
Assessing Single-Cell Transcriptomic Variability through 
Density-Preserving Data Visualization

Ashwin Narayan1,2,3, Bonnie Berger1,2,3,*, Hyunghoon Cho2,3,*

1Department of Mathematics, MIT, Cambridge, MA 02139, USA

2Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

3Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA

Abstract

Nonlinear data-visualization methods, such as t-SNE and UMAP, summarize the complex 

transcriptomic landscape of single cells in 2D or 3D, but they neglect the local density of data 

points in the original space, often resulting in misleading visualizations where densely populated 

subsets of cells are given more visual space than warranted by their transcriptional diversity in the 

dataset. We present den-SNE and densMAP, density-preserving visualization tools based on t-SNE 

and UMAP, respectively, and demonstrate their ability to accurately incorporate information about 

transcriptomic variability into the visual interpretation of single-cell RNA-seq data. Applied to 

recently published datasets, our methods reveal significant changes in transcriptomic variability in 

a range of biological processes, including heterogeneity in transcriptomic variability of immune 

cells in blood and tumor, human immune cell specialization, and the developmental trajectory of 

C. elegans. Our methods are readily applicable to visualizing high-dimensional data in other 

scientific domains.

Introduction

Exploratory analyses of large-scale biological datasets typically begin with visualizing the 

data in low dimensions, in the hopes of revealing high-level structural insights to be probed 

in downstream analyses. This approach has been especially critical in the rapidly emerging 

field of single-cell transcriptomics, where high-throughput single-cell RNA sequencing 

(scRNA-seq) technologies are empowering researchers to study gene expression at an 

unprecedented resolution across diverse tissues, organisms, and biological conditions. 

Driven by the high-dimensionality of scRNA-seq datasets (thousands of different transcripts 

per cell) and their increasingly large-scale (hundreds of thousands of cells), many 

researchers rely on 2D or 3D data visualizations for quickly and intuitively finding structural 
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patterns (e.g. clusters or trajectories) and communicating biological insights with the 

scientific community1,2.

Two of the most popular techniques for high-dimensional data visualization are t-stochastic 

neighborhood embedding3 (t-SNE) and uniform manifold approximation and projection4 

(UMAP), both of which have been widely adopted in scRNA-seq analysis5,6. In contrast to 

traditional methods for dimensionality reduction, e.g. principal component analysis (PCA), 

both t-SNE and UMAP learn a nonlinear embedding of the original space by optimizing the 

embedding coordinates of individual data points using iterative algorithms. Both methods 

aim to accurately preserve the original local neighborhood of each data point in the 

visualization, while being more permissive of distortions in long-range distances. Because of 

the expressiveness of nonlinear embeddings, t-SNE and UMAP are well-regarded for their 

empirical performance at elucidating sophisticated manifold structures and clustering 

patterns in high-dimensional data1,2.

Despite their strengths, t-SNE and UMAP suffer from a major, often-overlooked pitfall: they 

neglect information about the local density of data points in the source dataset. In other 

words, data points whose neighbors are close-by in the original data are not distinguished in 

the visualization from those whose neighbors are far away. This limitation leads to 

misleading visualizations where the apparent size of a cluster largely reflects the number of 

points in the cluster rather than its underlying heterogeneity, as our results demonstrate. In 

scRNA-seq data, this omitted information about heterogeneity corresponds to the variability 
of gene expression within a subpopulation of cells. Thus, accurately portraying differences 

in local density in the visualization could provide another “dimension” of information, 

reflecting heretofore hidden insights into the transcriptomic landscape of single cells.

Here, we introduce density-preserving data visualization methods den-SNE and densMAP 

that build upon t-SNE and UMAP, respectively, to enable researchers to more accurately 

visualize and extract deeper biological insights from the growing compendium of single-cell 

transcriptomic experiments. Our methods leverage the insight that, since both t-SNE and 

UMAP construct their embeddings by iteratively optimizing an objective function, we can 

augment that objective function with an auxiliary term that measures the distortion of local 

density at each data point in the visualization. To this end, we develop a general, 

differentiable measure of local density, called the local radius, which intuitively represents 

the average distance to the nearest neighbors of a given point. Our design of this measure 

enables efficient optimization of the density-augmented visualization objective. The 

algorithmic techniques we introduce could be used to augment other visualization tools 

based on iterative optimization and thus are of general interest.

To demonstrate the utility of density-preserving visualization, we applied den-SNE and 

densMAP to a diverse range of published scRNA-seq datasets from lung cancer patients7, 

human peripheral blood cells8 and embryonic roundworm Caenorhabditis elegans9, as well 

as the UK Biobank human genotype profiles and the canonical MNIST hand-written digit 

images. These methods not only capture additional information beyond existing 

visualization techniques but also biological insights others miss, including immune cell 

transcriptomic variability in tumors; specialization of monocytes and dendritic cells; and 
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temporally modulated transcriptomic variability across developmental lineages of C. 
elegans. Our work shows that density-preserving data visualization can detect unforeseen 

patterns in single-cell transcriptomic landscapes and enrich our understanding of biology.

Results

Overview of density-preserving data visualization.

Our density-preserving visualization methods, den-SNE and densMAP, augment t-SNE and 

UMAP respectively, generating embeddings that preserve both local structure and variability 

in the original data (Figure 1 and Methods). To capture the local structure of the data, t-SNE 

and UMAP both create a nearest-neighbors graph and preserve only the distances between 

neighboring points in this graph. We use the same nearest-neighbors graphs underpinning 

each of the original methods to calculate a local radius around each point, which represents 

the average distance from the point to its nearest neighbors; this conveys the density of that 

point’s neighborhood. The two original algorithms have an objective function that quantifies 

the agreement between a given embedding and the original nearest-neighbors graph, and 

they rearrange the embedding to maximize this agreement. We augment these objective 

functions with an additional term that measures the agreement between the local radii in the 

original dataset and in the embedding, ensuring that local structure is still preserved in the 

embedding while also conveying information about local variability. Our techniques have 

strong theoretical foundations, enable efficient optimization, and are easily generalized to 

other data visualization algorithms that similarly use gradient-based optimization (Methods, 

Supplementary Notes 1–3).

Applying our methods to simulated datasets featuring heterogeneous density landscapes 

revealed the misleading visual conclusions that could be made without density preservation 

(Figure 2). Visualizing a mixture-of-Gaussian point clouds with different variances, t-SNE 

and UMAP generate clusters that are all similarly sized, while den-SNE and densMAP 

accurately depict the different variances (Figure 2a). When the point clouds are translated 

linearly with overlap, reflecting a trajectory, lack of density preservation in t-SNE and 

UMAP obscures dynamic changes in variability over the trajectory (Figure 2c). Conversely, 

when size is constant but a region is oversampled, t-SNE and UMAP overrepresent this 

oversampled region, giving the impression of increased variability and downplaying 

undersampled regions (Figures 2b and d). Our following results show that these 

considerations are critical in biological analyses.

Visualizing the heterogeneity of immune cells in tumor.

To illustrate the value of density-preserving visualization for biological studies, we first 

applied our methods to a scRNA-seq dataset of 41,861 immune cells in matched tumor and 

peripheral blood samples from seven non-small-cell lung cancer (NSCLC) patients7. The 

original study identified distinct transcriptomic states spanned by tumor-infiltrating myeloid 

cells that were reproducibly observed across different individuals, suggesting their potential 

relevance for cancer immunotherapies. We asked whether our methods could more 

accurately capture the transcriptomic landscape of tumor-infiltrating immune cells than 

existing tools.
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Comparison of den-SNE and t-SNE embeddings revealed several immune cell types with 

noticeable differences between the visualizations (Figure 3): tumor-infiltrating neutrophils 

and plasma cells occupy considerably more space in the den-SNE visualization than their t-

SNE counterparts, while tumor-infiltrating T cells are relatively smaller in den-SNE. These 

discrepancies arise because visual size of a cluster in t-SNE corresponds more closely to the 

number of cells in the cluster than to underlying variability. Thus, in t-SNE, tumor-

infiltrating neutrophils (n = 2861) occupy much less space than circulating neutrophils (n = 

9217) despite den-SNE indicating they have comparable variability. The rich transcriptomic 

diversity of tumor-infiltrating plasma cells is also lost in t-SNE. Conversely, T cells, the 

most populous cell type in tumors (n = 10701) are visually overrepresented in t-SNE relative 

to their actual variability.

