organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 9-fluoro-5,12-dioxo-5,12-dihydroindolizino[2,3-g]quinoline-6-carboxylate

Da-Li Zhang,^a Li-Ping Zhang,^a Jia Yao,^b Xi-Wei Wu^a and Lin-Kun An^a*

^aSchool of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China Correspondence e-mail: Issalk@mail.sysu.edu.cn

Received 4 June 2012; accepted 14 June 2012

Key indicators: single-crystal X-ray study; T = 136 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.101; data-to-parameter ratio = 10.1.

In the title molecule, $C_{18}H_{11}FN_2O_4$, the fused four- ring system is essentially planar, with an r.m.s. deviation of 0.032 Å. In the crystal, molecules are connected by π - π stacking interactions [centroid-centroid distances = 3.5684 (9) and 3.8247 (9) Å] into chains along [100].

Related literature

The title compound was obtained in an attempt to synthesize a Top1 (DNA topoisomerase IB) inhibitor. For general background to Top1, see: Pommier (2006). For the synthesis, see: Shen *et al.* (2008); Cheng *et al.* (2008). For a related structure, see: Wu *et al.* (2011). For the Top1 inhibitory activity of a related indolizinoquinoline-5,12-dione derivative, see: Wu *et al.* (2010).

Experimental

Crystal data C₁₈H₁₁FN₂O₄

 $M_r = 338.29$

a = 6.85562 (10) Å	Cu $K\alpha$ radiation
b = 12.12898 (16) Å	$\mu = 1.04 \text{ mm}^{-1}$
c = 17.0304 (2) Å	T = 136 K
$\beta = 94.2306 \ (13)^{\circ}$	$0.30 \times 0.20 \times 0.20$ mm
V = 1412.25 (3) Å ³	
Data collection	
Agilent Xcalibur Onyx Nova	5740 measured reflections
diffractometer	2723 independent reflections
Absorption correction: multi-scan	2278 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Agilent, 2011)	$R_{\rm int} = 0.025$
$T_{\min} = 0.550, \ T_{\max} = 1.000$	
Refinement	
$D[E^2 > 2\pi(E^2)] = 0.027$	270 momentana

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 270 parameters $wR(F^2) = 0.101$ All H-atom parameters refinedS = 1.08 $\Delta \rho_{max} = 0.30 \text{ e } \text{ Å}^{-3}$ 2723 reflections $\Delta \rho_{min} = -0.24 \text{ e } \text{ Å}^{-3}$

Z = 4

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 30801425) and the Guangdong Natural Science Fund (No. 10151008901000022).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5489).

References

Monoclinic, $P2_1/c$

- Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- Cheng, Y., An, L. K., Wu, N., Wang, X. D., Bu, X. Z., Huang, Z. S. & Gu, L. Q. (2008). *Bioorg. Med. Chem.* 16, 4617–4625.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Pommier, Y. (2006). Nat. Rev. Cancer, 6, 789-802.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shen, D. Q., Cheng, Y., An, L. K., Bu, X. Z., Huang, Z. S. & Gu, L. Q. (2008). *Chin. Chem. Lett.* 19, 533–536.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, N., Wu, X. W., Agama, K., Pommier, Y., Du, J., Li, D., Gu, L. Q., Huang, Z. S. & An, L. K. (2010). *Biochemistry*, 49, 10131–10136.
- Wu, X. W., Wu, Z. P., Wang, L. X., Zhang, H. B., Chen, J. W., Zhang, W., Gu, L. Q., Huang, Z. S. & An, L. K. (2011). Eur. J. Med. Chem. 46, 4625–4633.

supplementary materials

Acta Cryst. (2012). E68, o2548 [doi:10.1107/S160053681202692X]

Ethyl 9-fluoro-5,12-dioxo-5,12-dihydroindolizino[2,3-g]quinoline-6-carboxylate

Da-Li Zhang, Li-Ping Zhang, Jia Yao, Xi-Wei Wu and Lin-Kun An

Comment

Top1 is an essential nuclear enzyme, and can be used as a target to discover anticancer agents (Pommier, 2006). In our previous research, we found ethyl 7-fluoro-5,12-dioxo-5,12-dihydroindolizino[2,3-g] quinoline-6-carboxylate is a strong Top1 inhibitor with a different inhibitory mechanism from camptothecin, a well known Top1 inhibitor (Wu *et al.* 2010). In order to investigate the Top1 inhibitory activity of the 9-fluoro substituted isomer, the title compound was synthesized according to a modified literature method (Shen *et al.* 2008; Cheng *et al.* 2008; Wu *et al.* 2011) and its crystal structure was determined.

