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Abstract: Flight feather shafts are outstanding bioinspiration templates due to their unique light
weight and their stiff and strong characteristics. As a thin wall of a natural composite beam, the
keratinous cortex has evolved anisotropic features to support flight. Here, the anisotropic keratin
composition, tensile response, dynamic properties of the cortex, and fracture behaviors of the shafts
are clarified. The analysis of Fourier transform infrared (FTIR) spectra indicates that the protein
composition of calamus cortex is almost homogeneous. In the middle and distal shafts (rachis), the
content of the hydrogen bonds (HBs) and side-chain is the highest within the dorsal cortex and
is consistently lower within the lateral wall. The tensile responses, including the properties and
dominant damage pattern, are correlated with keratin composition and fiber orientation in the cortex.
As for dynamic properties, the storage modulus and damping of the cortex are also anisotropic,
corresponding to variation in protein composition and fibrous structure. The fracture behaviors
of bent shafts include matrix breakage, fiber dissociation and fiber rupture on compressive dorsal
cortex. To clarify, ‘real-time’ damage behaviors, and an integrated analysis between AE signals and
fracture morphologies, are performed, indicating that calamus failure results from a straight buckling
crack and final fiber rupture. Moreover, in the dorsal and lateral walls of rachis, the matrix breakage
initially occurs, and then the propagation of the crack is restrained by ‘ligament-like’ fiber bundles
and cross fiber, respectively. Subsequently, the further matrix breakage, interface dissociation and
induced fiber rupture in the dorsal cortex result in the final failure.

Keywords: feather shaft; protein composition; tensile response; dynamic property; fracture behavior

1. Introduction

In recent years, fiber-reinforced plastic (FRP) has been proven to be light, stiff and
strong [1]. Thus, FRP thin-walled structures have been viewed as exceptionally efficient
components for aerospace and automotive engineering applications [2–4]. However, decid-
ing on the best possible structural configuration still presents a challenge [5]. Intriguingly,
a natural composite material, feather shaft, coincidently aligns with the goal to improve
modern FRP thin-walled materials. Feather shafts stand out since they are extraordinarily
lightweight, stiff and strong, yet able to flex, and have evolved for flight. A flight feather
primarily bends and has to be aerodynamically affected during flight without destructive
damage under flexural/torsional stresses. The feather shaft potentially exhibits a natural
design strategy for thin-walled composite beams facilitating flight; it is of paramount
importance to unravel the composition and mechanical behaviors of feather shafts.
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The central shaft of a flight feather can be divided into two parts in length, called
calamus (below the skin) and rachis (above the skin), as shown in Figure 1a. A whole
shaft is composed of a keratinous sheath, enclosing a foamy core named the medulla; the
cortex of the keratinous sheath contains the dorsal, lateral and ventral regions [6–8], as
shown in Figure 1c. The feather cortex has been proven to be anisotropic along the length
and circumferential directions of its shaft [9–11]. Previous research has reported that the
feathers are entirely composed of β-keratin proteins [12–16], which generally show higher
stiffness and strength than α-keratin-based materials [17]. Linghan and Murugan et al. [18]
found the helical structure formed by β-keratin in the feathers and analyzed the significant
effects of this structure on mechanical properties. Zou et. al. [19] further analyzed the
compositions of the feather shafts by Fourier transform infrared (FTIR) spectrometer.
However, there is still a lack of information about the detailed molecular compositions
within cortex strips located at different positions on the feather shaft, considering their
widely varied mechanical performances [9,10].
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Figure 1. (a) The feather of eagle and (b,c) diagram of feather shaft and anisotropic cortex; the gray
rectangles indicate (d) cortex samples located on different segments for tensile tests; (e) the shaft
samples for bending tests.