To quantify the improvement in density preservation that our algorithms offer, we calculate 

two complementary measures of local density in the visualization—(i) local radius and (ii) 

neighborhood count (see Methods)—and assess their correlation with the local radii in the 

original data space, which represent underlying variability in the dataset. Both measures 

quantify our perception of density in the visualizations (inversely-related for local radius); 

intuitively, the local radius captures the size of a neighborhood that contains a fixed number 

of nearest neighbors, and the neighborhood count captures the number of points within a 

fixed radius around each point. The former is consistent with how our algorithms model 

density for efficient optimization, while the latter is arguably a more direct notion of density 

previously used in the literature on visual perception10.

The accuracy of den-SNE’s visualization of local density is confirmed by the high 

correlation based on both measures (R2 = 0.650 for local radius; average R2 = 0.657 for 

neighborhood count across different length-scales) compared to t-SNE (R2 = 0.004; R2 = 

0.023) (Figure 3c; Supplementary Figure 1). Results with densMAP (R2 = 0.590; R2 = 

0.632) and UMAP (R2 = 0.045; R2 = 0.008) are analogous (Supplementary Figures 1 and 2). 

Different parameter choices for UMAP and t-SNE did not improve their density-

preservation performance (R2 < 0.05 in all cases; Supplementary Figure 3), as is expected 

based on our theoretical analysis (see Methods). We also observed that even on previously 

proposed metrics of visualization quality based on clustering accuracy and pairwise distance 

preservation6, our density-preserving tools largely preserve or improve upon the 

performance of the original methods (Supplementary Note 4; Supplementary Figures 4–8). 

Traditional dimensionality reduction approaches, including principal component analysis11 

(PCA), multidimensional scaling12 (MDS), and Isomap13, were ineffective both at 

preserving density and at visualizing clustering structure (Supplementary Figure 9). Our 

improved visualizations of simulated datasets in Figure 2 are similarly supported by our 

quantitative measures (Supplementary Figure 10).

Our visualizations motivate transcriptomic variability as a key distinguishing factor among 

cell types and biological conditions. To illustrate, we examined tumor-infiltrating 

lymphocytes (TILs) compared to those in blood. While essential in the anti-tumor immune 

response14, these cells’ molecular mechanisms in cancer remain poorly understood. Density-

preserving visualization highlighted the increased transcriptomic variability of T and B cells 

compared to their counterparts in blood (Figure 3d). Despite an apparent size-difference 
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between the tumor and blood TILs in t-SNE, lack of density-preservation means this pattern 

could only imply a difference in cell counts, not in variability of expression.

Ranking genes by their contribution to the increase in transcriptomic variability in tumor 

implicated several biological processes as potential driving factors of TIL diversity 

(Methods; Supplementary Tables 1–10). Top genes for CD8 T cells and CD4 memory T 

cells were significantly enriched in negative regulation of IL2 production, transcription, and 

metabolic processes, suggesting that T cells in tumor are subjected to variable degrees of 

proliferation control, likely in response to biochemical signals in the tumor 

microenvironments (Supplementary Tables 6 and 7). Notably, RGS1 and DUSP4 showed the 

largest difference in variability for both T cell types. RGS1 encodes a regulator for the G-

protein signaling pathway known to be involved in chemokine-induced lymphocyte 

migration15, and DUSP4 encodes a phosphatase that modulates a T cell receptor signaling 

pathway with known association with immunological disorders16. We validated the 

variability difference of these two genes in CD8 T cells between tumor and blood based on 

another scRNA-seq dataset of TILs from NSCLC patients17, along with 7 other genes in our 

list of genes ranked by contribution to variability (9 out of 19 genes were found to have 

significant increase in variance in tumor in the validation dataset; Supplementary Table 11). 

On the other hand, top genes for naïve CD4 T cells are enriched in proteins targeting 

membranes and in those that ensure the decay of mis-transcribed mRNA (Supplementary 

Table 8). For B cells, key biological processes underlying the variability difference included 

leukocyte activation and protein complex assembly for memory B cells, and response to 

cyclic AMP (a known modulator of cell proliferation) and biotic stimulus for naïve B cells, 

along with transcriptional and metabolic regulation processes similar to those implicated for 

T cells (Supplementary Tables 9 and 10).

While many genes implicated here are lowly-expressed in blood and activated in tumor, we 

also found a substantial portion (42% among top 20 genes across all cell types) that show 

statistically significant overdispersion in tumor, whereby the increase in variance cannot be 

explained by an increase in mean expression (Methods, Supplementary Tables 1–5). In fact, 

some genes, e.g. RPS27 in naïve B cells, which encodes the MPS-1 protein that modulates 

the activity of tumor-suppressor p5318, show a significant increase in variance without a 

significant change in mean. These genes are especially common in the top genes for naïve 

CD4 T cells. Their stability in mean expression implies that these key distinguishing genes 

cannot be identified by conventional differential expression analysis. Moreover, since 

standard visualization algorithms separate clusters largely based on difference in mean 

expression, the effects of these genes are lost in their visualizations. Our findings 

demonstrate that the transcriptomic variability landscape uncovered by our visualizations 

helps open new analytic directions for the study of anti-tumor immune response.

Visualizing immune cell specialization and diversification in peripheral blood.

While the above illustrates changing patterns of variability that come about due to disease, 

we show here that variability of expression within cellular subtypes also reveals underlying 

biology. We used densMAP to visualize a benchmark scRNA-seq experiment that profiled 

68,551 peripheral blood mononuclear cells (PBMC) from 10X Genomics8. While both 
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UMAP and densMAP separate the various clusters corresponding to different cell types, the 

densMAP embedding considerably expands the sizes of natural killer (NK) cells, cytotoxic 

T cells, CD14+ monocytes and dendritic cells (DCs), and shrinks naïve cytotoxic T cells 

(Figure 4a). Similar to the cancer dataset, the sizes of these clusters in UMAP correspond to 

the number of cells belonging to them and do not accurately reflect their variability of 

expression. By quantifying the agreement between the local radius in the original dataset 

and the local density measures in each visualization (Methods), we confirmed that densMAP 

more accurately preserves density (R2 = 0.712 for local radius; average R2 = 0.727 for 

neighborhood count), compared to UMAP (R2 = 0.000; R2 = 0.000) (Figure 4c; 

Supplementary Figure 11). The same pattern is observed when comparing den-SNE to t-

SNE, with the density correlations in den-SNE much higher (R2 = 0.704; R2 = 0.696) than in 

t-SNE (R2 = 0.052; R2 = 0.037) (Supplementary Figures 11 and 12).

We focus here on the monocyte and DC clusters, which are strikingly different between the 

two visualizations (Figure 4b). While both reveal two subtypes of monocytes, densMAP 

separates them by density, with a dense subcluster adjacent to a much sparser one. 

Clustering these cells in the original gene expression space indeed identifies the two 

subtypes as separate clusters (Supplementary Figure 13). These cells begin life as classical 
monocytes, characterized by expression of CD14 and a lack of CD16 (also called FCGR3A); 

these can then differentiate into CD16 monocytes, macrophages, or dendritic cells (DCs)19 

(Figure 4d). Marker gene expression associated the sparse cluster with classical monocytes 

and the dense cluster with CD16 monocytes (Figure 4f), suggesting that classical monocytes 

exhibit a high level of variability before developing into more homogeneous CD16 

monocytes. This trajectory has intriguing biological significance. Recent work has revealed 

that monocytes are an extremely heterogeneous cell type with complex intermediate states20 

and high transcriptional diversity21. However, non-classical monocytes are more specialized: 

they are thought to emerge from a small population of intermediate (CD14+CD16+) 

monocytes and spike rapidly during infections20; since their progenitor cell is rare and 

accounts for a small portion of transcriptional diversity represented by CD14 monocytes 

(Figure 4f), this supports the notion of a bottleneck in the development of non-classical 

monocytes.

We validated this difference in variability between classical and non-classical monocytes in 

two other scRNA-seq datasets of immune cells, one that profiled 1,078 monocytes, DCs and 

their subtypes22 (PBMC2) and the other that profiled 13k PBMCs from two healthy 

donors23 (PBMC3). In both, classical monocytes were sparser than non-classical ones: 

classical monocytes had larger local radii in the gene expression space than non-classical 

monocytes (one-sided Mann-Whitney U test, p = 6.61×10−7 for the PBMC2 dataset, p = 

2.89×10−4 for the PBMC3 dataset, see Methods and Supplementary Figure 14).

