by analysis of the nucleotides encoded in their genome. These outcomes can
be detected by examining viral transcripts or proteins but may otherwise go unde-
tected in the comparison of genome sequences. Ribosome frameshifting is a regular
feature of translation for retroviruses such as HIV, where it enables the production of
nucleocapsid and polymerase from the same RNA transcript. Although it is less fre-
quent, ribosome frameshifting has been demonstrated to occur on transcripts of
thymidine kinase (TK) in HSV-1 (59, 60). Microdeletions at homopolymers in the TK or
polymerase genes of HSV-1 are a common route of viral escape from the activity of the
antiviral drug acyclovir (61, 62), and ribosome frameshifting of defective transcripts in
these drug-resistant genomes allows production of a low level of functional protein (59,
60). RNA editing or transcriptional stuttering is another mechanism better associated
with RNA viruses which is used to generate more than one transcript from a single open
reading frame. RNA editing has recently been demonstrated to occur in the gamma-
herpesviruses EBV and KSHV, where it affects microRNAs (EBV) or viral protein-coding
genes (KSHV) (63, 64). The phenotypic impacts of these RNA editing events remain to
be determined.

Finally, HTS approaches have highlighted the presence of previously unrecognized
coding potential in herpesvirus genomes, through the use of RNA-Seq and ribosome
profiling approaches that demonstrate the shift from host to viral transcriptional and
translational control during infection (64-68). These approaches have illuminated new
transcripts and coding potential in HCMV, EBV, and KSHV (64-67) and demonstrated
the disruption of transcript termination in HSV-1 (68). The novel transcripts found in
these studies are too new to have been considered in prior comparative genomics
analyses, but future studies may reveal their influence on the biology and evolution of
these herpesviruses.

CAPTURING AND CATALOGING THE DIVERSITY OF HERPESVIRUSES

Early applications of HTS to herpesvirus genomes focused on just one or two
examples of a given species (69), using viral strains that had been previously charac-
terized in cell culture. The norm for HTS studies has now shifted to include either
comparisons of a large number of viral strains at a time or a deeper investigation of viral
setting or outbreak. This expansion of known diversity has driven the definition of new
phylogenetic clades and facilitated the reconstruction of the evolutionary history of
VZV (28, 30-32), HSV-1 (23, 36, 70-72), HSV-2 (73-76), HCMV (20, 33, 34, 77), HHV 6A/6B
(119), EBV (78, 79), and KSHV (80), as well as animal herpesviruses (41). While it is clear
that increasing the number of fully sequenced genomes for each species widens our
knowledge of viral diversity, the next challenge lies in dissecting the phenotypic
impacts of the observed genetic differences in these viral populations. Achieving that
goal will require the integration of phenotypic measures of viral fitness, with fully
sequenced viruses and comparative genomics, to infer how specific genetic differences
influence the outcome of infection.
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FIG 2 Viral genomes with subtle variations contribute to the overall viral population and enable change over time.
A viral population may contain minor variants (A) that remain unnoticed until selective pressures or bottlenecks
reveal them (B). Deep sequencing approaches can reveal minor variants in the overall viral population, but most
HTS approaches report only the consensus genome population. The consensus genome is a summary of the most
common variants (e.g., those indicated by orange and blue stars) found in a majority of the sequenced genomes,
but that exact genotype does not necessarily predominate in nature. As shown in the exaggerated example in
panel A, the consensus genome (thick gray line) contains variants that are found in the majority of genomes (thin
gray lines) but that are found only rarely in the same genome. Minor variants or alleles (e.g., those indicated by
green or orange stars) are not included in the consensus genome at all, but a transmission bottleneck or
subsequent selective pressure may lead to a minor variant becoming the majority genotype in the future (B).
Recombination can also create entirely new genotypes, which can become dominant through bottlenecks or
external selective pressures. Gene accordions, as demonstrated in vaccinia virus, result from expansion and
subsequent variation of a gene under strong selective pressure.