The feather shaft covered by the anisotropic cortex is significantly different from the
conventional thin-walled structure. Wang and Meyers [10,11] reported that the variations
of fiber arrangement depended on the specific cortex regions, including the axial, circum-
ferential and crossed orientations. In addition, the quasi-static tensile tests on the cortex
strips, which are excised from the dorsal, lateral and ventral regions, revealed that the
Young’s modulus increased in the dorsal region towards the distal shaft, but consistently
lower modulus in lateral cortex was exhibited, which corroborated the fibrous anisotropic
structure [11]. However, no attempts have been made to incorporate the dynamic mechan-
ical properties, e.g., storage modulus and damping, into a quantitative analysis for the
anisotropic cortex strips of feather rachis, which, nevertheless, presents the real scenario
for most flight feather shafts dealing with aerodynamic vibration frequently. The internal
friction (i.e., damping), which relates to the conversion of vibration energy into internal
energy during mechanical vibration, is regarded as a significant property for composites
dealing with structural vibration. Moreover, it could also be used as a non-destructive
testing method to study material microstructures due to the sensitivity to the variation of
microstructure [20–23].

Widely present in nature and the engineering field, sandwich structures such as the
feather shaft can efficiently make for resisting buckling and fracture during bending. As
a cantilever beam with a thin-walled sandwich structure, the feather shaft bends both
naturally (all feathers) and under aerodynamic forces (flight feathers). A few reports have
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described the response of the feather shaft in cantilever beam bending [24–28], three-point
bending [29] and four-point bending [30], but there are few investigations of the corre-
sponding damage and fracture behaviors of the shaft cortex during the bending process,
which are significant to reveal the intrinsic mechanisms regarding the strengthening and
toughening of the feather shaft to tackle the bending load elaborately.

In a bid to address the issues mentioned above, this work provides a systematic study
of the anisotropic cortex of the eagle feather shaft, correlating to the features involving
the design of bioinspired composites with novel thin-walled structures. In present work,
the varied protein composition of the keratinous cortex located on different positions of
the shaft is analyzed by Fourier transform infrared spectroscopy (FTIR). The dynamic
properties of anisotropic cortex strips are investigated by a dynamic mechanical analyzer
(DMA) using tensile vibration mode. The flexural behaviors and properties of feather
shafts are tested by three-point bending tests, and a non-destructive technique for damage
detection, acoustic emission (AE) [31–34], is simultaneously applied to monitor the real-
time damage of specimens, further revealing the damage patterns and relevant fracture
mechanisms of bent shafts. Our findings and analysis intend to reinforce our understanding
of the eagle feather shaft and stimulate the design of novel synthetic structures that can
reproduce the remarkable properties of the flight feather shaft.

2. Materials and Methods
2.1. Materials

Naturally shed covert in length of 21.3~24.7 cm of healthy adult eagle was purchased
from a local zoo, under the Wildlife Permit. Feather shafts were obtained by cutting off the
vanes for composition analysis and mechanical tests. The water content of natural feathers
is typically lower than 10 wt.% [35,36], which conforms to the ambient-dried feathers [6].
Thus, the shafts were dried in vacuum at 105 ◦C for 2 h, and the mean moisture content
were measured to be ~8.5 wt.%, similar to that of the natural feathers.

2.2. Analysis for Protein Composition of Cortex

The protein composition in cortex strips from different positions (dorsal, ventral and
lateral files at calamus, middle and distal parts, respectively) of shaft sheath were character-
ized using an IRPrestige-21 Fourier transform infrared spectrophotometer (FTIR, IRPrestige-
21, Shimadzu Corporation, Kyoto, Japan) over a wavenumber range of 400–4000 cm−1

under ATR mode. Thirty-two scans were accumulated for each spectrum at 25 ◦C.

2.3. Tensile Testing

Tensile tests were carried out to determine the tensile responses of dorsal, ventral
and lateral cortex along the shaft length. Feather shafts were divided into three segments
along the shaft length (i.e., calamus, middle shaft and distal shaft). The dorsal, lateral and
ventral cortex strips along the shaft axis of each segment were excised (the medullary core
is carefully removed to avoid scratches) to obtain thin rectangular samples. The length,
width and thickness of each sample were measured with a vernier caliper. Tensile tests were
performed following the ASTM D3039 [37], and the two ends of each rectangular strip were
fixed with LOCTITE glue between two sand paper sheets, leaving a test gauge length of
20 ± 1.05 mm, as shown in Figure 1d. The width of the strip samples was 2.00 ± 0.11 mm,
and the thickness varied from 0.10 ± 0.02 mm to 0.29 ± 0.03 mm. An Instron 5565 testing
machine (Instron 5565, Instron, Boston, USA) equipped with 500 N load cell was used for
tensile tests, and all specimens were loaded along the direction of feather shaft axis at room
temperature with a strain rate of 0.01 mm/s.