A similar analysis can be performed on the DC subset: this cell type shows (i) a dense 

cluster of cells adjacent to the CD14 monocytes, (ii) a dense cluster overlapping the CD16 

monocytes, and (iii) a sparser cluster near the CD14 monocytes (Figure 4b). While the 

classification of dendritic cells is still actively researched24, the colocalization of the DCs (i) 

and (ii) and the monocytes in the densMAP visualization indicates that these DCs originate 

from monocytes. By analyzing the expression of the marker genes of DC subtypes identified 
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by the PBMC2 study22 in these DC subsets, we hypothesize that (i) corresponds to classical 

monocyte-derived DCs (cDCs; DC3 in PBMC2); (ii) corresponds to the poorly understood 

CD141– CD1C– DCs (DC4 in PBMC2); and (iii) corresponds to plasmacytoid DCs (pDCs; 

DC6 in PBMC2) (see Supplementary Figure 15). Despite the apparent closeness of the DC6 

and DC4 clusters, we did not find any evidence that either subtype is derived from the other.

Our visualizations reveal that the DC3 cluster is far denser than the CD14 monocytes 

colocated with it, hinting that, as with CD16 monocytes, these cells specialize as they 

develop from CD14 monocytes. Similarly, in PBMC2, the DC3 cluster is significantly 

denser than the classical monocyte cluster (one-sided Mann-Whitney U test, p = 5.43×10−14; 

Methods and Supplementary Figure 14). In addition, the pDC cluster expands drastically in 

the density-preserving visualization compared to the standard visualization, revealing 

previously hidden variability (Figure 4b). The PBMC3 dataset was omitted from this 

analysis as it contained too few DCs to draw conclusions about subtypes.

We also note the DCs dispersed throughout the CD14 monocytes (Figure 4b). When we 

classify the DC3 subset into dense and sparse categories based on their original local radius 

(with a log-scale threshold of 3.9), we find that the sparse subset has intermediate expression 

of the marker genes of DC3 and those of CD14 monocytes (Supplementary Figure 15). 

While this could be due to misclassification (the original study assigned cell types based on 

similarity to purified samples), it could also indicate a bridging state between the two cell 

types, offering insights into the dynamics of cell state transition. These results suggest that 

there are key differences in transcriptomic variability among immune cell subtypes that are 

obscured by existing visualization tools.

Visualizing time-dependent transcriptomic variability in C. elegans development.

To explore embryo development at high-resolution, Packer et al. (2019) performed scRNA-

seq profiling of C. elegans to create an atlas of gene expression at almost every cell division 

of the embryo9. We asked whether density-preserving visualization could better capture the 

diversification (or lack thereof) of different developmental lineages, complementing 

investigations into time-dependent patterns of gene expression in organism development and 

cellular differentiation25–27.

For most of the cell types profiled, the lineage distance between cells correlates strongly 

with transcriptomic dissimilarity, and many cells from the same progenitor diverge after 

gastrulation9. Thus, an accurate visualization should show that the density of cells for most 

cell types decreases over time (reflecting increasing diversity), as the cells adopt their 

terminal fates. While both densMAP and UMAP show a central “progenitor” region that 

branches into the different major tissues, densMAP more clearly highlights the increase in 

variability in the outer branches of the lineages (Figures 5a and b). Evaluating the agreement 

between the local radius in the original dataset and both measures of local density in the 

visualization show that densMAP (R2 = 0.590 for local radius; average R2 = 0.585 for 

neighborhood count) more accurately preserves density than UMAP (R2 = 0.045; R2 = 

0.052) (Figure 5c and Supplementary Figure 16). Results are analogous when comparing 

den-SNE (R2 = 0.619; R2 = 0.596) to t-SNE (R2 = 0.000; R2 = 0.063) (Supplementary 

Figures 16 and 17).
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While transcriptomic variability generally increases over the course of differentiation, 

notable exceptions are also made apparent by densMAP. Specifically, of the cell types well-

represented (greater than 1000 cells), the intestinal, body-wall muscle (BWM), and 

hypodermis cells show relative homogeneity in density (measured by the average local 

radius in the original dataset across time) throughout embryo development when compared 

to other cell types, e.g. both non-amphid and amphid neurons and seam cells; densMAP 

more accurately preserves these temporal changes in local density than UMAP (Figures 5d 

and e).

The underlying biology supports these visual patterns since intestinal, BWM, and 

hypodermis cells are so-called semi-clonal lineage clades9. A semi-clonal lineage model is 

intermediate between clonal development, which closely adheres to the lineage structure 

whereby branching patterns in cell proliferation leads to increasingly more divergent cells, 

and non-clonal development, where daughter cells are only loosely associated with their 

progenitors and different lineage branches share commonalities through horizontal 

transitions28. Semi-clonal cell types are thus expected to remain more compact in expression 

space than clonal lineages. Indeed, when we compare the average change in density over 

embryo time for semi-clonal cells, this change is considerably lower than the average change 

for the other cell types (Supplementary Figure 17). The difference in density between these 

semi-clonal cell types and the rest is made clear in our density-preserving visualization but 

completely hidden by UMAP. In fact, the UMAP plots tend to show a decrease in density in 

many lineages because fewer cells were profiled at the late time-points (Supplementary 

Figure 17). Our methods can thus accurately portray continuous changes in transcriptomic 

variability in developmental trajectories, which are not captured by existing visualization 

tools.

General applicability of density-preserving data visualization.

Visualizing high-dimensional data is broadly useful both within and outside biology. Like t-

SNE and UMAP, our density-preserving methods require only a distance metric defined 

between data points. To illustrate the performance of our methods on other data domains, we 

analyzed a genotype dataset from the UK Biobank and the MNIST image dataset widely 

used by the machine learning community (Methods).

The UK Biobank29 (UKBB) project collects extensive genotypic and phenotypic data from 

British individuals for use in health-related research. Due to the skew in ethnicity of the 

British population, most of the individuals in the dataset self-identify as white (94% of the 

534k individuals). This lack of diversity has raised concerns about ethnic biases in 

downstream scientific analyses30. When visualizing the individuals in the dataset based on 

their genotype profiles, an analytic approach that is increasingly being explored31, t-SNE 

and UMAP show the cluster corresponding to whites disproportionately large, while the 

clusters corresponding to Asian and black people can scarcely be seen (Extended Data 

Figure 1). Visualizing this data using den-SNE and densMAP results in a more balanced 

representation of ethnicities, considerably expanding the people-of-color clusters and 

shrinking the white cluster. Existing visualization tools thus grossly under-represent the 

genetic diversity of minority populations due to their limited sample sizes. Even among the 
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white population, density-preserving visualizations obtain a more balanced representation of 

subpopulations (computationally identified; Methods). In the UMAP and t-SNE 

visualizations, only the two most populous subgroups take up significant space, whereas 

densMAP and den-SNE show five subgroups with comparable diversity.

A complementary situation occurs in the MNIST dataset, a dataset of handwritten digit 

images (Methods). Here, t-SNE and UMAP generate ten evenly sized clusters; den-SNE and 

densMAP visualizations, however, reveal that the cluster corresponding to the digit 1 is 

strikingly less variable than the other digits (Extended Data Figure 2). This is as expected, 

since 1 is drawn with considerably limited degrees of freedom. Analyzing the local radii in 

the original data reveals that, indeed, 1 has a higher density than the other digits. The 

improved accuracy of our visualizations for UKBB and MNIST datasets are supported by 

both density-preservation metrics based on local radius and neighborhood count (Extended 

Data Figures 1 and 2 and Supplementary Figures 18 and 19). Taken together, these results 

show that density-preserving visualization reveals insights about the data not captured by the 

existing methods on diverse types of datasets.

Density-preserving visualization is almost as computationally efficient as existing 
approaches.

As experimental methods continue to generate larger datasets, computational tools to 

analyze them need to scale as well. By leveraging computations already done by t-SNE and 

UMAP, our density-preserving methods incur only O(n) additional computation (in dataset 

size) and achieve the same asymptotic scaling as those methods. Although density 

preservation increases the overall runtime of den-SNE and densMAP (overhead of about 

30% for den-SNE and 20% for densMAP on our largest dataset with 250k points; Extended 

Data Figure 3), we believe that this additional cost is not onerous, when weighed against 

additional information conveyed by accurately depicting density. While t-SNE, even without 

density preservation, has limited scalability to datasets approaching many hundreds of 

thousands of cells, recent computational improvements to t-SNE for massive datasets32,33 

could be augmented with our density-preservation technique. The memory requirements of 

den-SNE and densMAP are nearly identical to those of t-SNE and UMAP, respectively 

(Extended Data Figure 3).