As the genomic comparison of large DNA viruses from cultured stocks became more
tractable, the goal of achieving similar resolution from uncultured viruses became a
priority. The development of oligonucleotide enrichment methods has facilitated this
goal for herpesviruses (29, 37, 77, 81). Oligonucleotide enrichment uses the known
genomes of cultured viruses to design small RNA- or DNA-based probes or baits that
can hybridize with sparse amounts of the targeted viral genomes in any mixed sample.
These hybridized fragments are then isolated using a tag such as biotin on the synthetic
oligonucleotide baits. Once enriched from a mixed source sample, the viral genome
fragments can be amplified and sequenced using standard HTS approaches. Oligonu-
cleotide enrichment has enabled the capture of herpesvirus genomes from saliva,
blood, skin swabs, vesicle fluid, and more (29, 37, 81). Improvements in the isolation
and handling of ancient DNA, combined with oligonucleotide enrichment, have even
demonstrated the feasibility of recovering historical samples, such as the recent
genome sequencing of 17th century smallpox (variola) DNA from mummified human
remains (82). This type of ancient viral genome recovery has not yet been attempted for
a herpesvirus, but if the challenge is surmounted it may similarly illuminate the rate of
evolution and local adaptation seen in these viruses.

THE CONSENSUS VERSUS THE MINORITY

Many of the studies described above that catalogued herpesvirus diversity have
focused on defining the consensus genome of each new sample. The consensus
genome represents the most common allele or nucleotide at each position (Fig. 2). In
the simplest case, the consensus genome is derived from the most common member
of the viral population. However, the consensus genome may not exist in nature as the
most common genome format—in other words, it may be an amalgamation of several
genotypes that exist separately but not together on a single genome (Fig. 2A). For small
viruses, the ability to clone and determine the genotypes of individual genomes has
enabled the modeling of viral populations and the development of software that can
infer likely haplotypes from HTS data (see reference 83 for a review). Barcoded HTS
methods offer the potential to improve haplotype linking for large DNA viruses, but these
have not yet been widely applied to human herpesviruses. Thus far, no HTS method has
proven capable of sequencing individual strands of DNA viruses that are >100 kb in length
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with sufficient accuracy and reproducibility to make enable the comparison of individual
genomes in a viral population. Limited applications of nanopore-based sequencing (Min-
ION; Oxford Nanopore) or single-molecule real-time sequencing (SMRT; Pacific Biosystems)
to herpesviruses have demonstrated the potential of these methods (71, 84, 85). However,
both technologies currently suffer from error-prone sequence reads, leading to limited
applications during this phase of technical development. For these reasons, most research-
ers using lllumina or other short-read HTS platforms have focused on detecting the location
and prevalence of minority variants, without attempting to link their co-occurrence on
individual genomes (i.e., determining haplotypes).

As for RNA virus genomes, deep coverage of large DNA virus genomes has enabled the
detection of minority variants, or heterogeneous alleles, and their potential expansion in
different environments (Fig. 2). It was recently demonstrated that bottlenecks and selective
sweeps occur during human congenital infection by the beta-herpesvirus HCMV. In a series
of papers, Renzette et al. showed that HCMV genomes sequenced from the urine of
congenitally infected infants harbored multiple loci with minority variants (17-19). While
the authors initially posited that HCMV diversity approached the level of a quasispecies,
their subsequent modeling suggested that viral diversity in these congenitally infected
infants resulted from a combination of sources such as reinfection, recombination, positive
selection, and bottlenecks during intrahost transmission between body sites (19, 86, 87)
(Fig. 2B). Other groups have found a lower level of intrahost diversity in the context of
noncongenital HCMV infections (16, 20, 33, 34, 77), suggesting that congenital infections
may represent a special case for viral diversification. Recently, HTS was applied to detect
low-frequency drug resistance mutations in the HCMV genome, which has confirmed the
potential impacts of intrahost viral diversity on clinically important outcomes such as drug
resistance (20). Although the study was conducted retrospectively, after patient treatment,
the potential application for real-time HTS screening of viral populations during patient
treatment is clear (88, 89).