The asymmetric unit of the title compound is shown in figure 1. In the molecule the four fused aromatic rings system is approximately planar with an r.m.s. deviation = 0.032 Å. In the crystal, molecules are connected by π - π stacking interactions to form chains along [100]. Cg1···Cg1ⁱ = 3.5684 (9)Å and Cg1···Cg4ⁱⁱ = 3.8247 (9) Å, where Cg1 and Cg2 are the centroids of the N2/C8/C7/C6/C13 and C4/C5/C6/C13/C14/C15 rings [symmetry codes: (i) -x, 1-y, 1-z, (ii) 1-x, 1-y, 1-z].

Experimental

According to a modified literature method (Shen *et al.*, 2008; Cheng *et al.*, 2008; Wu *et al.*, 2011), 12 equivalents of 3-fluoropyridine reacted with 6,7-dichloroquinoline-5,8-dione and ethyl acetoacetate to give the title compound as orange solid. Needle-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the title compound in chloroform-ethyl acetate (20/1, v/v).

Refinement

All H atoms were refined indpendently with isotropic displacement parameters.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis RED* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of the title compound. The displacement ellipsoids are at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Ethyl 9-fluoro-5,12-dioxo-5,12-dihydroindolizino[2,3-g]quinoline-6-carboxylate

Crystal data	
$C_{18}H_{11}FN_2O_4$	F(000) = 696
$M_r = 338.29$	$D_{\rm x} = 1.591 {\rm Mg m^{-3}}$
Monoclinic, $P2_1/c$	Cu K α radiation, $\lambda = 1.5418$ Å
Hall symbol: -P 2ybc	Cell parameters from 3543 reflections
a = 6.85562 (10) Å	$\theta = 2.6 - 72.7^{\circ}$
b = 12.12898 (16) Å	$\mu = 1.04 \text{ mm}^{-1}$
c = 17.0304 (2) Å	T = 136 K
$\beta = 94.2306 (13)^{\circ}$	Needle, orange
V = 1412.25 (3) Å ³	$0.30 \times 0.20 \times 0.20$ mm
Z = 4	

Data collection

Agilent Xcalibur Onyx Nova diffractometer Radiation source: Nova (Cu) X-ray Source Mirror monochromator Detector resolution: 8.2417 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011) $T_{\min} = 0.550, T_{\max} = 1.000$	5740 measured reflections 2723 independent reflections 2278 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 72.9^{\circ}, \theta_{min} = 5.2^{\circ}$ $h = -8 \rightarrow 8$ $k = -14 \rightarrow 10$ $l = -20 \rightarrow 20$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.101$ S = 1.08	neighbouring sites
2723 reflections 270 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0396P)^2 + 0.8533P]$ where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm A}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.02823 (18)	0.90196 (9)	0.34624 (7)	0.0382 (3)	
O2	0.28727 (18)	0.79052 (10)	0.60332 (7)	0.0266 (3)	
03	0.1029 (2)	0.36760 (11)	0.33751 (7)	0.0301 (3)	
01	0.3911 (2)	0.34756 (10)	0.58977 (7)	0.0307 (3)	
N1	0.4460 (2)	0.68373 (12)	0.73454 (9)	0.0241 (3)	
O4	0.2439 (2)	0.28907 (10)	0.44611 (8)	0.0291 (3)	
C4	0.4124 (2)	0.51043 (14)	0.66509 (10)	0.0199 (4)	
N2	0.1785 (2)	0.66666 (11)	0.45980 (8)	0.0195 (3)	
C13	0.2564 (2)	0.62440 (14)	0.53105 (10)	0.0192 (4)	
C6	0.2735 (2)	0.51065 (14)	0.52314 (10)	0.0193 (4)	
C16	0.1782 (2)	0.37539 (14)	0.40402 (10)	0.0204 (4)	
C14	0.3084 (2)	0.68974 (14)	0.60029 (10)	0.0199 (4)	
C7	0.2028 (2)	0.48181 (14)	0.44537 (10)	0.0199 (4)	
C5	0.3582 (2)	0.44629 (14)	0.59152 (10)	0.0202 (4)	
C15	0.3912 (2)	0.62469 (14)	0.66995 (10)	0.0206 (4)	
C12	0.1396 (3)	0.77509 (15)	0.44053 (11)	0.0238 (4)	