2.4. Dynamic Mechanical Testing

The strip samples similar to tensile testing ones are used to measure the dynamic me-
chanical properties of anisotropic cortex. The tests were performed under tensile vibration
at room temperature using a dynamic mechanical analyzer (DMA, Q800, TA Instruments,
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New Castle, DE, USA). The test gauge length is set as 10 mm, and the tests were performed
at varied frequencies ranging from 1 to 50 Hz with the constant strain amplitude of 10 µm
at room temperature and normal gas atmosphere.

2.5. Characterizations of Flexural Properties and Fracture Behaviors

The tubular samples were machined from the calamus, middle and distal parts along
the shaft length, respectively, for three-point bending tests. Both ends of each tubular
samples are embedded in epoxy to form a protective shell to prevent the samples twisting
during testing. Loads are applied on the tubular samples, and care is taken to prevent
compressing tubes and assure free rotation of the ends. Rubber pads on loading points
and supporting bars are used to prevent local concentrated damage. Specimens ready for
testing are shown in Figure 1e. According to the ASTM D790 [38], all specimens have a
ratio of support length over depth (mean of five positions on shaft) of 16:1. The three-point
bending tests were conducted using the Instron 5565 equipped with 500 N load cell, at
a loading rate of 0.01 mm/s at room temperature for all specimens. Simultaneously, the
fracture behaviors of samples were characterized through bending tests combined with
acoustic emission (AE) system to monitor real-time damage process. The AE signals were
recorded and analyzed by a digital signal processor with AEwin v2.19 AE system (AEwin
v2.19, Physical Acoustic Corporation, Princeton Junction, USA).

3. Results and Discussion
3.1. Protein Composition of the Feather Shafts

The FTIR spectra for cortex from different segments and regions of feather shaft are
shown in Figure 2, generally agreeing with that of typical keratin materials, and Amide I,
II, and III features are identified, which are largely based on normal coordinate analysis
pioneered by the notation in previous studies [39–41]. As structural repeat unit of protein,
the peptide bond exhibits a number of IR-active amide bands [42,43], which is shown
in Table 1. Characteristic peaks of amide I absorption stems from the C=O stretching
vibration of the amide group, which gives rise to IR band(s) from the wavenumber range
of 1600–1700 cm−1. Besides, the amide II bands originate from the N–H bending and
are conformationally sensitive, and the amide III bands are very complex, resulting from
mixtures of several coordinate displacements [42]. The absorption areas ~1468 cm−1 and
~1378 cm−1 are characteristic peaks corresponding to methylene (–CH2– scissoring) and
methyl (–CH3 symmetric bend), respectively.
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In Figure 2a, the FTIR spectra of dorsal, ventral and lateral cortex on calamus shaft
are similar, indicating the uniformity of composition within calamus cortex. For these
regions on rachis (Figure 2b,c), the peak intensity of C=O stretching (amide I) and N–H
bending (amide II) of dorsal and ventral cortex are much higher than that of lateral cortex.
Besides, the cortex on middle shaft exhibits higher C=O and N–H peak intensity than
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that of calamus and distal shaft (Figure 2b,c). Major factors responsible for conformation
include hydrogen bonding and couplings between transition dipoles [43,44]. The C=O
vibrational mode is closely related to the conformation for protein backbone and usually
forms hydrogen bonds (HBs) by coupling to in-phase bending of the N–H bond. The
wavenumber variations of C=O stretching (amide I) and N–H bending (amide II) indicate
a different number of HBs between the amino acids [45]. Previous studies reported that
introducing hydrogen bonding into main chains was an available method to significantly
enhance the overall performance of protein, such as mechanical properties, elastic resilience,
thermal properties, dimensional stability and so on [45–49]. It can be supposed that the
larger amount of C=O stretching and N–H bending could give rise to the increase of HBs
from lateral to dorsal and ventral cortex, thus possibly resulting in the enhancement of
strength and stability of keratin within dorsal and ventral cortex. Similarly, the amount
of HBs within cortex of middle shaft is deduced to be larger than that of calamus and
distal shaft.

Table 1. Band assignments of the main infrared active vibrations of keratin [41,42].