VIRAL ISOLATES, STRAINS, VARIANTS, AND SUBCLONES

HTS methods have brought the issue of viral population diversity to the fore. Almost
all experiments conducted with herpesviruses utilize a population of genome-
containing virions (Fig. 2). The same is true of most samples collected from a host
source. Because viral populations can shift over time or through handling (Fig. 1), it is
crucial to clearly define each viral population under study and to know its history (24).
A virus collected from a point source at a specific time is often called an isolate, and it
may be referred to as a strain after its growth and expansion in culture. Even after being
established as a strain in cell culture, a viral population may still undergo further change
(Fig. 1). This can occur through random genetic drift, during intentional bottlenecks
such as plaque purification, or through the generation of transgenic or mutant sub-
clones. A viral strain can thus consist of a mixed population of viruses, or it may have
undergone a bottleneck that led to the creation of a homogeneous population. For
instance, the HSV-1 strain KOS has developed variants by genetic drift over passages in
culture, as well as through intentional plaque purification of subclones (25, 90-94).
These variants and subclones differ in observable phenotypes such as their ability to
elicit Toll-like-receptor (TLR)-dependent immune responses (93), pathogenesis in ani-
mal models of HSV encephalitis (91), and expression of antigenic proteins (90, 92). This
example emphasizes the importance of knowing the identity and history of the viral
populations used in all laboratory experiments.

A more consistent standard of description for viral populations would benefit the
herpesvirus community. Descriptive terms such as “clinical isolate” and “laboratory
strain” are often used to refer to the low (clinical) versus high (laboratory strain) number
of passages that a viral population has undergone in cell culture—though in practice
these terms are interpreted differently by every research group (5, 24). There is no
historical standard for whether or not a herpesvirus isolate should be plaque purified
before it can be called a strain. There is no common term used to describe viral
genomes that are collected and sequenced directly from a host, without amplification
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in culture—these are often referred to simply as genomes, sequences, or genotypes
(29, 75, 77, 95). The VZV research community and others have moved toward a viral
naming system, akin to those utilized for RNA viruses and bacteria, which includes both
virus species and host species and preserves data on sample origin (e.g., geographic
location), year of isolation, and the name(s) of the strain, variant, or subclone (96, 97).
Following on the HSV-1 KOS example above, one variant of the strain is named HSV-1
Homo sapiens/Texas, USA/1963/KOS-KOS63, indicating both the year and location of its
origin (25, 94). This approach may help to alleviate current issues in comparing data
across laboratories, where viruses of the same common name (e.g., HSV-1 KOS or HCMV
AD169) may differ in both genotype and phenotype (24, 25, 94).

BIOINFORMATICS AND THE FOUNDATION OF HIGH-QUALITY GENOMES

The ability to rapidly sequence and assemble large DNA virus genomes has been
facilitated by advances in software and computational workflows, although the diversity of
options and different standards of publication have led to a wide variety of finished-
genome qualities. One major choice underlying all HTS genome analysis is whether to build
new viral genomes by alignment of reads to a prior reference genome or by de novo
assembly. Alignment-based approaches utilize prior genome knowledge to achieve a faster
outcome, but these are prone to miscalling of minority and structural variants (83). De novo
assembly is unbiased by prior data and can more easily detect new variants and structural
differences, but it is more computationally intensive and can entail the need for more input
to curate the genomes thereafter (83). Open-source options for viral genome analysis and
annotation include Web-based platforms and those using command-line (Unix-like) inter-
faces. The vast majority of viral de novo assembly algorithms have been developed and
tested only for RNA viruses (see reference 83 for a review of options). We developed the
Web-based viral de novo assembly workflow VirAmp specifically for herpesviruses (98),
using the Galaxy framework of Web-accessible bioinformatics tools (99, 100). Most other
options for viral genome assembly, alignment, annotation, and comparison rely on a Unix
command-line interface, which requires more skill to operate. Unix-based software options
are freely available through repositories such as BitBucket and GitHub and include pro-
grams such as the de novo viral genome assembly workflow VirGA (23), the aligners Bowtie
and BWA (83), and the structural variant detector Wham (101). Researchers can also choose
from commercial packages that offer one-button solutions for alignment or de novo
assembly, such as Geneious (Biomatters) and CLC Bio (Qiagen) (99, 100). These options have
made complex bioinformatics tasks accessible to a wider audience, to the extent that
whole-genome sequencing and comparisons of diverse bacteriophage are now part of the
undergraduate science education curriculum at many universities (102, 103).