C1	0.5239 (3)	0.62799 (15)	0.79713 (11)	0.0270 (4)
C10	0.0304 (3)	0.71363 (16)	0.30895 (11)	0.0286 (4)
C3	0.4925 (2)	0.45453 (15)	0.73164 (10)	0.0223 (4)
C18	0.2975 (3)	0.09848 (17)	0.46821 (13)	0.0328 (5)
C8	0.1448 (2)	0.58082 (14)	0.40663 (10)	0.0204 (4)
C2	0.5502 (3)	0.51463 (15)	0.79815 (11)	0.0253 (4)
C9	0.0689 (2)	0.60677 (15)	0.32938 (11)	0.0231 (4)
C17	0.2236 (3)	0.18208 (15)	0.40799 (12)	0.0265 (4)
C11	0.0667 (3)	0.79580 (15)	0.36591 (11)	0.0266 (4)
H1	0.568 (3)	0.6713 (18)	0.8436 (12)	0.028 (5)*
H17A	0.302 (3)	0.1835 (16)	0.3619 (12)	0.023 (5)*
H2	0.607 (3)	0.4777 (17)	0.8449 (12)	0.026 (5)*
Н9	0.043 (3)	0.5454 (19)	0.2945 (13)	0.033 (6)*
H3	0.513 (3)	0.3732 (18)	0.7311 (12)	0.031 (5)*
H12	0.167 (3)	0.8305 (18)	0.4819 (13)	0.032 (6)*
H10	-0.018 (3)	0.7362 (18)	0.2575 (13)	0.034 (6)*
H17B	0.079 (3)	0.1699 (18)	0.3898 (12)	0.033 (6)*
H18A	0.439 (4)	0.117 (2)	0.4875 (15)	0.052 (7)*
H18B	0.217 (4)	0.099 (2)	0.5139 (15)	0.045 (7)*
H18C	0.291 (3)	0.022 (2)	0.4457 (13)	0.039 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0529 (7)	0.0221 (6)	0.0372 (7)	0.0044 (5)	-0.0126 (5)	0.0072 (5)
O2	0.0321 (7)	0.0185 (6)	0.0281 (7)	0.0017 (5)	-0.0049 (5)	-0.0011 (5)
O3	0.0403 (7)	0.0246 (7)	0.0237 (7)	-0.0013 (6)	-0.0091 (6)	-0.0024 (5)
01	0.0468 (8)	0.0173 (7)	0.0265 (7)	0.0026 (6)	-0.0071 (6)	0.0008 (5)
N1	0.0267 (8)	0.0217 (8)	0.0235 (8)	0.0003 (6)	-0.0008 (6)	-0.0025 (6)
O4	0.0408 (8)	0.0168 (6)	0.0278 (7)	0.0042 (6)	-0.0096 (6)	-0.0034 (5)
C4	0.0181 (8)	0.0186 (8)	0.0229 (9)	-0.0005 (6)	0.0003 (6)	-0.0009 (7)
N2	0.0178 (7)	0.0175 (7)	0.0229 (7)	0.0000 (5)	-0.0005 (5)	0.0003 (6)
C13	0.0175 (8)	0.0178 (8)	0.0218 (9)	0.0005 (6)	-0.0015 (6)	0.0025 (6)
C6	0.0169 (8)	0.0202 (8)	0.0208 (8)	0.0004 (6)	0.0009 (6)	-0.0008 (7)
C16	0.0165 (8)	0.0220 (9)	0.0227 (9)	-0.0015 (6)	0.0012 (6)	-0.0008 (7)
C14	0.0183 (8)	0.0160 (8)	0.0252 (9)	-0.0001 (6)	0.0010 (7)	-0.0008 (7)
C7	0.0173 (8)	0.0196 (8)	0.0223 (8)	-0.0005 (6)	-0.0016 (6)	-0.0004 (7)
C5	0.0201 (8)	0.0179 (9)	0.0225 (9)	-0.0007 (7)	0.0012 (7)	0.0019 (7)
C15	0.0212 (8)	0.0181 (8)	0.0219 (9)	-0.0023 (7)	-0.0010 (7)	-0.0002 (7)
C12	0.0235 (9)	0.0192 (9)	0.0284 (9)	0.0015 (7)	-0.0011 (7)	0.0025 (7)
C1	0.0330 (10)	0.0241 (9)	0.0231 (9)	-0.0005 (8)	-0.0046 (8)	-0.0025 (7)
C10	0.0277 (9)	0.0320 (10)	0.0251 (9)	0.0004 (8)	-0.0049 (7)	0.0037 (8)
C3	0.0230 (8)	0.0194 (9)	0.0243 (9)	-0.0006 (7)	0.0003 (7)	0.0020 (7)
C18	0.0386 (11)	0.0218 (10)	0.0375 (12)	0.0030 (8)	-0.0018 (9)	0.0016 (8)
C8	0.0174 (8)	0.0199 (9)	0.0237 (9)	-0.0011 (6)	-0.0001 (7)	-0.0002 (7)
C2	0.0297 (9)	0.0226 (9)	0.0229 (9)	0.0005 (7)	-0.0027 (7)	0.0028 (7)
C9	0.0219 (8)	0.0235 (9)	0.0234 (9)	-0.0002 (7)	-0.0023 (7)	0.0005 (7)
C17	0.0309 (10)	0.0186 (9)	0.0293 (10)	0.0002 (7)	-0.0023 (8)	-0.0053 (7)
C11	0.0286 (9)	0.0183 (9)	0.0320 (10)	0.0021 (7)	-0.0029 (8)	0.0069 (7)