Wavelength Range (cm−1) Functional Group

1600–1700 Amide I (mainly C=O stretch)
1480–1575 Amide II (N–H bend in plane)

~1468 CH2 scissoring
~1378 CH3 symmetric bend

1230–1330 Amide III (N–H bend in plane)

Additionally, the absorption areas ~1468 cm−1 and ~1378 cm−1 are characteristic
peaks corresponding to methylene (–CH2– scissoring) and methyl (–CH3 symmetric bend),
respectively [42]. As shown in Figure 2b,c, the intensity of –CH2– scissoring and –CH3
symmetric bend in dorsal and ventral cortex are much higher than that in lateral cortex,
and the intensity of these conformations within middle shaft (Figure 2b) is generally
greater than calamus (Figure 2a) and distal (Figure 2c) ones, whether in dorsal, ventral
or lateral cortex. The researchers had found that specific branched chain structures, such
as methylene, methyl, amino and phenyl in polymers, exhibited specific area of damping
peak. The peak area is proportional to the number of these branched chain structures,
indicating positive correlation between branched chain and dynamic viscoelastic properties
of polymers, especially loss modulus and damping [50–52]. The increased volume and
number of the side groups on the backbone can promote steric hindrance, leading to great
inhibition for the segmental motion to enhance the mechanical loss of polymer. Therefore,
it can be supposed that relatively higher content of –CH2– and –CH3 structures could
improve the damping of dorsal and ventral cortex on rachis, and the damping of middle
shaft cortex may be superior to proximal and distal shaft cortex.

The distribution of characteristic peaks in FTIR spectra is consistent with previous
studies that focus on investigating the protein composition of feathers [19,53]. Nevertheless,
as shown in Figure 2, the widely varied peak intensity of characteristic peaks for different
positions of feather shaft is firstly clarified in this work, which indicates the different
content of C=O stretching, N–H bending and branched chain. The anisotropic distribution
of protein configuration may influence the quasi-static and dynamic mechanical properties
of different segments of shaft, which will be investigated below.

3.2. Tensile Response

For the purpose of determining the maximum tensile stress under which the DMA
tests could be performed without breaking the cortex specimens, and assisting to clarify the
damaged behaviors for different segments of feather shaft, the tensile responses of feather
cortex are examined.

The stress–strain curves of stretched cortex strips from dorsal, ventral and lateral
regions along the shaft length are presented in Figure 3a–c, respectively. The Young’s
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modulus, tensile strength and breaking strain are calculated and shown in Figure 3d–f. It
can be proved that the tensile properties of cortex strips are anisotropic. The elastic region
can be observed initially in all curves, following a short and non-linear deformation region
and then final failure. As shown in Figure 3d–f, the Young’s modulus and tensile strength
of dorsal cortex are increased from the calamus to the distal shaft (40.53% and 20.69%
amount of increase, respectively), while the breaking strain is increased and then decreased
towards distal shaft. Similar to the dorsal cortex, the Young’s modulus of ventral cortex is
also increased from calamus to distal shaft (39.94% increase), but the tensile strength and
breaking strain are initially increased from calamus to middle shaft and then decreased
towards distal shaft. Moreover, both the Young’s modulus and tensile strength of lateral
walls are notably decreased from calamus to distal shaft (18.53% and 45.46% amount of
decrease, respectively), and the breaking strain also decreases.
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cessed from calamus, middle and distal shaft, respectively; and the calculated (d) Young’s modulus,
(e) flexural strength and (f) breaking strain of cortex samples (the error bar represents strand error for
three samples).

In addition, it should be noticed that at the calamus regions, the cortex from dorsal,
ventral and lateral exhibits almost the same modulus (~2.95 GPa), strength (~180.23 MPa)
and breaking strain (~0.11) (Figure 3d–f). The modulus and strength of dorsal and ventral
cortex on middle shaft are much higher than lateral regions. Besides, the ventral cortex is
relatively fragile, which may be due to a ventral groove being a weak point and thus being
prone to split before fracture [10].