The rationale for a strong foundation of high-quality genomes has been well
established by the human genome project and multiple microbial genome projects
(104). A wide range of secondary HTS applications, such as RNA-Seq, ribosome profiling,
chromatin-immunoprecipitation (ChIP) sequencing, and chromatin conformation cap-
ture (CCC or 3C) assays, rely on the accuracy of initial genome sequences (105). Use of
a misassembled or poorly annotated viral genome leads to errors in these secondary
analyses. Similarly, mapping data from downstream analyses of one viral strain onto the
reference genome of another strain can produce misleading outcomes. Gaps or unfin-
ished regions in genome assemblies also create an issue, since these create missing
data in all subsequent comparative genomics approaches. Publications occasionally
omit the deposition of intact genome sequences, limiting future comparisons of these
data (35, 71, 106). The failure to complete the sequence of genes with complex tandem
repeats or G/C-rich sequences means that these genes are often excluded from
comparative genomics studies or are represented by a far smaller number of examples
(see, for example, references 36, 73, 75, and 107). Incomplete intergenic regions can
skew the assessment of overall genomic diversity, since genetic drift tends to accumu-
late in intergenic regions. Unresolved gaps also prohibit any insight from secondary
analyses such as RNA-Seq or ChIP in these regions, since data cannot be mapped to
these areas. The tremendous insights to be gained from HTS technologies and all of
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their secondary applications thus rely on a strong foundation in the initial deciphering
of viral genome populations.

FUTURE DIRECTIONS

Here we have focused on the several areas of recent progress in understanding the
genomic diversity and evolution of human herpesviruses. These advances have been
driven by the rapid expansion and application of HTS, bioinformatics, and comparative
genomics in virology. Together, these data have reshaped our sense of the stability of
herpesvirus genomes. While these viruses possess high-fidelity polymerases, their
ability to accrue standing variation, and to undergo recombination with neighboring
genomes, creates many opportunities for selective pressures to induce rapid genetic
shifts. Examples of this include the expansion of minority variants in niche locations in
congenitally infected infants and the selection of drug-resistant variants during antiviral
therapy (16, 19, 20, 86). In addition to these recent advances and insights, we foresee
several areas of future promise.

First, we foresee the improvement and extension of third-generation sequencing
and genome editing technologies to herpesviruses. Early applications of MinlON and
SMRT long-read sequencing to herpesvirology have shown promise in revealing novel
transcriptional networks (67, 85) and in confirming a new synthetic genome approach
to introduce multiple simultaneous changes to a herpesvirus genome (84). These
third-generation sequencing methods may also enable the detection of methylated
bases, secondary structures, and even substrates besides DNA (105). As the accuracy of
these methods improves, we foresee their use to advance the detection of recombinant
genomes and structural variants, as well as to define haplotypes in mixed populations
(Fig. 2). The advances in clustered regularly interspaced short palindromic repeat
(CRISPR)-Cas systems for genetic engineering of herpesviruses also represent an excit-
ing area for future expansion (108-110). CRISPR-Cas approaches promise to speed the
construction of viral mutants for reverse genetic studies (108, 109) and may have
therapeutic potential for herpesvirus genome clearance (110). We also anticipate that
HTS and genomic analyses of CRISPR-engineered viruses will be a fruitful way to
confirm the desired genomic edits and rule out any off-target or bystander changes.

Finally, we consider the linking of viral genetic variation to observable phenotypes to be
one of the greatest challenges for virology. The advance of HTS and genomics has begun
to enable the application of genome-wide association studies (GWAS) and quantitative trait
locus (QTL) approaches to herpesviruses (111, 112). Brandt and colleagues recently dem-
onstrated the application of viral QTL mapping to HSV-1, by examining how specific viral
genotypes contributed to phenotypes of ocular infection in mice (113, 114). That QTL study
used the recombinant viral progeny of two attenuated strains of HSV-1, with the differing
genetic composition of each recombinant being mapped to the nucleotide resolution level
using HTS and comparative genomics (27). These forward genetic approaches complement
prior decades of reverse genetic approaches, which established the function of herpesvirus
genes and began to dissect the impacts of individual genetic variants (115, 116). However,
the occurrence of gene deletions and genetic variations in living humans can be quite
distinct from those seen in laboratory-constructed mutants (33, 75, 78), and there is
significant interest in determining if and how these viral genetic variants may impact
human clinical outcomes (79, 117, 118). This motivates the future extension of GWAS
analyses to naturally circulating viral variants and clinical isolates. This will shed light on
how viral genetic diversity intersects with human genetic differences to produce the
spectrum of observed disease.
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