Discussion

Effective tools for visualizing the single-cell landscapes captured by ever-larger single-cell 

experiments are pivotal for accelerating and disseminating discoveries. den-SNE and 

densMAP overcome a major limitation of the state-of-the-art tools t-SNE and UMAP that 

they neglect differences in the local variability of gene expression across the transcriptomic 

landscape. While t-SNE and UMAP remain useful for revealing clustering or trajectory 

patterns, we demonstrated on a range of datasets that the local density information we 

incorporate into our visualizations harbors insights that can enrich our understanding of 

biology beyond what existing visualization tools offer. Our density-preservation techniques 

are broadly applicable to other visualization algorithms, including recent extensions of t-

SNE33,34 and force-directed layout embedding35,36 (FDLE), and also to other types of 
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biological data where visualization has been useful, such as scATAC-seq37 and 

metagenomics38.

In theory, targeted analyses could also capture the changes in transcriptomic variability made 

apparent by our visualizations (e.g. by comparing the variance of gene expression between 

cell types39). However, by visualizing this information over the entire dataset, our approach 

allows easier interpretation and understanding. This methodological shift is akin to how t-

SNE and UMAP have streamlined cell-type identification workflows by visually revealing 

clustering patterns in the dataset, despite the fact that clustering algorithms could be applied 

independently of visualization. Similarly, our methods can help researchers to easily grasp 

variability changes in their data and, consequently, to generate biological hypotheses.

Its analytical benefits aside, density-preserving visualization, as our results illustrate, more 

faithfully represents the underlying structure of the dataset. Even as the community becomes 

increasingly aware of the intricate limitations of existing visualization tools, inaccurate 

visualizations will continue to expose researchers to potential biases in data interpretation. A 

large body of work in the social sciences highlights the problematic nature of inaccurate 

visualizations: for example, even though distortions in Mercator projections of the world 

map are well-known, they still suggest biased conclusions to viewers40,41. Our density-

preserving visualization tools will reduce such distortions and can help prevent unintentional 

biases and misdirection when researchers interpret and share insights from these data.

Our work motivates a number of directions for further research. First, the changes in 

transcriptomic variability we discovered in tumor-infiltrating immune cells suggest 

differential variability as a general tool for characterizing different cell states. A change in 

variability likely reflects underlying alterations of gene regulatory programs, and identifying 

the key drivers of this pattern and their roles merits further exploration. Our visualizations 

also motivate local density measures for noise reduction, as they often reveal fine-grain 

structure within a cell type, typically a dense “core” surrounded by a sparse cloud of cells 

with more divergent expression patterns. By focusing on only this core, one could obtain 

crisper canonical representations of cell states and developmental trajectories. Lastly, other 

popular tools for scRNA-seq analysis based on the nearest-neighbors representation of the 

transcriptomic landscape may also benefit from information about local variability, 

motivating density-augmented algorithms for tasks such as clustering42, trajectory 

analysis43, and data integration44. Our work represents a key step forward in understanding 

the dynamic structure of complex single-cell transcriptomic landscapes.

Methods

Review of t-SNE and UMAP.

The most widely-used nonlinear visualization algorithms in single-cell transcriptomic 

analysis are t-SNE3 and UMAP4, and both follow a similar methodology. They first compute 

a nearest-neighbor graph of the high-dimensional data and introduce a type of probability 

distribution on the edges of this graph that assigns larger weights on smaller distances. (For 

t-SNE, this distribution is over all edges, and for UMAP, it is over each edge.) They then 

choose an embedding that minimizes the distance between this original probability 
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distribution and a similar distribution computed on the embedding. The key differences 

between the two algorithms lie in their choices of these distributions and the objective 

function quantifying the difference between the two distributions.

Let X = xi i = 1
n  be our input dataset with n data points, where each xi ∈ ℝd (e.g. gene 

expression profile of a cell). Let E be the set of edges (i, j) in the (directed) k-nearest 

neighbor graph constructed on this dataset, where j is one of the k points closest to i. For t-

SNE, the probability distribution on the original data, Pij
t − SNE, is given by normalizing and 

symmetrizing Gaussian kernel distances:

P j ∣ i = exp − ∥ xi − xj ∥2 /σi2

Zi = ∑
j: (i, j) ∈ E

P j ∣ i

Pij
t−SNE = 1

2n
P j ∣ i
Zi

+ P i ∣ j
Zj

(1)

where σi is chosen adaptively for each i and corresponds the length-scale at xi.

UMAP uses a slightly different kernel, representing a rescaled exponential distribution:

P j ∣ i = exp − ∥ xi − xj ∥ − disti /γi
Pij

UMAP = P j ∣ i + P i ∣ j − P j ∣ iP i ∣ j
(2)

where γi is chosen adaptively and also corresponds to the length-scale, and disti is the 

distance from xi to its nearest neighbor. We expand on the role of σi and γi in the next 

section.

For the probability distributions computed on the embedding, both t-SNE and UMAP use a 

heavy-tailed distribution (e.g. Student’s t-distribution for t-SNE), which emphasizes 

preserving local structure in the original dataset while being more lenient towards longer 

distances (see the original papers3,4 for a thorough explanation). Formally, the probability 

distributions Qij
t − SNE and Qij

UMAP in the embedding are defined as

Qij(a, b) = 1 + adij
2b −1

(3)

Zi(a, b) = ∑
j ≠ i

Qij(a, b) (4)

Qij
t−SNE = Qij(1, 1) ∑

k
Zk(1, 1)

−1
(5)

Qij
UMAP = Qij(a, b) (6)
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where dij represents the distance between points i and j in the embedding (Euclidean for both 

methods), and a and b are additional shape parameters UMAP introduces to control the 

spread of the distribution according to a user parameter. In the following, we omit the 

superscripts of P and Q when they are clear from the context.

The goal of both algorithms is to generate an embedding that minimizes the difference 

between P and Q. The loss function used by t-SNE to quantify this difference is the 

Kullback-Leibler (KL) divergence:

KL(P ∥ Q) = − ∑
ij

Pij logPij − logQij .

UMAP instead uses the cross-entropy (CE) loss summed over all the edges:

CE(P ∥ Q) = − ∑
ij

PijlogQij + 1 − Pij log 1 − Qij .

Both methods optimize the embedding coordinates to minimize the respective loss functions 

using standard gradient descent optimization techniques (see Supplementary Note 2 for 

details). Notably, the fact that UMAP does not require Q to be renormalized over all edges 

allows UMAP to use stochastic gradient descent (whereby the embedding coordinates are 

updated for one data point at a time), making it more computationally efficient than t-SNE in 

general.

Adaptive length-scale selection in t-SNE and UMAP erases density information.

The length-scale parameters σi and γi play an important role. The exponentially-decaying 

tails of the P distribution in both t-SNE and UMAP mean that the points a few multiples of 

the length-scale away from xi are effectively omitted from the conditional distribution P·|i. 

Thus, the choice of the length-scale at point xi determines the radius of the local structure 

around xi that the embedding aims to preserve. Since different points in the dataset can have 

vastly different distribution of distances to their respective nearest neighbors, it is desirable 

to use a different σi or γi for each point xi in order to evenly capture the local structure 

across all parts of the data.

In t-SNE, the σi’s are chosen by setting the perplexity of each conditional distribution P·|i 

constant. Perplexity can be thought of as a “smooth” analog of the number of nearest 

neighbors and is formally defined as Perpi = 2Hi, where Hi denotes the entropy of the 

conditional distribution P·|i:

Hi = − ∑
j

Pj ∣ ilog2Pj ∣ i . (7)

Since perplexity monotonically increases in σi (more points are significantly represented in 

P·|i as σi increases), t-SNE performs a binary search on each σi to obtain a constant 

perplexity for all i. UMAP’s length-scale selection is analogous, but instead of fixing the 
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value of perplexity, it fixes the marginal sum of probabilities at each point i, ∑j Pij, by 

choosing an appropriate γi.

Although it is effective for capturing local structure, adaptive choice of length-scale has the 

undesirable consequence of canceling out differences in density around each point in the 

original data, as t-SNE (implicitly) and UMAP (explicitly) both assume the data points are 

distributed uniformly on an underlying manifold. Note that, in both t-SNE and UMAP, a 

sparse neighborhood of xi leads to a large length-scale, whereas a dense neighborhood leads 

to a small length-scale. Since the distance between points is divided by the length-scale 

parameter in the computation of P, we can intuitively see that this normalization removes 

density information from the data.