Correspondingly, the deformation and fracture mechanisms for stretched cortex also
depend on the particular cortical regions and locations. As for calamus, all of the cortical
specimens exhibit transverse straight fracture, and the delamination and rupture of majority
axial fibers is dominant damage pattern of these samples (Figure 4a). It is due to the
circumferential fibers holding the axial fibers in all of dorsal, ventral and lateral cortex on
the calamus, which restrains the shear damage, inhibiting split of matrix between the axial
fibers. This agrees with the homogeneous two-layered fibrous structure of flight feathers
reported in previous studies by Wang et al. [10,11].
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At the middle shaft, the dorsal cortex also exhibits transverse straight fracture, and
detached circumferential fibrous layer could be observed (Figure 4b), whereas the ventral
cortex exhibits axial splitting through the ventral groove and delamination (Figure 4d). In
Figure 4d, the solely axial fibers within ventral cortex can be observed, which hardly prevent
failure from longitudinal splitting. Both dorsal and ventral cortex show lots of axial fibers,
which are aligned with the tensile direction and therefore strengthen the fibrous structure
of cortex. This is consistent with previous reports that the volume of circumferential
fiber is reduced towards the distal shaft [54,55], and the Young’s modulus increases [56].
The morphology of lateral cortex on middle shaft shows extensive delamination with
transverse and zigzag fracture edge (Figure 4c), which is attributed to the particular effect
of crossed fibers on deflecting crack path under tensile stress. As for lateral cortex, the
decrease of strength and modulus may be due to the fact that the structure is varied from
circumferential fibers enclosing axial fibers at the calamus to crossed-fibers at the rachis.
The fibers are not aligned with the tensile direction, and therefore the strength and modulus
are reduced. Besides, the lateral cortex is significantly thinner than the dorsal and ventral
ones to be easily penetrated by cracks.

At the distal shaft, both dorsal and ventral cortex show major splitting fracture with a
larger degree of axial detachment and fibers peeling off (Figure 4e,g). It is shown that the
solely axial fiber structure can hardly resist split of matrix between fibers, leading to the
mechanical property penalty. Additionally, the matrix containing relatively fewer hydrogen
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bonds is easily broken, which probably leads to the catastrophic split of matrix under shear
stress. Similar to the middle shaft, the lateral cortex on distal shaft also exhibits an extensive
delamination staggered fracture morphology, and the crack is deflected due to the crossed
fibers (Figure 4f).

This is consistent with a lot of previous research, indicating that the calamus cortex
consists of homogeneous two-layered fibrous structure with outer circumferential fiber
and inner axial fiber. The outer circumferential fibers within dorsal and ventral cortex are
gradually eliminated from calamus to distal shaft. As for lateral cortex, the fibrous structure
varied from the two-layered fibrous structure within calamus to crossed fiber structure
within rachis.

3.3. Frequency Scans by DMA

Frequency scans by DMA provide information on viscoelastic properties and damping
characteristics of the keratinous cortex. Correspondingly, dynamic properties obtained
from frequency scans are storage modulus (E’), loss modulus (E”) and tanδ. E’ is the elastic
portion of the modulus and indicates how much energy is stored. E” is the loss portion
of the modulus, which indicates how much energy is dissipated. The tanδ is ratio of the
two modulus values (E”/E’) and is a measure of the damping capacity of the material.
This value indicates how effective the material loses energy to friction, heat or molecular
rearrangements, and is of significant importance for materials coping with aerodynamic
load, e.g., flight feather shaft. The damping (Q−1) can be calculated according to the
following equation [57]:

Q−1 = tanδ =
E′′

E′
(1)

where δ is the loss angle between applied stress and strain.
As shown in Figure 5a–c, the storage modulus of the cortical samples is proved to be

nearly constant from 1 to 50 Hz in testing frequency, indicating that the frequency has no
obvious effect on the storage modulus of feather cortex. The DMA experimental results
of storage modulus show similarly varied trends, with Young’s modulus calculated in
Section 3.2. The results indicate that the storage modulus of dorsal cortex is increased from
calamus to distal shaft (Figure 5a) and is gradually reduced in lateral cortex (Figure 5b). The
previous papers have reported that deformability exhibits apparent variation according
to the local fiber orientations; when the loading direction is parallel to the fibers, it forces
them to be impeded by the matrix; loading perpendicular tends to separate fibers, and
the force is mostly endured by the softer matrix [58]. Therefore, it can be assumed that
the capacity of cortex to inhibit deformation and store of elastic deformation energy is
enhanced as the increase of axial fibers in distal shaft, which leads to the improved storage
modulus. Additionally, the damping of dorsal and ventral cortex at middle shaft is much
higher than that at calamus and distal shaft (Figure 5d,f). However, the damping of lateral
cortex both on the middle and distal shaft are approximate and are lower than that of
calamus. It is consistent with the FTIR analysis in Section 3.1, which indicates the relatively
higher content of branched chain within middle shaft than other segments, leading to the
improvement of damping [50–52].