Geometric parameters (Å, °)

F1—C11	1.352 (2)	С7—С8	1.413 (2)
O2—C14	1.232 (2)	C12—C11	1.354 (3)
O3—C16	1.213 (2)	C12—H12	0.98 (2)
O1—C5	1.219 (2)	C1—C2	1.387 (3)
N1—C15	1.343 (2)	C1—H1	0.98 (2)
N1—C1	1.339 (2)	C10—C9	1.363 (3)
Q4—C16	1.329 (2)	C10—C11	1.400 (3)
04—C17	1.453 (2)	C10—H10	0.95 (2)
C4—C5	1.498 (2)	C3—C2	1.380 (3)
C4—C15	1.397 (2)	С3—Н3	1.00(2)
C4—C3	1.398 (2)	C18—C17	1.503 (3)
N2—C13	1.387 (2)	C18—H18A	1.02 (3)
N2—C12	1.377 (2)	C18—H18B	0.99 (3)
N2—C8	1.388 (2)	C18—H18C	1.00 (2)
C13—C6	1.392 (2)	C8—C9	1.414 (2)
C13—C14	1.443 (2)	C2—H2	0.97 (2)
C6—C7	1.420 (2)	С9—Н9	0.96 (2)
C6—C5	1.484 (2)	C17—H17A	0.98 (2)
C16—C7	1.474 (2)	C17—H17B	1.02 (2)
C14—C15	1.501 (2)		(-)
C1—N1—C15	116.99 (15)	N1—C1—H1	117.0 (12)
C16—O4—C17	116.44 (13)	C2-C1-H1	119.3 (12)
C15—C4—C5	122.98 (15)	C9—C10—C11	118.60 (17)
C15—C4—C3	118.01 (16)	C9—C10—H10	123.7 (14)
C3—C4—C5	118.99 (15)	C11—C10—H10	117.7 (13)
C13—N2—C8	109.17 (14)	С4—С3—Н3	121.3 (12)
C12—N2—C13	128.08 (15)	C2—C3—C4	118.75 (16)
C12—N2—C8	122.75 (15)	С2—С3—Н3	119.9 (12)
N2—C13—C6	108.13 (14)	C17—C18—H18A	109.7 (15)
N2—C13—C14	124.58 (15)	C17—C18—H18B	110.7 (14)
C6-C13-C14	127.29 (15)	C17—C18—H18C	111.0 (13)
C13—C6—C7	108.00 (15)	H18A—C18—H18B	109 (2)
C13—C6—C5	118.44 (15)	H18A—C18—H18C	109.6 (19)
C7—C6—C5	133.55 (16)	H18B—C18—H18C	107.2 (19)
O3—C16—O4	123.11 (16)	N2—C8—C7	107.77 (14)
O3—C16—C7	122.68 (16)	N2—C8—C9	118.18 (15)
O4—C16—C7	114.21 (14)	C7—C8—C9	134.04 (16)
O2—C14—C13	123.79 (16)	C1—C2—H2	120.8 (12)
O2—C14—C15	121.81 (15)	C3—C2—C1	118.96 (17)
C13—C14—C15	114.40 (14)	C3—C2—H2	120.2 (12)
C6—C7—C16	132.87 (15)	C10—C9—C8	120.02 (17)
C8—C7—C6	106.93 (14)	С10—С9—Н9	123.8 (13)
C8—C7—C16	120.18 (15)	С8—С9—Н9	116.1 (13)
O1—C5—C4	119.70 (15)	O4—C17—C18	106.34 (15)
O1—C5—C6	124.04 (16)	O4—C17—H17A	107.5 (12)
C6—C5—C4	116.21 (14)	O4—C17—H17B	108.8 (12)
N1—C15—C4	123.62 (16)	C18—C17—H17A	112.4 (11)
	× /		