More formally, consider a dataset of points X = xi i = 1
n  with Euclidean pairwise distances 

dij i, j = 1
n . Suppose we dilate the data space by a factor of α > 1 to generate a sparser 

dataset Z = zi i = 1
n  with the same underlying structure, where the new pairwise distances 

are scaled by α, i.e. ∥zi − zj∥ = αdij. A key observation is that the distribution P computed on 

X by t-SNE or UMAP will be identical to P computed on Z, even though Z represents a 

more heterogeneous set of points than X. Intuitively, this is because obtaining the same 

perplexity/marginal sum of probabilities on Z requires that the respective length-scales be 

scaled by α, which cancels out the increase in distances and leaves the resulting P 
unchanged. Since P is the only information about the dataset provided as input to the 

embedding step of each algorithm, the original differences in density in different regions of 

the data space are entirely lost in the embedding. We provide a more detailed description of 

this property and its generalization to a broader class of generative models for the underlying 

data in Supplementary Note 3.

Our approach: capturing density information using the local radius.

To generate embeddings that retain information about the density at each point, we introduce 

the notion of a local radius to make concrete our intuition of spatial density. Intuitively, a 

point is in a dense region if its nearest neighbors are very close to it, and in a sparse region if 

its nearest neighbors are far away. Thus, we use average distance to nearest neighbors as a 

measure of density for a given point.

To formalize this notion, for a point xi, we require two components: (i) a pairwise distance 

function d(xi, xj), and (ii) a probability distribution ρj|i that weighs each xj based on its 

distance from xi, with faraway points having lower weights. We define the local radius at xi, 

denoted Rρ(xi), as the expectation of the distance function over xj with respect to ρj|i, thus 

capturing the average distance from xi to nearby points:

Rρ xi : = Ej ∼ ρj ∣ i d xi, xj . (8)

In the following, we let the distance function be the squared Euclidean distance, i.e. d(xi, xj) 

= ∥xi − xj∥2, which we found to have better empirical performance than standard Euclidean 

distance. Other choices of distance function can be easily incorporated into our framework.

Narayan et al. Page 13

Nat Biotechnol. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In den-SNE and densMAP, we take advantage of the probability distributions Pt-SNE and 

PUMAP which already capture local relationships; for the local radius in the original 

embedding, we renormalize the edge probabilities Pij to obtain a conditional distribution ρj|i 

= Pij/∑j Pij and calculate the local radius as

RP xi = 1
∑jPij ∑

j
Pij ∥ xi − xj ∥ 2

for both methods. Note that P vanishes rapidly outside the neighborhood of each xi and is 

thus well-suited for density estimation. We can show in fact that this representation of 

density (inversely-related) has the desirable property that it scales with the variance of a 

range of data-generating distributions and increases when the length-scale term σi increases 

(Supplementary Note 3).

Next, we define the local radius in the embedding. Let yi be the embedding coordinates of 

the point xi given by the algorithm of choice. We need a distribution analogous to P for 

calculating the expected distance between yi and its neighbors in the embedding. It would 

still be desirable for this distribution to have adaptive length-scales like P in order to ensure 

that a comparable number of nearest neighbors are taken into consideration for calculating 

the local radius at different points in the dataset. However, this would present a major hurdle 

for optimization because the binary search used to determine σi and γi is not differentiable. 

Instead, we leverage the embedding distribution Q computed by t-SNE and UMAP as an 

approximation for the adaptive scheme. It is worth noting that, in the case of t-SNE, Q is 

based on a Cauchy distribution, which can be interpreted as the marginalization of a 

Gaussian distribution over an unknown variance45. Thus, Q intuitively reflects an average 

over all length-scales. Letting ρj|i = Qij/∑j Qij and d(yi, yj) = ∥yi − yj∥2, the local radius in the 

embedding is given as

RQ yi = 1
∑jQij

∑
j

Qij ∥ yi − yj ∥ 2 . (9)

Note that we adopt the squared Euclidean distance for consistency with local radius 

computation in the original space.

For ease of notation, we denote the local radius in the original data as Ro and the local radius 

in the embedding as Re in the following sections.

Augmenting the visualization objective to induce density preservation.

To preserve density, we aim for a power-law relationship between the local radius in the 

original dataset and in the embedding, i.e. Re(yi) ≈ α[Ro(xi)]β for some α and β, inspired by 

the exponential scaling of density with respect to dimensionality (see Supplementary Note 

1). This can be reframed as an affine relationship between the logarithms of the local radii, 

i.e.,

re yi ≈ βro xi + α,
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where we define ro(xi) := log Ro(xi) and re(yi) := log Re(yi). The goodness-of-fit of this 

relationship can be measured by the correlation coefficient

Corr re, ro = Cov re, ro
Var re Var ro

1/2 , (10)

which is invariant to the parameters α and β. Cov(·, ·) denotes the covariance function, and 

Var(·) denotes the variance function. Note that these quantities are estimated by considering 

the tuples xi, yi i = 1
n  as n independent samples from the same distribution; e.g., the mean 

of re is estimated as 1
n ∑

i = 1

n
re yi .

Our density-preservation objective is to choose the embedding yi i = 1
n  such that correlation 

between the log local radii of the original dataset and the embedding is maximized. This 

approach is closely related to canonical correlation analysis46 (CCA), which finds a linear 

transformation of a dataset that maximizes its correlation with another. We are further 

motivated by recent work that extends CCA to nonlinear transformations47.

Augmenting the loss functions of t-SNE and UMAP with this density-preservation objective 

yields the den-SNE and densMAP objectives, respectively:

ℒden‐SNE  = KL P t−SNE ∥ Qt−SNE − λCorr rot−SNE, ret−SNE , (11)

ℒdensMAP  = CE PUMAP ∥ QUMAP − λCorr roUMAP, reUMAP , (12)

where λ is a user-chosen parameter that determines the relative importance of the density-

preservation term compared to the original objective.

Optimizing the embedding with respect to density-augmented objectives.

Our differentiable formulation of the local radius enables us to optimize the density-

augmented objective functions (11) and (12) using standard gradient descent techniques. 

Since both t-SNE and UMAP are also based on gradient descent, it suffices for us to 

calculate the contribution of the density-preservation objective to the overall gradient and 

add it to the existing t-SNE and UMAP gradients.

The gradient of the density-preservation objective with respect to the embedding coordinates 

yi is given by

∇yiCorr re, ro = ∑
j ≠ i

∂
∂dij2

Corr re, ro yi − yj ,

where dij = ∥yi − yj∥. To simplify the notation, let μe = E re , rie = re yi , and 

rio: = ro xi − 1
n ∑iro xi /Var1/2 ro . Note that the centering of rio and normalizing by 
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standard deviation does not depend on the embedding and thus can be precomputed. Now, 

the inner gradient term with respect to dij
2  can be calculated as

∂
∂dij2

Corr re, ro =

Var re rio
∂rie

∂dij2
+ rjo

∂rje

∂dij2
− Cov re, ro rie − μe

∂rie

∂dij2
+ (rjo − μe)

∂rje

∂dij2

(n − 1)Var re
3
2

where

∂rie

∂dij2
=

Qij
2 (a, b)

Zi(a, b) abdij
2(b − 1) + e−rie 1 + a(1 − b)dij2 .

The terms Qij(a, b) and Zi(a,b), defined in (3) and (4), respectively, are quantities computed 

by t-SNE and UMAP to capture the local structure of the embedding. (Zi(a,b) is required 

only in t-SNE.) Setting the parameters a = b = 1 results in the t-SNE formulation, whereas 

UMAP sets these two parameters as a function of a user parameter. A detailed derivation of 

our gradients above is provided in Supplementary Note 2.

Optimizing the densMAP objective requires special consideration because UMAP uses 

stochastic gradient descent (SGD), whereby edges are sampled according to Pij and the 

gradient update is performed for one edge at a time. Since the gradient formula (10) involves 

a sum over its neighbors with equal weights, edges sampled from P must be re-weighted to 

obtain unbiased estimates of our gradient. To this end, we multiply the density term in the 

gradient for an edge {i, j} by Z/nPij where Z = ∑{k,ℓ}∈E Pkℓ, to correct for sampling bias. In 

addition, there are a number of global terms that are computationally burdensome to update 

for every edge, which include Var(re), Cov(re, ro), and μe. We compute these terms in the 

beginning of each epoch (a round of edge-wise updates for the entire dataset) and consider 

them as fixed during the epoch. This can be viewed as a form of coordinate descent, where 

the objective is optimized with respect to a subset of variables at a time while conditioning 

on the rest. We describe these techniques in detail in Supplementary Note 2.

Implementation details.