Furthermore, the dorsal, ventral and lateral regions of the calamus shaft all exhibit
almost the same storage modulus and damping (Figure 5a–c). These results support the
aforementioned analysis for calamus cortex—that the molecular compositions distributed
in calamus cortex are mainly uniform, and the calamus cortex has a homogeneous fibrous
structure, causing similar energy storage and dissipation capacity under dynamic loading.
It is also notable that the damping of dorsal and ventral cortex on calamus shaft is close
to that on distal shaft (Figure 5d,f), even though the amount of branched chain within the
calamus cortex is proved to be higher than distal cortex. This compensation for damping
performance may be caused by the effect of large number of interfaces between axial
fibers and matrix on enhancing the internal friction, i.e., damping of composite [23]. The
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interfaces between the fibers and the matrix, which correspondingly distributed along the
load direction, are easily inclined to slip and may be able to consume energy effectively.
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3.4. Damage Behaviors of Bended Feather Shaft

As shown in Figure 6a, the force pattern of flight feather shaft is similar to cantilever
beam [30]. Accordingly, the distribution of load, shear force and bending moment through
the outside rachis (including middle and distal shaft) are analyzed and shown in Figure 6b.
Both the maximum shear force and bending moment are produced in middle shaft near
the calamus and are gradually decreased towards the distal shaft. Thus, the integrated
mechanical properties of middle shaft should be much better than other segments to tackle
the complicated load states, which also conforms to the experimental results above.

The dorsal surfaces of specimens are loaded until the load dropped, which closely
simulates the real stress condition of flight feathers [30]. The flexural stress–strain curves are
shown in Figure 7b–d. The acoustic measurements are coupled with three-point bending
tests to further research the mechanical behaviors of feather shaft, especially real-time
damage patterns. The analysis for fracture morphology indicates three fracture modes
at least: matrix breakage, fiber-matrix interface dissociation and fiber rupture (Figure 8).
Similar to the results in previous works [32–34,59,60], the collected AE signals could be
divided into high- (type C, from 220 to 250 kHz), medium- (type B, from 170 to 200 kHz)
and low- (type A, from 130 to 160 kHz) frequency bands, corresponding to fiber rupture,
fiber dissociation and matrix breakage, respectively.

The results for three-point bending tests on feather shaft indicate that the bending
responses of calamus, middle and distal shaft are particularly different. The ultimate
load of middle shaft is much higher than that of calamus and distal shaft, which benefits
to adequately cope with severe force and large bending moment on middle shaft. The
load-carrying capacity of calamus is relatively weak because it is hidden internally to avoid
severe and complex load. Notably, the load-displacement curves indicate that calamus
exhibits catastrophic failure after elastic stage, whereas both middle and distal shaft failed
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after elastic deformation and yield stage, and the yield stage of middle shaft is more durable
than that of distal shaft.
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The fibrous structure and corresponding variation of fracture patterns in different
cortex regions is expected to influence the bending behaviors of shaft. As shown in
Figure 8a, the failure mode of calamus is the same as the hollow and thin-walled composite
tube, exhibiting straight buckling crack throughout the dorsal cortex under compressive
stress. The zigzag edge containing debonding fiber bundles and broken circumferential
fibers can be observed along the crack on calamus. The collected AE signals further clarify
the damaged behaviors of calamus shaft, and both the type A (matrix breakage) and
type B signals (fiber dissociation) are initially and simultaneously detected in elastic stage
(Figure 7e), which indicates that the matrix breakage and fiber dissociation concurrent firstly.
The continued type A and B signals are deemed to be associated with continuous damage
in the matrix and interface after the crack initiation in matrix. The crack is propagated and
then deflected by circumferential fibers, leading to the zigzag fracture morphology. While
the load is increased, the type A and B signals persist, and the relatively concentrated type
C signals are subsequently detected before final failure, implying that the fiber rupture
gives rise to the final fracture of calamus.