N1—C15—C14	115.71 (15)	C18—C17—H17B	112.2 (12)
C4—C15—C14	120.65 (15)	H17A—C17—H17B	109.3 (16)
N2—C12—H12	117.3 (13)	F1—C11—C12	117.46 (17)
C11—C12—N2	116.90 (17)	F1-C11-C10	118.99 (16)
C11—C12—H12	125.8 (13)	C12—C11—C10	123.55 (17)
N1—C1—C2	123.66 (17)		
O2-C14-C15-N1	-2.0 (2)	C14—C13—C6—C5	-1.6 (3)
O2—C14—C15—C4	179.59 (17)	C7—C6—C5—O1	3.6 (3)
O3—C16—C7—C6	175.43 (17)	C7—C6—C5—C4	-179.07 (17)
O3—C16—C7—C8	-2.5 (3)	C7C8C9C10	-178.48 (19)
N1—C1—C2—C3	-0.5 (3)	C5-C4-C15-N1	-177.38 (16)
O4—C16—C7—C6	-4.0 (3)	C5-C4-C15-C14	0.9 (3)
O4—C16—C7—C8	178.07 (15)	C5—C4—C3—C2	177.18 (16)
C4—C3—C2—C1	1.0 (3)	C5—C6—C7—C16	3.4 (3)
N2-C13-C6-C7	-0.53 (19)	C5—C6—C7—C8	-178.46 (17)
N2-C13-C6-C5	178.65 (14)	C15—N1—C1—C2	0.2 (3)
N2-C13-C14-O2	0.6 (3)	C15—C4—C5—O1	175.68 (17)
N2-C13-C14-C15	-179.64 (15)	C15—C4—C5—C6	-1.8 (2)
N2-C12-C11-F1	-179.88 (16)	C15—C4—C3—C2	-1.3 (2)
N2-C12-C11-C10	0.0 (3)	C12—N2—C13—C6	-178.91 (16)
N2-C8-C9-C10	-0.2 (3)	C12—N2—C13—C14	1.3 (3)
C13—N2—C12—C11	178.63 (17)	C12—N2—C8—C7	179.30 (15)
C13—N2—C8—C7	0.03 (18)	C12—N2—C8—C9	0.6 (2)
C13—N2—C8—C9	-178.66 (15)	C1—N1—C15—C4	-0.4 (3)
C13—C6—C7—C16	-177.61 (17)	C1-N1-C15-C14	-178.78 (16)
C13—C6—C7—C8	0.54 (19)	C3—C4—C5—O1	-2.7 (2)
C13—C6—C5—O1	-175.32 (17)	C3—C4—C5—C6	179.87 (15)
C13—C6—C5—C4	2.0 (2)	C3—C4—C15—N1	1.0 (3)
C13—C14—C15—N1	178.18 (15)	C3—C4—C15—C14	179.27 (15)
C13—C14—C15—C4	-0.2 (2)	C8—N2—C13—C6	0.31 (19)
C6-C13-C14-O2	-179.20 (17)	C8—N2—C13—C14	-179.48 (16)
C6-C13-C14-C15	0.6 (3)	C8—N2—C12—C11	-0.5 (3)
C6—C7—C8—N2	-0.35 (18)	C9—C10—C11—F1	-179.75 (17)
C6—C7—C8—C9	178.04 (18)	C9—C10—C11—C12	0.4 (3)
C16—O4—C17—C18	-177.06 (16)	C17—O4—C16—O3	0.8 (3)
C16—C7—C8—N2	178.08 (15)	C17—O4—C16—C7	-179.83 (15)
C16—C7—C8—C9	-3.5 (3)	C11—C10—C9—C8	-0.2 (3)
C14—C13—C6—C7	179.26 (16)		