To ensure that our methods find good local optima of (11) and (12) that are as effective as t-

SNE and UMAP in separating clusters, we take a two-step approach where we run the 

original algorithms without the density-preserving objective for the first q fraction of 

iterations, then optimize the full objective for the remaining 1−q fraction of iterations. This 

approach is akin to t-SNE’s “early exaggeration”, whereby the first several iterations of the 

optimization emphasize attractive forces to help guide the direction of the optimization. We 

note that an alternative approach is to smoothly activate the density-preserving objective, but 

because any non-zero weight on this term incurs all of the associated computational 

overhead with little benefit, we opted for the two-step approach instead.
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For computational efficiency, we approximate the embedding distribution Q used in our 

local radius computation (9) by allowing Qij to be non-zero only when Pij is non-zero (i.e. i 
and j are k-nearest neighbors in the original space), thus inducing sparsity in Q. This 

technique is especially well-suited for the aforementioned two-step approach, since the 

embedding already closely follows the nearest-neighbor structure in P when this 

approximation takes effect.

There are several parameters of den-SNE and densMAP that the users can modify to tailor 

the behavior of these algorithms. We inherit all of the parameters from t-SNE and UMAP, 

including perplexity (t-SNE) or number of neighbors (UMAP), number of iterations/epochs, 

and the “min-dist” parameter for UMAP (which controls the a and b parameters in Qij; see 

(6)). We refer the readers to the original publications for a detailed discussion of these 

parameters. There are two additional parameters we introduce in den-SNE and densMAP: 

the weight λ ≥ 0 given to the density-preserving objective, and the fraction q ∈ [0, 1] of 

iterations that take the density term into account. All of our experimental results are based 

on the following default parameter settings that we recommend. For den-SNE, we use 

perplexity of 50 and 1000 iterations (same as the default setting of t-SNE), along with q = 

0.3 and λ = 0.1. For densMAP, we use 30 neighbors, 750 epochs, q = 0.3, and λ = 2. We 

note that changing the value of λ leads to qualitatively different embeddings that achieve 

different trade-offs between the original visualization objective and the density-preservation 

term (Supplementary Figure 20). For MNIST, we took advice from the scientific community 

and Kobak et al. (2019) to increase the early exaggeration parameter for t-SNE and den-SNE 

to 1,000, which resulted in better clustering of the digits48.

Quantitative evaluation of density preservation.

To assess the performance of visualization algorithms at preserving density, we compute the 

correlation between the log local radii in the original dataset and two measures of visual 

density in the embedding generated by the algorithm.

The first measure of visual density is the local radius computed in the same manner as in the 

original space. Recall that during the optimization, we compute the local radius in the 

embedding approximately using the heavy-tailed distribution Q computed by t-SNE or 

UMAP and consider only the edges present in the nearest-neighbors graph of the original 

data. For accurate evaluation, here we compute the local radius more directly as follows. 

Given the embedding points yi i = 1
n , we compute the analog of the P matrix on the original 

data on these embedding points, denoted P′. For t-SNE and den-SNE, we define P′ as:

P j ∣ i′ = exp − ∥ yi − yj ∥2 /σi
Zi′ = ∑

j
Pj ∣ i′

Pj ∣ i′ = Pj ∣ i′ /Zi′

Where σi′, the length-scale parameter, is chosen to achieve the same perplexity as in the 

original P matrix.
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For UMAP and densMAP, we define P′ as:

P j ∣ i′ = exp − ∥ yi − yj ∥ − disti /γi′
Pij′ = P j ∣ i′ + Pi ∣ j′ − P j ∣ i′ Pi ∣ j′
Pj ∣ i′ = Pij′ / ∑

j ≠ i
Pij′

where disti is the distance to the nearest neighbor of yi, and γi′ is chosen to achieve the same 

constant marginal ∑jPj ∣ i′  as the original P matrix.

Since P′ more explicitly focuses on the local neighborhoods of points in the embedding than 

Q by adaptively choosing the length-scale, calculating the local radius using this distribution 

more accurately reflects the actual density of each point in the embedding:

Rp′ yi = ∑
j ≠ i

Pj ∣ i′ ∥ yi − yj ∥2

Note that the adaptive length-scale ensures that a similar number of neighbors are 

considered when computing the local radius for both dense and sparse neighborhoods in the 

embedding. Our quantitative metric of density preservation is then the Pearson correlation 

coefficient (R2) between log RP′(yi) and ro(xi) = log RP (xi), where the latter is the log local 

radius in the original data space.

The second measure of visual density in the embedding is the neighborhood count, which is 

motivated by the visual perception of density as the number of points in a given area. For a 

point yi in the embedding and a radius ℓ, the ℓ-neighborhood count of yi is the number of 

points yj that are within a distance of ℓ from yi in the embedding. Thus, dense regions will 

have large neighborhood counts and sparse regions, small counts. This natural notion of 

local density has been extensively used in the psychology of vision10,49.

To systematically choose ℓ for each dataset, we first compute the area A of the smallest 

bounding box of the embedded points, then calculate an average length-scale lave = A/n, 

where n is the number of points in the dataset. To assess density preservation across different 

length-scales, we tested different multiples of ℓave; for den-SNE and t-SNE, we chose ℓ from 

{ℓave, 2ℓave, 4ℓave}, and for densMAP and UMAP, from 1
2lave, lave, 2lave . We chose smaller 

values for densMAP and UMAP because those embeddings are more compact in general 

than those of den-SNE and t-SNE for our parameter choices. For each chosen ℓ, we calculate 

the ℓ-neighborhood count for each point in the embedding and calculate the correlation (in 

log space) with the local radii in the original space as a quantitative metric of density 

preservation. A strong negative correlation is desirable, which indicates that points with a 

higher neighborhood count (higher visual density) tend to have a smaller local radius in the 

original dataset (smaller underlying variability).
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Additional metrics for evaluating visualization quality.

We additionally evaluated the performance of our methods on three previously proposed 

metrics of visualization quality on scRNA-seq data6: classification score (CS), mutual 

information score (MIS), and pairwise distance score (PDS). Intuitively, CS and MIS 

measure clustering accuracy based on the visualization, and PDS measures the preservation 

of pairwise distances among the datapoints.

More specifically, CS evaluates the accuracy of classifiers that assign each datapoint to one 

of the known clusters based on the visualization coordinates. Following prior work6, we 

trained a random forest classifier on the visualization (60% of the data) to predict the cluster 

labels from the original dataset using the RandomForestClassifier class in Python scikit-

learn package with default parameters. We then calculated the CS as the accuracy of the 

trained classifier on a held-out test set (40% of the data). We averaged the results across 

three trials of cross-validation to produce the final score.

MIS measures the agreement between the output of a clustering algorithm in the original and 

the embedding space. As previously proposed6, we used agglomerative clustering with k = 

100 clusters to generate a high resolution clustering of the original dataset, then applied the 

same procedure to obtain a clustering based on the visualization. We performed the 

clustering using scikit-learn’s AgglomerativeClustering class with the default Ward linkage. 

MIS is calculated as the mutual information between the two cluster assignments, which 

measures their agreement. To produce a robust estimate of the score, we computed MIS on 

three 60% subsamples of the original dataset and averaged the results.

Lastly, for PDS, we sampled 1,000 points at random from the dataset and calculated the 

score as the squared correlation coefficient (R2) between the pairwise distances among the 

chosen points in the original space and those in the visualization, again following the 

previously proposed approach6. Note that this score equally considers all pairs of points 

regardless of their distance, even though the nonlinear data visualization algorithms like t-

SNE and UMAP are designed to focus on preserving distances within local neighborhoods. 

To more comprehensively assess the preservation of pairwise distances at different scales in 

the original dataset, we calculated PDS for different subsets of pairwise distances with an 

increasing upper limit on their original distance in the dataset. More precisely, we calculated 

the PDS for the bottom x% of pairwise distances in the original space for x ranging from 0 

to 100.

Data preprocessing.

We obtained three publicly available scRNA-seq datasets for the main analyses: a dataset of 

immune cells in lung cancer and blood7, a dataset of peripheral blood mononuclear cells 

(PBMCs) in healthy individuals8, and a dataset that profiled the developmental trajectory of 

C. elegans9. We used three additional scRNA-seq datasets for validation experiments, 

including another lung cancer dataset17 and two blood immune cell datasets22,23. For each 

dataset, we applied the same cell and gene filtering schemes used by the original 

publications, then normalized the data so that each cell has the same total number of counts 

(10k). Following the standard in scRNA-seq analysis, we then log-transformed the 
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normalized counts, i.e. x → log(1 + x). Principal component analysis (PCA) was then used 

to produce lower-dimensional representations of individual cells, which are provided as 

input to the visualization algorithms. We used the number of principal components (PCs) 

prescribed by the original publications if present, or used 50 dimensions otherwise. The 

resulting datasets for the main experiments included 48,969 cells and 306 PCs (34.7% of 

total variance) for lung cancer, 68,551 cells and 50 PCs (9.7%) for PBMCs, and 86,024 cells 

and 100 PCs (25.2%) for C. elegans. We used the cell type labels provided by the original 

datasets for visualization.