However, only type A signals are initially detected during rachis bending, indicating
prior occurrence of extensive matrix breakage. In rachis, large amount of discontinuous
microcracks with bridging fibers can be observed in fracture morphologies of lateral cortex
(Figure 8c,e). As mentioned in Section 3.1, the matrix in lateral cortex of rachis may
be fragile due to the relatively few hydrogen-bond, which induces the prior fracture of
the matrix under shear stress in lateral cortex (Figure 6c), causing large amount of type
A signals in the first place. These disconnected microcracks dissipate the load energy,
and the bridging crossed-fiber inhibits further growth of microcracks to avoid excessive
propagation. The following type B signals occur near the origin of yield stage, implying
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that the crack propagates through the matrix and then penetrates the fiber-matrix interface
to cause the yielding of shaft. As shown in Figure 8b, a lot of ‘ligament-like’ fiber bundles
can be observed on dorsal cortex of middle shaft. The ‘ligament-like’ fiber bundles are
laniated and exhibit irregular edge, which is supposed to result from the binding effect of
circumferential fiber on crack propagation through the interface between axial fiber and
matrix. However, the fracture morphology of distal shaft exhibits an axial smooth crack
through the cortex, and fewer ‘ligament-like’ fiber bundles exist (Figure 8d), thus resulting
in rapid failure of distal shaft after yield. The bending damage patterns of eagle feather
shafts are similar to that of seagull, which also include deflected matrix crack, bridge
ligament, ruptured fibers and unconnected microcracks [11]. These findings can facilitate
clarification for strengthening and toughening mechanisms of these typical thin-walled
biocomposites, e.g., the inhibition of crack propagation by bridging ligament to enhance
structure and effect of microcracks on dissipating load energy to improve the toughness.

In summary, the combination analysis of AE signals and fracture morphologies can
contribute to clarify the real-time damage behaviors of feather shaft under bending force.
The anisotropic fibrous structure leads to different damage patterns of cortex in flexural
feather shaft.

4. Conclusions

The anisotropic features of the cortex are investigated, including the keratin composi-
tion, tensile response, dynamic mechanics properties and damage patterns of the thin-wall
feather shaft. The significant findings of the current work are summarized as follows:

• The keratin composition of the calamus cortex is almost homogeneous. In rachis, both
the HBs and the side-chain in the lateral cortex are less than that in the dorsal cortex
and ventral cortex. Besides, the HBs and side-chain in the dorsal cortex of the middle
shaft are much higher than that in other segments.

• The tensile properties, including Young’s modulus, tensile strength and breaking
strain, are influenced by the keratin structure and fibrous structure. The dominant
damage pattern of the stretched dorsal cortex varies from transverse fracture with
fiber rupture to axial splitting towards the distal side of the shaft due to the gradual
reduction of the circumferential fibers. The lateral cortex of rachis exhibits zigzag
fracture with extensive delamination due to the crossed fibrous structure.

• The varied trend of the storage modulus of cortex strips is consistent with Young’s
modulus. The storage modulus of the dorsal cortex on the distal shaft is the highest,
and the lateral cortex shows lower storage modulus than other parts, which result
from the different keratin composition and fibrous structure. The damping of dorsal
and ventral cortex on distal shaft is relatively superior due to the larger amount of
side chains and the interface motion between axial fiber and matrix.

• The shafts under bending load fail due to the fracture of dorsal cortex on compressive
side. The matrix breakage and fiber dissociation firstly occur in calamus and then
deteriorate; finally, the calamus fails due to the fiber rupture. Many ‘ligament-like’
fiber bundles can be observed on bended middle shaft, which are caused by initial
matrix breakage and subsequent crack deflection by fiber. The distal shaft is broken
by persistent matrix fracture with few fibers’ dissociation and rupture, leading to a
smooth crack edge. Moreover, both in the middle and distal shafts, discontinuous
microcracks are spawned on the lateral cortex and constrained by crossed fiber.

• Further study to design and fabricate a novel thin-walled structure, which is stimulated
by findings and analyses, including the anisotropic features and damage behaviors of
flight feather shaft in this work, is anticipated to be carried out in the future.
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