For the UK Biobank dataset29, we used the 40 PC loadings provided as part of the genetic 

data for visualization. We analyzed a 20% subsample of the dataset including 97,676 

individuals, for computational efficiency. Ethnicity labels for the individuals were obtained 

from Data Field 21000, which was collected from the participants via a touchscreen 

questionnaire. To visualize subpopulation structure within the white British individuals, we 

performed spectral clustering using the 40 PCs as input to identify five subclusters.

For the MNIST dataset, we flattened each of the 60,000 28×28 pixel images to a 784-

dimensional vector and used the top 50 PCs (82.4% of total variance) as our input to the 

visualization algorithms. Labels classifying the handwritten digits were provided in the 

dataset.

Differential analysis of gene expression variability in the lung cancer data.

For each cell type with visible expansion of transcriptomic variability in tumor in our 

visualizations — CD8 T cells (1,621 cells in blood, 443 cells in tumor), CD4 memory 

resting T cells (1,036 cells in blood, 9,019 cells in tumor), CD4 naïve T cells (437 cells in 

blood, 61 cells in tumor), memory B cells (67 cells in blood, 4,811 cells in tumor), and naïve 

B cells (83 cells in blood, 396 cells in tumor) — we identified twenty genes with the largest 

increase in variance in tumor compared to blood for further analysis. For each gene and cell 

type, we calculated the differences in the mean and variance of expression between tumor 

and blood. The statistical significance of the observed differences is assessed using a 

permutation test, whereby the assignment of cells to tumor or blood is randomly permuted, 

and the statistic computed on the permuted dataset is viewed as samples from the null 

distribution where there is no difference between tumor and blood. For comparing the 

variance, we centered the expression levels for each group (tumor or blood) before the 

permutation procedure to control for the shift in mean. The p-value is calculated as the 

fraction of permutations that result in a statistic whose magnitude is larger than the statistic 

computed on the original dataset. We used 100k permutations to estimate the p-values and 

applied Bonferroni correction within each cell type to account for multiple hypothesis 

testing.

When considering changes in the variance of gene expression, it is important to note that an 

increase in variance can often be explained by an increase in mean. For example, under the 

Poisson process model of underlying count distributions, variance of the observed counts 

naturally scales with the mean39. Thus, we additionally calculated the difference in 

dispersion index to assess the extent to which the change in variance is unexplained by a 

corresponding change in mean. The dispersion index (DI) is given by σ2/μ, where μ and σ2 
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are the mean and variance of expression. We assessed the statistical significance of the 

difference in DI also using a permutation test. For the null distribution, we assume that in the 

absence of excess difference in dispersion, the variance of expression has a linear 

dependence on the mean (as suggested by the dispersion index). A permutation scheme that 

correctly reflects this null distribution is one where the expression levels within each group 

(tumor or blood) are transformed as x ↦ μ−1/2(x−μ)+1 before the permutation, where μ is 

the sample mean of the group. This transformation maps both groups to the same mean (μ = 

1) while preserving the DI, so that permuting the labels leads to a valid sample from the null 

distribution. Similar to the mean and variance tests, we used 100k permutations to estimate 

the p-values and applied Bonferroni correction.

Assessing significance of density differences in monocytes and dendritic cells.

To verify our claims that classical (CD14+) monocytes have more variability of expression 

than both CD16+ monocytes and DC3 dendritic cells (as characterized by the PBMC2 

dataset), we compared the distribution of the log local radius in the original data for each of 

these cell types in the PBMC2 and PBMC3 datasets. To assess significance, we used the 

one-sided Mann-Whitney U (MWU) test50, which tests the hypothesis that values drawn 

from one distribution are larger than those drawn from another. We calculated the MWU test 

statistic for: CD14+ monocytes and CD16+ monocytes in the PBMC2 and PBMC3 datasets; 

and for CD14+ monocytes and DC3 dendritic cells in PBMC2. In PBMC2, there are 163 

CD14+ monocytes, 122 CD16+ monocytes, and 107 DC3 cells; in PBMC3, there are 1,264 

CD14+ monocytes, 398 CD16+ monocytes, and 142 DCs.

Runtime and memory benchmarking.

To evaluate runtime and memory usage of our density-preserving visualization methods, we 

used each of the five datasets (three scRNA-seq datasets, UK Biobank, and MNIST) along 

with logarithmically downsampled subsets of each (i.e. subsamples of size N/2, N/4, down 

to 1,000 datapoints for a dataset of size N). dataset from Packer et al. (2019) with 86,024 

cells, which is the largest scRNA-seq dataset used in this paper. In addition to the full 

dataset, we subsampled it into smaller datasets, including 43,012 cells, 21,506 cells, 10,753 

cells, and 5,376 cells. We measured the runtimes of denSNE, densMAP, t-SNE, and UMAP 

on each of the datasets with the default parameter settings and profiled memory usage using 

the psrecord package (https://github.com/astrofrog/psrecord). All experiments were run on 

an Intel Xeon Gold 6130 (2.30 GHz) processor and used a single core.

Data availability.

The lung cancer7 and C. elegans9 datasets are available from the Gene Expression Omnibus 

(GEO) database with accession numbers GSE127465 and GSE126954, respectively. The 

PBMC dataset8 is available from 10x Genomics at: https://support.10xgenomics.com/single-

cell-gene-expression/datasets. For our validation datasets, the secondary lung cancer 

dataset17 is available from GEO (GSE99254), and the PBMC222 and PBMC323 datasets can 

be accessed through the Broad Institute’s Single Cell Portal (https://

singlecell.broadinstitute.org/) with dataset IDs SCP43 and SCP345, respectively. Data access 

applications for the UK Biobank data can be submitted at: https://www.ukbiobank.ac.uk/. 

The MNIST dataset is available at: http://yann.lecun.com/exdb/mnist/. We also provide our 
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preprocessed data for the main datasets (lung cancer, PBMC, and C. elegans) at: http://

densvis.csail.mit.edu/datasets.

Code availability.

We provide the software for den-SNE and densMAP in the densVis package available at: 

http://densvis.csail.mit.edu/ and https://github.com/hhcho/densvis. Our densMAP 

implementation is also available as part of the Python umap package (https://github.com/

lmcinnes/umap).
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Extended Data
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Overview of density-preserving data visualization.
Given a set of points in a high-dimensional space as input (e.g. gene expression profiles 

from single-cell RNA-seq experiments), the goal of data visualization is to embed these 

points in 2D or 3D while preserving the structure of the original data. To this end, standard 

visualization tools t-SNE and UMAP first construct the k-nearest neighbor (KNN) graph as 

a compact summary of the data manifold (1). These methods then optimize the visualization 

coordinates of the points to maximally preserve local distances between neighbors in the 

graph (2). However, because t-SNE and UMAP adaptively choose length-scale to normalize 

local distances within each neighborhood, they produce visualizations that neglect 

information about density in the original space, thus omitting a key structural feature of the 

data. To enhance data visualization by incorporating density information, we introduce a 

general, differentiable measure of density called the local radius (Methods), which is 

efficiently calculated on the same KNN graphs that t-SNE and UMAP leverage (3). By 

augmenting the original visualization objective with an additional term that encourages local 

radii to be consistent between the original space and the visualization, we transform both t-

SNE and UMAP into density-preserving counterparts, den-SNE and densMAP, which more 

accurately portray the structure of the underlying data (4).
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Figure 2: Density-preserving visualization more accurately captures the true underlying shape of 
synthetic datasets than existing tools.
We compared the visualizations of our density-preserving methods den-SNE and densMAP 

to those of t-SNE and UMAP on different synthetic datasets: mixture-of-Gaussian point 

clouds with (a) increasing variances with the same sampling rate; (b) same variance, but 

with increasing sampling rates; (c) increasing variances in a linear translational motion with 

overlap, representing a temporal trajectory; and (d) a grid of points, whereby the density 

grows linearly in one direction. The synthetic datasets are generated in twenty dimensions 

for the point clouds and two dimensions for the grid, and the depictions of the original data 

in the figure represent two-dimensional linear projections for the former. While t-SNE and 

UMAP produce misleading visualizations where the apparent size of a cluster of points 

(marked by different colors) is unrelated to the amount of space it occupies in the original 

space and is biased by sampling rate, den-SNE and densMAP more accurately portray the 

shape of the original data by preserving density information.
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Figure 3: Density-preserving visualization reveals heterogeneity in transcriptomic variability of 
immune cells in blood and tumor.
We visualized a dataset of tumor and blood immune cells from lung cancer patients7 using 

den-SNE and t-SNE, colored by (a) cell type and (b) tissue type (tumor or blood); den-SNE 

exposes striking density differences between immune cell types and between blood and 

tumor, which cannot be discerned from the t-SNE visualization due to its theoretical lack of 

density-preservation (Methods). Note that the relative heterogeneity of neutrophils, plasma 

cells, and T cells are misleadingly portrayed in the t-SNE visualization. c. Scatter plots 
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comparing the local radii, our measure of local density (Methods), in the original space and 

two measures of visual density (local radius and neighborhood count; see Methods) in the 

visualization (embedding) for den-SNE and t-SNE. Points are colored by cell type, and the 

R2 value of the correlation is shown for each plot. Higher correlations of den-SNE (inverse 

correlation for neighborhood count) show that den-SNE more accurately conveys the density 

landscape of the original data than t-SNE. The radius for neighborhood count is set to two 

times the average length-scale of each visualization (Methods); other choices of length-scale 

show a similar improvement for den-SNE (Supplementary Figure 1). d. For detailed 

comparison, we plot the same visualizations for den-SNE (top) and t-SNE (bottom), 

restricted to each of four notable cell types (neutrophils, plasma cells, T cells, and B cells) 

and colored by tissue type (tumor or blood). Neutrophils and plasma cells in tumor 

considerably expand in size in den-SNE, reflecting transcriptomic variability previously 

hidden in t-SNE. T and B cells show a large increase in heterogeneity in tumor compared to 

blood in den-SNE. Although t-SNE shows a similar pattern, its lack of a density-

preservation property precludes reasoning about differences in heterogeneity. e. Violin plots 

showing the distributions of gene expression in tumor and blood for the top three genes with 

the highest increase in variance in tumor for each subtype of T and B cells. A more 

comprehensive list of genes for each cell type is included in Supplementary Tables 1–5. 

These genes indicate potential biological mechanisms underlying the increased 

heterogeneity (revealed by den-SNE) of T and B cells in tumor. The markers *, †, and ‡ 

denote a statistically-significant difference in variance, dispersion, and mean, respectively, 

between blood and tumor (Bonferroni-corrected p < 0.01; Methods). All genes shown have 

significant variance difference, and several of them are not accompanied by a shift in mean 

expression (e.g. RPS27 in naive B cells), suggesting biological insights about tumor not 

captured by conventional differential expression analysis. We provide the same plots for 

densMAP and UMAP in Supplementary Figure 2.
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Figure 4: Density-preserving visualization of peripheral blood mononuclear cells reveals 
monocyte and dendritic cell subsets that differ in transcriptomic variability.
a. We visualized the PBMC dataset8 using densMAP (left) and UMAP (right), colored by 

cell type. The group of clusters corresponding to monocytes (cluster 1) and dendritic cells 

(DCs; cluster 2) showed the most pronounced difference between the two visualizations. b. 
For a detailed comparison, we plotted the same visualizations restricted to the monocyte-DC 

subset, which revealed distinct subtypes of monocytes (CD16 Mono and CD14 Mono) and 

DCs (DC3, DC4, and DC6) with clear density differences in densMAP. Each subtype is 

annotated using the classification from the PBMC2 study22 based on marker gene 

expression. Although the same subtypes are visible in UMAP, their relative density 

differences are lost. c. Scatter plots comparing the local radii, our measure of local density 
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(Methods), in the original space and two measures of visual density (local radius and 

neighborhood count; see Methods) in the visualization (embedding) for densMAP and 

UMAP. Points are colored by cell type, and the R2 value of the correlation is shown for each 

plot. Higher correlations in densMAP (inverse correlation for neighborhood count) support 

the validity of the observed density differences between the monocyte and DC subtypes in 

the densMAP visualization. The radius for neighborhood count is set to the average length-

scale of each visualization (Methods); other choices of length-scale show a similar 

improvement for densMAP (Supplementary Figure 11). d. Graphical illustration showing 

the biological relationships among the five monocyte and DC subtypes we found in the 

monocyte-DC subset. Under inflammatory conditions, CD14 Mono (classical monocytes) 

differentiate into CD16 Mono (non-classical monocytes) for immune response. Both CD14 

Mono and CD16 Mono can differentiate into DCs (classified as DC3 and DC4, 

respectively). DC6 represents plasmacytoid DCs (pDCs), which come from a different 

differentiation trajectory than the rest. densMAP visualization suggests that the 

differentiation paths from CD14 Mono to CD16 Mono and DC3 both represent 

specialization with considerable decrease in transcriptomic variability. densMAP also 

reveals rich variability of DC6 previously hidden in UMAP. e. Gene expression heatmaps of 

DC marker genes from the PBMC2 study22 for DC3 (top) and DC6 (bottom) in the 

densMAP visualization restricted to DCs. These support our assignment of DC clusters to 

DC3 and DC6. A comprehensive set of heatmaps as well as violin plots of all marker genes 

for DC3, DC4, and DC6 are provided in Supplementary Figure 15. f. Gene expression 

heatmaps of monocyte marker genes CD14, S100A8, and CD16 in the densMAP 

visualization restricted to monocytes. CD14+CD16 indicate joint expression of the two 

genes, which is set to their mean if both are expressed, and zero otherwise. The patterns of 

expression support our classification of the dense cluster as CD16 Mono and the sparse 

cluster as CD14 Mono. We provide the same plots for den-SNE and t-SNE in 

Supplementary Figure 12. Validation of the observed variability differences among 

monocyte and DC subtypes on two additional datasets22,23 is included in Supplementary 

Figure 14.
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Figure 5: Density-preserving visualization of C. elegans development reveals temporal dynamics 
of transcriptomic variability in different developmental lineages.
We visualized the C. elegans dataset9 using densMAP and UMAP, colored by (a) cell type 

(major cell types labeled) and (b) embryo time. UMAP visualization with cell type coloring 

is omitted for space. In contrast to UMAP, densMAP clearly conveys an overall increase in 

transcriptomic variability as the organism develops and realizes a wider range of biological 

functions. c. Scatter plots comparing the local radii, our measure of local density (Methods), 

in the original space and two measures of visual density (local radius and neighborhood 
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count; see Methods) in the visualization (embedding) for densMAP and UMAP. Points are 

colored by embryo time, and the R2 value of the correlation is shown for each plot. Higher 

correlations of densMAP (inverse correlation for neighborhood count) support the validity of 

the overall increase in transcriptomic variability over the course of development observed in 

densMAP. The radius for neighborhood count is set to the average length-scale of each 

visualization (Methods); other choices of length-scale show a similar improvement for 

densMAP (Supplementary Figure 16). d. To assess lineage-specific patterns of 

transcriptomic variability, we summarized the average local radius of each cell type (marked 

by different line style) within each embryo time interval for the original data (top), 

densMAP (middle), and UMAP (bottom). The plot for original data represents the temporal 

changes in the underlying transcriptomic variability of each cell type, and the plots for 

densMAP and UMAP represent apparent changes in variability based on the respective 

visualizations. We used the time intervals provided by the original study, and the y-axis 

shows the change in average local radius compared to the earliest time interval in log scale. 

densMAP closely follows the temporal patterns of each cell type in the original dataset, a 

structural insight that is lost in UMAP. These patterns uniquely captured by densMAP 

highlight the relatively constant variability of semi-clonal lineages (BWM, intestinal, and 

hypodermis) in contrast to the increasing variability of clonal lineages (seam, amphid and 

non-amphid neurons), which can be explained by the more intermixed nature of semi-clonal 

development. e. densMAP and UMAP visualizations restricted to hypodermis and amphid 

cells for comparison, colored by embryo time. densMAP captures constant variability of 

hypodermis cells during development, whereas UMAP vastly under-represents the 

variability of the terminal cell state. Similarly, for amphid cells, densMAP accurately 

portrays expanding variability, a pattern that is lost in UMAP. We provide the visualizations 

of other cell types and repeat the analyses for den-SNE and t-SNE in Supplementary Figure 

17. BWM: body-wall muscle.
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